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ABSTRACT

This project aims to use Deep Learning concepts to predict the accurate positions
of stars.Our earth undergo various situations which cause the inaccuracy in
measuring the position of the stars in a particular field. These are all caused due
to the celestial movements of both the stars and our earth.Contrary to our
widespread belief the stars are moving and are not stationary. They have been a
the cause of error since a long time. The causes are Abberation , Parallax ,
Rotation , Nutation and various other factors .

Our approach is to use Convolutional Neural Network to account for the
different causes of accuracy. The model to be used is ALEXNET which is a very
renowned model in Image related problem solving. Having won the ImageNet
2012 challege it is worth trusting for our error detection problem.The data was
taken from the ipyaladin website which is the most diverse source of dataset in
the world of astronomy and the co ordinate system used is RA-Dec system which
is again the most widely used locating system.

For the Deep Learning part we have identified the problem as a supervised
regression domain of problem and its input would be the images that would be
taken as input and the output would be a set of corrected co ordinate system. We
attempt to achieve the highest accuracy possible and keep improving our hyper
parameters to further improve our model.

Keywords: Deep Learning, Supervised Learning, Convolutional Neural Network,
Nutation, Abberartion, Parallax.
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Chapter 1

Introduction

1.1 The RA-Dec Co Ordinate System

1.1.1 The Need of Celestial Co ordinate system

This is the preferred coordinate system to pinpoint objects on the celestial sphere.
Unlike the horizontal coordinate system, equatorial coordinates are independent of
the observer’s location and the time of the observation. This means that only one set
of coordinates is required for each object, and that these same coordinates can be
used by observers in different locations and at different times.

The equatorial coordinate system is basically the projection of the latitude and
longitude coordinate system we use here on Earth, onto the celestial sphere. By
direct analogy, lines of latitude become lines of declination (Dec; measured in
degrees, arcminutes and arcseconds) and indicate how far north or south of the
celestial equator (defined by projecting the Earth’s equator onto the celestial sphere)
the object lies. Lines of longitude have their equivalent in lines of right ascension
(RA), but whereas longitude is measured in degrees, minutes and seconds east the
Greenwich meridian, RA is measured in hours, minutes and seconds east from
where the celestial equator intersects the ecliptic (the vernal equinox).
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1.1.2 Right Ascension(RA)

Analogous to the longitude coordinate here on Earth, RA is also an angular
distance, measured eastward from the vernal equinox (where the celestial equator
intersects the ecliptic). However, primarily for historial reasons, RA is measured
in hours, minutes and seconds rather than degrees, minutes and seconds, with 1
hour of RA measured at the celestial equator equal to 15 degrees.

1.1.3 Declination (Dec)

Along with the right ascension (RA) and epoch, the ‘declination’ (Dec) of an object
is used to define its position on the celestial sphere in the equatorial coordinate
system.
Measured in degrees, arcminutes and arcseconds it defines how far north (positive
Dec) or south (negative Dec) of the celestial equator the object lies, and is directly
analogous to the latitude coordinate here on Earth. Stars on the celestial equator
have Dec=0o, stars at the south celestial pole have Dec=-90o, and stars at the north
celestial pole have Dec=+90o.

At first glance, this system of uniquely positioning an object through two
coordinates appears easy to implement and maintain. However, the equatorial
coordinate system is tied to the orientation of the Earth in space, and this changes
over a period of 26,000 years due to the precession of the Earth’s axis. We therefore
need to append an additional piece of information to our coordinates – the epoch.
For example, the Einstein Cross (2237+0305) was located at RA = 22h 37m, Dec =
+03o05’ using epoch B1950.0. However, in epoch J2000.0 coordinates, this object
is at RA = 22h 37m, Dec = +03o 21’. The object itself has not moved – just the
coordinate system.
The equatorial coordinate system is alternatively known as the ‘RA/Dec coordinate
system’ after the common abbreviations of the two components involved.

1.2 The CDS Data Source

The equatorial coordinate system is alternatively Strasbourg astronomical Data
Center (CDS) is dedicated to the collection and worldwide distribution of
astronomical data and related information.

The CDS hosts the SIMBAD astronomical database, the world reference database
for the identification of astronomical objects; VizieR, the catalogue service for the
CDS reference collection of astronomical catalogues and tables published in
academic journals; and the Aladin interactive software sky atlas for access,
visualization and analysis of astronomical images, surveys, catalogues, databases
and related data.

