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Abstract: Photoionization or photodetachment is an important process. It has applications in solar-
and astrophysics. In addition to accurate wave function of the target, accurate continuum functions
are required. There are various approaches, like exchange approximation, method of polarized
orbitals, close-coupling approximation, R-matrix formulation, exterior complex scaling, the recent
hybrid theory, etc., to calculate scattering functions. We describe some of them used in calculations of
photodetachment or photoabsorption cross sections of ions and atoms. Comparisons of cross sections
obtained using different approaches for the ejected electron are given. Furthermore, recombination
rate coefficients are also important in solar- and astrophysics and they have been calculated at
various electron temperatures using the Maxwell velocity distribution function. Approaches based
on the method of polarized orbitals do not provide any resonance structure of photoabsorption cross
sections, in spite of the fact that accurate results have been obtained away from the resonance region
and in the resonance region by calculating continuum functions to calculate resonance widths using
phase shifts in the Breit–Wigner formula for calculating resonance parameters. Accurate resonance
parameters in the elastic cross sections have been obtained using the hybrid theory and they compare
well with those obtained using the Feshbach formulation. We conclude that accurate results for
photoabsorption cross sections can be obtained using the hybrid theory.

Keywords: scattering functions; photoabsorption; photoionization; radiative attachment; opacity

1. Introduction, Calculations and Results

In 1865, J. C. Maxwell proposed his theory of propagation of electromagnet waves.
In 1887, experiments of H. Hertz confirmed his theory. His experiments also showed
the existence of discrete energy levels and led to Einstein’s photoelectric law [1]. In
a photoelectric effect, photons behave like particles rather than waves, as also in the
experiment on the scattering of X-rays by electrons by A. H. Compton [2]. This was also
confirmed by the experiments of Bothe and Geiger [3]. Their experiments showed that the
electron moved from its position in about 10−7 s. A wave would have taken much longer
to move the electron. Photodetachment of negative hydrogen ions is given by

hν + H− → e + H (1)

It was suggested by Wildt [4] that this process is an important source of opacity in
the atmosphere of the Sun, in addition to processes like bound-bound transitions, free-free
transitions, and Thomson scattering. The cross section, in units of Bohr radius, for this
process in the length form and in the dipole approximation is given by (cf. Appendix A)

σ(a2
0) = 4απk(I + k2)

∣∣∣〈Ψ f

∣∣∣z1 + z2

∣∣∣Φ〉|2 (2)

In the above expression, α = 1/137.036 is the fine structure constant, I is the ionization
potential, zi = ri cos(θi) are the dipole transition operators, and k is the momentum of the
outgoing electron. Rydberg units are used in this article. The function Φ represents the
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bound state wave function of the hydrogen ion and Ψ f is the wave function of the outgoing
electron and the remaining hydrogen atom. Various approximations have been made for
the scattering function.

The simplest approximation is the exchange approximation given by

Ψ(
→
r 1,
→
r 2) = u(

→
r 1)φ(

→
r 2)± (1↔ 2) (3)

In the above equation,
→
r 1 and

→
r 2 are the distances of the incident and bound electrons

from the nucleus, assumed fixed, so that the recoil of the nucleus can be neglected, u(
→
r 1) is

the scattering function and φ(
→
r 2) is the target function. Exchange between similar particles

is important. The plus sign refers to the singlet states and the minus sign refers to triplet
states. In these equations

u(
→
r 1) =

u(r1)

r1
YLo(θ1, φ1) (4)

The angles θ1 and ϕ1 are the spherical polar angles, measured in radians. The ground
state function is given by

φ(
→
r 2) = 2e−r2Y00(θ2, φ2) (5)

The scattering function u of the incident particle is obtained from∫
Ylo(Ω1)φ0(

→
r 2)
∣∣∣H − E

∣∣∣Ψ(
→
r 1,
→
r 2)dΩ1d

→
r 2 = 0 (6)

Morse and Allis [5] carried out the exchange approximation calculations in 1933.
Assuming that the nucleus is of infinite mass, is fixed, and the recoil of the nucleus can be
neglected, the Hamiltonian H and energy E (in Rydberg units) are given by

H = −∇2
1 −∇2

2 −
2Z
r1
− 2Z

r2
+

2
r12

(7)

E = −Z2 + k2 (8)

Z is the nuclear change and k is the momentum of the incident particle. Using
Equation (6), we get the equation for the scattering function

[
d2

dr2 −
l(l + 1)

r2 + vdr1 + k2]ul(r1)± 4Z2[(Z2 + k2)δl0r1Vl(r1)−
2

2l + 1
yl(r1)] = 0 (9)

vd(r) =
2(Z− 1)

r
+ 2e−Zr(1 +

1
r
) (10)

yl(r) =
1
rl

r∫
0

xl+1φ0(x)ul(x)dx + rl+1
∞∫

r

φ0(x)
ul(x)

xl dx (11)

Vl =

∞∫
0

e−Zxxul(x)dx (12)

In Equation (9), δlo is the Dirac delta function. The scattering function behaves asymp-
totically like sin(kr− l π

2 + ηl), where ηl is the phase shift for the incident electron of angular
momentum l.

The target electron is distorted because of the electric field produced by the incident
electron, resulting in a lowering of the energy by ∆E = − 1

2 αE2
e , where α = 4.5a3

0 is the
polarizability of the hydrogen atom and Ee is the electric