School of Computer Engineering, KIIT, BBSR 3

http://astronomy.swin.edu.au/cosmos/D/Distance
http://astronomy.swin.edu.au/cosmos/V/Vernal+Equinox
http://astronomy.swin.edu.au/cosmos/E/Equator
http://astronomy.swin.edu.au/cosmos/E/Ecliptic
http://astronomy.swin.edu.au/cosmos/R/Right+Ascension
http://astronomy.swin.edu.au/cosmos/R/Right+Ascension
http://astronomy.swin.edu.au/cosmos/E/Epoch
http://astronomy.swin.edu.au/cosmos/D/Declination
http://astronomy.swin.edu.au/cosmos/D/Declination
http://astronomy.swin.edu.au/cosmos/C/Celestial+Sphere
http://astronomy.swin.edu.au/cosmos/E/Equatorial+Coordinate+System
http://astronomy.swin.edu.au/cosmos/E/Equatorial+Coordinate+System
http://astronomy.swin.edu.au/cosmos/A/Arcsecond
http://astronomy.swin.edu.au/cosmos/E/Equator
http://astronomy.swin.edu.au/cosmos/S/Star
http://astronomy.swin.edu.au/cosmos/S/Space
http://astronomy.swin.edu.au/cosmos/P/Period
http://astronomy.swin.edu.au/cosmos/A/Axis
http://astronomy.swin.edu.au/cosmos/E/Epoch
http://simbad.u-strasbg.fr/simbad
http://vizier.u-strasbg.fr/
http://aladin.u-strasbg.fr/aladin.gml


MACHINE LEARNING
APPLICATION IN STELLAR FIELD IDENTIFICATION

1.2 Convolutional Neural Network (CNN)

1.2.1 Introduction

Convolutional Neural Networks (CNN) are everywhere. It is arguably the most
popular deep learning architecture. The recent surge of interest in deep learning is
due to the immense popularity and effectiveness of convnets. The interest in CNN
started with AlexNet in 2012 and it has grown exponentially ever since. In just three
years, researchers progressed from 8 layer AlexNet to 152 layer ResNet.

CNN is now the go-to model on every image related problem. In terms of accuracy
they blow competition out of the water. It is also successfully applied to
recommender systems, natural language processing and more. The main advantage
of CNN compared to its predecessors is that it automatically detects the important
features without any human supervision. For example, given many pictures of cats
and dogs it learns distinctive features for each class by itself.

CNN is also computationally efficient. It uses special convolution and pooling
operations and performs parameter sharing. This enables CNN models to run on any
device, making them universally attractive.

All in all this sounds like pure magic. We are dealing with a very powerful and
efficient model which performs automatic feature extraction to achieve superhuman
accuracy (yes CNN models now do image classification better than humans).

School of Computer Engineering, KIIT, BBSR 4
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1.2.2 Architecture

There is an input image that we’re working with. We perform a series convolution +
pooling operations, followed by a number of fully connected layers. If we are
performing multiclass classification the output is softmax. We will now dive into
each component.

Convolution

The main building block of CNN is the convolutional layer. Convolution is a
mathematical operation to merge two sets of information. In our case the
convolution is applied on the input data using a convolution filter to produce a
feature map. There are a lot of terms being used so let’s visualize them one by one.

The convolution operation by sliding this filter over the input. At every location, we
do element-wise matrix multiplication and sum the result. This sum goes into the
feature map. The green area where the convolution operation takes place is called
the receptive field. One more important point before we visualize the actual
convolution operation. We perform multiple convolutions on an input, each using a
different filter and resulting in a distinct feature map. We then stack all these feature
maps together and that becomes the final output of the convolution layer. But first
let’s start simple and visualize a convolution using a single filter..

To help with visualization, we slide the filter over the input as follows. At each
location we get a scalar and we collect them in the feature map. The animation
shows the sliding operation at 4 locations, but in reality it’s performed over the
entire input.Below we can see how two feature maps are stacked along the depth
dimension. The convolution operation for each filter is performed independently
and the resulting feature maps are disjoint.

School of Computer Engineering, KIIT, BBSR 5
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Non-linearity

For any kind of neural network to be powerful, it needs to contain non-linearity.
Both the ANN and autoencoder we saw before achieved this by passing the
weighted sum of its inputs through an activation function, and CNN is no different.
We again pass the result of the convolution operation through relu activation
function. So the values in the final feature maps are not actually the sums, but the
relu function applied to them. We have omitted this in the figures above for
simplicity. But keep in mind that any type of convolution involves a relu operation,
without that the network won’t achieve its true potential.

Stride and Padding

Stride specifies how much we move the convolution filter at each step. By default
the value is 1, as you can see in the figure below.We can have bigger strides if we
want less overlap between the receptive fields. This also makes the resulting feature
map smaller since we are skipping over potential locations. The following figure
demonstrates a stride of 2. Note that the feature map got smaller.We see that the
size of the feature map is smaller than the input, because the convolution filter
needs to be contained in the input. If we want to maintain the same dimensionality,
we can use padding to surround the input with zeros.

The gray area around the input is the padding. We either pad with zeros or the
values on the edge. Now the dimensionality of the feature map matches the input.
Padding is commonly used in CNN to preserve the size of the feature maps,
otherwise they would shrink at each layer, which is not desirable. The 3D
convolution figures we saw above used padding, that’s why the height and width of
the feature map was the same as the input (both 32x32), and only the depth changed.

Pooling

After a convolution operation we usually perform pooling to reduce the
dimensionality. This enables us to reduce the number of parameters, which both
shortens the training time and combats overfitting. Pooling layers downsample each
feature map independently, reducing the height and width, keeping the depth intact.

The most common type of pooling is max pooling which just takes the max value in
the pooling window. Contrary to the convolution operation, pooling has no
parameters. It slides a window over its input, and simply takes the max value in the
window. Similar to a convolution, we specify the window size and stride.

By halving the height and the width, we reduced the number of weights to 1/4 of the
input. Considering that we typically deal with millions of weights in CNN
architectures,
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Fully Connected

After the convolution + pooling layers we add a couple of fully connected layers to
wrap up the CNN architecture. .

The output of both convolution and pooling layers are 3D volumes, but a fully
connected layer expects a 1D vector of numbers. So we flatten the output of the
final pooling layer to a vector and that becomes the input to the fully connected
layer. Flattening is simply arranging the 3D volume of numbers into a 1D vector,

School of Computer Engineering, KIIT, BBSR 7
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Chapter 2

Literature Survey

2.1 The different causes of error in the position detection

2.1.1 The Earth’s Precession and Nutation

The Earth's axis rotates (precesses) just as a spinning top does. The period of
precession is about 26,000 years. Therefore, the North Celestial Pole will not
always be point towards the same starfield.Precession is caused by the gravitational
pull of the Sun and the Moon on the Earth.

2.1.2 The Proper Motion of Stars

The period of Proper motion, in astronomy, the apparent motion of a star across
the celestial sphere at right angles to the observer’s line of sight; any radial motion
(toward or away from the Sun) is not included. It is observed with respect to a
framework of very distant background stars or galaxies. Proper motion is generally
measured in seconds of arc per year; the largest known is that of Barnard’s star in
the constellation Ophiuchus, about 10″ yearly. The English astronomer Edmond
Halley, in 1718, was the first to detect proper motions—those of Arcturus and
Sirius. The symbol for proper motion is the Greek letter μ (mu).

2.1.3 Julian Day

The Julian date (JD) is a continuous count of days and fractions elapsed since the
same initial epoch. Currently the JD is 2458941.8326389. The integral part (its floor)
gives the Julian day number. The fractional part gives the time of day since noon
UT as a decimal fraction of one day or fractional day, with 0.5 representing
midnight UT. Typically, a 64-bit floating point (double precision) variable can
represent an epoch expressed as a Julian date to about 1 millisecond precision.

A Julian date of 2454115.05486 means that the date and Universal Time is Sunday
14 January 2007 at 13:18:59.9.

https://www.britannica.com/science/astronomy
https://www.britannica.com/science/motion-mechanics
https://www.britannica.com/science/star-astronomy
https://www.britannica.com/science/celestial-sphere
https://www.britannica.com/place/Sun
https://www.britannica.com/science/galaxy
https://www.britannica.com/place/Barnards-star
https://www.britannica.com/science/constellation
https://www.britannica.com/biography/Edmond-Halley
https://www.britannica.com/biography/Edmond-Halley
https://www.britannica.com/place/Arcturus
https://www.britannica.com/place/Sirius-star
https://simple.wikipedia.org/w/index.php?title=Floor_function&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Decimal
https://simple.wikipedia.org/wiki/Fraction_(mathematics)
https://simple.wikipedia.org/w/index.php?title=Fractional_day&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Midnight
https://simple.wikipedia.org/wiki/64-bit
https://simple.wikipedia.org/wiki/Floating_point
https://simple.wikipedia.org/w/index.php?title=Double_precision&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Epoch_(astronomy)
https://simple.wikipedia.org/wiki/Millisecond
https://simple.wikipedia.org/wiki/14_January
https://simple.wikipedia.org/wiki/2007
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The decimal parts of a Julian date:
0.1 = 2.4 hours or 144 minutes or 8640 seconds
0.01 = 0.24 hours or 14.4 minutes or 864 seconds
0.001 = 0.024 hours or 1.44 minutes or 86.4 seconds
0.0001 = 0.0024 hours or 0.144 minutes or 8.64 seconds
0.00001 = 0.00024 hours or 0.0144 minutes or 0.864 seconds.

2.1.4 Sidreal Day

The sidereal day is the time it takes for the Earth to complete one rotation about its
axis with respect to the ‘fixed’ stars. By fixed, we mean that we treat the stars as if
they were attached to an imaginary celestial sphere at a very large distance from the
Earth.A measurement of the sidereal day is made by noting the time at which a
particular star passes the celestial meridian (i.e. directly overhead) on two
successive nights. On Earth, a sidereal day lasts for 23 hours 56 minutes 4.091
seconds, which is slightly shorter than the solar day measured from noon to
noon.Our usual definition of an Earth day is 24 hours, so the sidereal day is 4
minutes faster. This means that a particular star will rise 4 minutes earlier every
night, and is the reason why different constellations are only visible at specific
times of the year.

2.1.5 Astronomical Time

The kind of Time we deal with is related to the sun and its position in the sky
relative to the line called local celestial meridian,that runs from south point in the
horizon to the zenith directly overhead to the north point in the horizon to the nadir
directly under the foot and back to the south point.

2.1.6 Rotation of the Earth and Revolution around the Sun

There can be a lot of irregularities due to the rotation and the revolution of the sun:

1. The eastward motion of the sun along the ecliptic is not uniform. The earth is
closer to the sun in January(Perihelon) and farther away in July(Apihelion) , when it
is closer to the sun it moves faster and when it is farther it moves slowly.

2.Another irregularity in the motion of the sun arises because the sun does not
follow the celestial equator
If it moves 1⁰ eastward along the celestial equator it's RA would increase by 4 min
However during the time of solstices the sun lies 23 1/2⁰ N/S of celestial equator,
here the lines in ascension is closer together, when the sun moves 1⁰ eastward along
the ecliptic , its RA can increase as much as 4.4 min
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3.Yet, Another irregularity is due to the inclination of the ecliptic to the celestial
equator. When the sun is moving around the solstices it moves around 1⁰ per day
eastward.At the time of equinoxes the motion is not parallel to the ceelestial
equator.In spring the sun's motion is directed partially towards east and partially
towards North as it returns to the Northern Hemisphere.In Spring the sun's motion
is tow

School of Computer Engineering, KIIT, BBSR 10
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Chapter 3

Software Requirements Specification

3.1 The Software Needed for the Implementation of the project are:

3.1.1 Tensorflow 1.0
3.1.2 Windows 10
3.1.3 Python 3
3.1.4 Aladin browser

School of Computer Engineering, KIIT, BBSR 11
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Chapter 4

Requirement Analysis

4.1 Deep Learning Approach to Error Detection

In astronomy, the volume and complexity is increasing all the time, which can be
challenging for traditional analysis methods. The rapid progress in machine
learning and deep learning techniques offer us an opportunity to approach these
problems in different ways To solve the error detection problem, Deep Learning
offers a wide range of Image Detection, Classification and various other models
for the Analysis.The deep Learning Approach is the most convenient approach to
handle such problems.

Thus an image of a part of the field is taken from the Alladin Browser and it is
required to find the accurate positioning of the stars using AlenNet Model. The
required output is the correction in the dataset needed due to the various factors
listed above in the RA-Dec system of co ordinates.

School of Computer Engineering, KIIT, BBSR 12



MACHINE LEARNING APPLICATION IN STELLAR FIELD IDENTIFICATION

Chapter 5

System Design

5.1 The Design of the AlexNet Model

The since our problem is of nature supervised regression we will have to use only
some of the layers of the model.To get the regression data we would have to
remove the softmax regression layer.

The image data usually given to the model is of size 28x28 thus an image resizing is
require to be performed to be feeded into the channel.

Atleast 50000 data is to be used for the testing and the Validation set from the
PanSTARRS data of the Alladin browser.

A plot is to be maintained in the tensorboard and the accuray and the various
convolution layers are to be analysed , with respect to their weights and biases.

School of Computer Engineering, KIIT, BBSR 13
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Chapter 6

System Testing

WRITE HERE.

6.1 Test Cases and Test Results

School of Computer Engineering, KIIT, BBSR 14
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Implementation

7.1 Train.py

import os
import numpy as np
import tensorflow.compat.v1 as tf
from model import alexnet
from evals import calc_loss_acc, train_op
from tensorboard.plugins.hparams import api as hp
import input_data
from scipy import misc
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

def del_all_flags(FLAGS):
flags_dict = FLAGS._flags()
keys_list = [keys for keys in flags_dict]
for keys in keys_list:
FLAGS.__delattr__(keys)

del_all_flags(tf.flags.FLAGS)

flags = tf.app.flags
FLAGS = flags.FLAGS

tf.app.flags.DEFINE_string('f', '', 'kernel')

flags.DEFINE_integer('valid_steps', 11, 'The number of validation
steps ')
flags.DEFINE_integer('max_steps', 300, 'The number of maximum
steps for traing')

School of Computer Engineering, KIIT, BBSR 15
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flags.DEFINE_integer('batch_size', 128, 'The number of images in
each batch during training')

flags.DEFINE_float('base_learning_rate', 0.0001, "base learning rate
for optimizer")

flags.DEFINE_integer('input_shape', 784 , 'The inputs tensor shape')
##flags.DEFINE_integer('input_shape', 784, 'The inputs tensor
shape')

flags.DEFINE_integer('num_classes', 10, 'The number of label
classes')

flags.DEFINE_string('save_dir', './outputs', 'The path to saved
checkpoints')

flags.DEFINE_float('keep_prob', 0.75, "the probability of keeping
neuron unit")

flags.DEFINE_string('tb_path', './tb_logs/First/', 'The path points to
tensorboard logs ')

import pandas as pd

dict = {row[0] : row[1] for _, row in
pd.read_csv("C:/Users/KIIT/Anaconda3/envs/tensorflow_env/MNIS
T-AlexNet-Using-Tensorflow-
master/MNIST.csv",header=None).iterrows()}

images = []
labels=[]
files=[]
for filename in
os.listdir("C:/Users/KIIT/Anaconda3/envs/tensorflow_env/MNIST-

School of Computer Engineering, KIIT, BBSR 16
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AlexNet-Using-Tensorflow-master/data/mnistasjpg/trainingSet"):
img =

cv.imread(os.path.join("C:/Users/KIIT/Anaconda3/envs/tensorflow_
env/MNIST-AlexNet-Using-Tensorflow-
master/data/mnistasjpg/trainingSet", filename))
if img is not None:
files.append(filename)
images.append(img)
labels.append(dict.get(filename))

temp = list(zip(images, labels))
random.shuffle(temp)
images, labels = zip(*temp)

imgf=np.array(images)
imagef=tf.image.rgb_to_grayscale(imgf)

"""
batch = mnist.train.next_batch(55000)
X_batch = batch[0]
batch_tensor = tf.reshape(X_batch, [55000, 28, 28, 1])
resized_images = tf.image.resize_images(batch_tensor, [25,25])
"""
numpy_imgs = imagef.numpy()
im=tf.reshape(numpy_imgs, [42000,784])
imf=im.numpy()
def train(FLAGS):
"""Training model

"""
valid_steps = FLAGS.valid_steps
max_steps = FLAGS.max_steps
batch_size = FLAGS.batch_size
base_learning_rate = FLAGS.base_learning_rate
input_shape = FLAGS.input_shape # image shape = 28 * 28

School of Computer Engineering, KIIT, BBSR 17
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num_classes = FLAGS.num_classes
keep_prob = FLAGS.keep_prob
save_dir = FLAGS.save_dir
tb_path = FLAGS.tb_path

train_loss, train_acc = [], []
valid_loss, valid_acc = [], []

tf.reset_default_graph()
# define default tensor graphe
with tf.Graph().as_default():
images_pl = tf.placeholder(tf.float32, shape=[None,

input_shape])
labels_pl = tf.placeholder(tf.float32, shape=[None,

num_classes])

# define a variable global_steps
global_steps = tf.Variable(0, trainable=False)

# build a graph that calculate the logits prediction from model
logits = alexnet(images_pl, num_classes, keep_prob)

loss, acc, _ = calc_loss_acc(labels_pl, logits)

# build a graph that trains the model with one batch of example
and updates the model params

training_op = train_op(loss, global_steps, base_learning_rate)
validing_op = train_op(loss, global_steps, base_learning_rate)
# define the model saver
saver = tf.train.Saver(tf.global_variables())

# define a summary operation
summary_op = tf.summary.merge_all()
summ_op=tf.summary.merge_all()
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with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# print(sess.run(tf.trainable_variables()))
# start queue runners
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,

coord=coord)
train_writter = tf.summary.FileWriter(tb_path, sess.graph)
train_writter2 = tf.summary.FileWriter('./tb_logs/Second/',

sess.graph)
#train_writter = tf.summary.create_file_writer(tb_path)

# start training
for step in range(max_steps):

train_image_batch, train_label_batch =
mnist.train.next_batch(batch_size)

train_feed_dict = {images_pl: train_image_batch,
labels_pl: train_label_batch}

_, _loss, _acc, _summary_op = sess.run([training_op, loss,
acc, summary_op], feed_dict = train_feed_dict)

# store loss and accuracy value
train_loss.append(_loss)
train_acc.append(_acc)
print("Iteration " + str(step) + ", Mini-batch Loss= " +

"{:.6f}".format(_loss) + ", Training Accuracy= " +
"{:.5f}".format(_acc))

train_writter.add_summary(_summary_op, global_step=
step)

print("brrr",step)
if step % 100 == 0:
_valid_loss, _valid_acc = [], []
print('Start validation process')
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for itr in range(valid_steps):
valid_image_batch, valid_label_batch =

mnist.test.next_batch(batch_size)

valid_feed_dict = {images_pl: valid_image_batch,
labels_pl: valid_label_batch}

_,_loss, _acc,_validing_op =
sess.run([validing_op,loss, acc,summ_op], feed_dict =
valid_feed_dict)

train_writter2.add_summary(_validing_op,
global_step= itr)

_valid_loss.append(_loss)
_valid_acc.append(_acc)
#train_writter.add_summary(_summary_op,

global_step= step)

valid_loss.append(np.mean(_valid_loss))
valid_acc.append(np.mean(_valid_acc))

#print("Iteration {}: Train Loss {:6.3f}, Train Acc
{:6.3f}, Val Loss {:6.3f}, Val Acc {:6.3f}".format(itr, train_loss[-1],
train_acc[-1], valid_loss[-1], valid_acc[-1]))

print("Iteration {}: Train Loss {}, Train Acc {}, Val
Loss {}, Val Acc {}",itr, train_loss[-1], train_acc[-1], valid_loss[-1],
valid_acc[-1])

#train_writter.add_summary(_summary_op,
global_step= step)

#print("brrr",step)
#train_writter.
#with train_writter.as_default():
#tf.summary.scalar('loss', _valid_loss)
#tf.summary.scalar('accuracy', _valid_acc)

np.save(os.path.join(save_dir, 'accuracy_loss', 'train_loss'),
train_loss)
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np.save(os.path.join(save_dir, 'accuracy_loss', 'train_acc'),

train_acc)
np.save(os.path.join(save_dir, 'accuracy_loss', 'valid_loss'),

valid_loss)
np.save(os.path.join(save_dir, 'accuracy_loss', 'valid_acc'),

valid_acc)
checkpoint_path = os.path.join(save_dir, 'model',

'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)

coord.request_stop()
coord.join(threads)

sess.close()
if __name__ == '__main__':
train(FLAGS)

7.2 Models.py

import tensorflow.compat.v1 as tf
from layers import max_pooling, dropout, norm, conv2d, fc

def alexnet(inputs, num_classes, keep_prob):
"""Create alexnet model
"""
x = tf.reshape(inputs, shape=[-1, 28, 28, 1])

# first conv layer, downsampling layer, and normalization layer
conv1 = conv2d(x, shape=(11, 11, 1, 96), padding='SAME',

name='conv1')
pool1 = max_pooling(conv1, ksize=(2, 2), stride=(2, 2),

padding='SAME', name='pool1')
norm1 = norm(pool1, radius=4, name='norm1')

# second conv layer
conv2 = conv2d(norm1, shape=(5, 5, 96, 256), padding='SAME',

name='conv2')
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pool2 = max_pooling(conv2, ksize=(2, 2), stride=(2, 2),
padding='SAME', name='pool2')
norm2 = norm(pool2, radius=4, name='norm2')

# 3rd conv layer
conv3 = conv2d(norm2, shape=(3, 3, 256, 384), padding='SAME',

name='conv3')
# pool3 = max_pooling(conv3, ksize=(2, 2), stride=(2, 2),

padding='SAME', name='pool3')
norm3 = norm(conv3, radius=4, name='norm3')

# 4th conv layer
conv4 = conv2d(norm3, shape=(3, 3, 384, 384), padding='SAME',

name='conv4')

# 5th conv layer
conv5 = conv2d(conv4, shape=(3, 3, 384, 256), padding='SAME',

name='conv5')
pool5 = max_pooling(conv5, ksize=(2, 2), stride=(2, 2),

padding='SAME', name='pool5')
norm5 = norm(pool5, radius=4, name='norm5')

# first fully connected layer
fc1 = tf.reshape(norm5, shape=(-1, 4*4*256))
fc1 = fc(fc1, shape=(4*4*256, 4096), name='fc1')
fc1 = dropout(fc1, keep_prob=keep_prob, name='dropout1')

fc2 = fc(fc1, shape=(4096, 4096), name='fc2')
fc2 = dropout(fc2, keep_prob=keep_prob, name='dropout2')

# output logits value
with tf.variable_scope('classifier') as scope:
weights = tf.get_variable('weights', shape=[4096, num_classes],

initializer=tf.initializers.he_normal())
biases = tf.get_variable('biases', shape=[num_classes],

School of Computer Engineering, KIIT, BBSR 22



MACHINE LEARNING APPLICATION IN STELLAR FIELD IDENTIFICATION

initializer=tf.initializers.random_normal())
# define output logits value
logits = tf.add(tf.matmul(fc2, weights), biases,

name=scope.name + '_logits')

return logits

7.3 Layers.py

import tensorflow.compat.v1 as tf
"""
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
"""
def max_pooling(inputs, ksize, stride, padding, name):
"""Create max pooling layer
Args:
inputs: float32 4D tensor
ksize: a tuple of 2 int with (kernel_height, kernel_width)
stride: a tuple
padding: string. padding mode 'SAME', '
name: string

Returns:
4D tensor of [batch_size, height, width, channels]

"""
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with tf.variable_scope(name) as scope:
value = tf.nn.max_pool(inputs, ksize=[1, ksize[0], ksize[1], 1],

strides=[1, stride[0], stride[1], 1], padding=padding,
name=scope.name)
return value

def dropout(inputs, keep_prob, name):
"""Dropout layer

Args:
inputs: float32 4D tensor
keep_prob: the probability of keep training sample
name: layer name to define

Returns:
4D tensor of [batch_size, height, width, channels]

"""

return tf.nn.dropout(inputs, rate=(1-keep_prob), name=name)

def norm(inputs, radius=4, name=None):
"""

"""
with tf.variable_scope(name) as scope:
value = tf.nn.lrn(inputs, depth_radius=radius, bias=1.0,

alpha=1e-4, beta=0.75, name=name)
return value

# def batch_norm(inputs, name):
# """batch normalization layer

# """
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def conv2d(inputs, shape, padding, name):
"""Create convolution 2D layer
Args:
inputs: float32. 4D tensor
shape: the shape of kernel
padding: string. padding mode 'SAME',
name: corressponding layer's name

Returns:
Output 4D tensor

"""
with tf.variable_scope(name) as scope:
# get weights value and record a summary protocol buffer with

a histogram
weights = tf.get_variable('weights', shape=shape,

initializer=tf.initializers.he_normal())
tf.summary.histogram(scope.name + 'weights', weights)

# get biases value and record a summary protocol buffer with a
histogram

biases = tf.get_variable('biases', shape=shape[3],
initializer=tf.initializers.random_normal())

tf.summary.histogram(scope.name + 'biases', biases)
# compute convlotion W * X + b, activiation function relu

function
outputs = tf.nn.conv2d(inputs, weights, strides=[1, 1, 1, 1],

padding=padding)
outputs = tf.nn.bias_add(outputs, biases)
outputs = tf.nn.relu(outputs, name=scope.name + 'relu')

return outputs

def fc(inputs, shape, name):
"""Create fully collection layer
Args:
inputs: Float32. 2D tensor with shape [batch, input_units]
shape: Int. a tuple with [num_inputs, num_outputs]
name: sring. layer name
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Returns:
Outputs fully collection tensor

"""

with tf.variable_scope(name) as scope:
weights = tf.get_variable('weights', shape = [shape[0],

shape[1]], initializer=tf.initializers.he_normal())
biases = tf.get_variable('biases', shape = [shape[1]],

initializer=tf.initializers.random_normal())
# outputs = tf.nn.xw_plus_b(inputs, weights, biases, name =

scope.name)
outputs = tf.add(tf.matmul(inputs, weights), biases,

name=scope.name)

return tf.nn.relu(outputs)

7.4 Evals.py

import tensorflow.compat.v1 as tf

def calc_loss_acc(labels, logits):
"""Function to compute loss value. Here, we used cross entropy
Args:
logits: 4D tensor. output tensor from segnet model, which is the

output of softmax
labels: true labels tensor

Returns:
loss (cross_entropy_mean), accuracy, predicts(logits with

softmax)
"""
# calc cross entropy mean cross_entropy
cross_entropy =

tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits,
name='cross_entropy')
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cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.summary.scalar(name='loss', tensor=cross_entropy_mean)

predicts = tf.equal(tf.argmax(logits, axis=1), tf.argmax(labels,
axis=1))

accuracy = tf.reduce_mean(tf.cast(predicts, dtype=tf.float32))
tf.summary.scalar(name='accuracy', tensor=accuracy)

return cross_entropy_mean, accuracy, predicts

def train_op(total_loss, global_steps, base_learning_rate,
option='Adam'):
"""This function defines train optimizer
Args:
total_loss: the loss value
global_steps: global steps is used to track how many batch had

been passed. In the training process, the initial value for global_steps
= 0, here

global_steps=tf.Variable(0, trainable=False). then after one
batch of images passed, the loss is passed into the optimizer to
update the weight, then the global

step increased by one.
base_learning_rate: default value 0.1

Returns:
the train optimizer

"""

# base_learning_rate = 0.01
# get update operation
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
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if option == 'Adam':
optimizer =

tf.train.AdamOptimizer(learning_rate=base_learning_rate)
print("Running with Adam Optimizer with learning rate:",

base_learning_rate)
elif option == 'SGD':
# base_learning_rate = 0.01
learning_rate_decay =

tf.train.exponential_decay(base_learning_rate, global_steps, 1000,
0.0005)

optimizer =
tf.train.GradientDescentOptimizer(learning_rate_decay)

print("Running with SGD Optimizer with learning rate:",
learning_rate_decay)

else:
raise ValueError('Optimizer is not recognized')

grads = optimizer.compute_gradients(total_loss,
var_list=tf.trainable_variables())

training_op = optimizer.apply_gradients(grads,
global_step=global_steps)

return training_op
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Chapter 8

Screen shots of Project

8.1 Convolution Layer 1

8.2 Convolution Layer 2
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8.3 Convolution Layer 3

8.4 Convolution Layer 4
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8.5 Convolution layer 5

8.6 The Different Layers
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Chapter 10

Conclusion and Future Scope

10.1 Conclusion

The project implementation will be useful in various domains of Astronomy as
position detection with accuracy is used in many fields. Thus Deep Learning was
a useful tool in the error detection and as it is an upcoming field in the Computer
Science Field there would be a lot of scope of improvement in this area.

10.2 Future Scope

There are chances of further improving the accuracy of the model as better models
come in future and thus would be more trustworthy in the future.It can be used by
space organizations in navigation systems and locating items in the space.
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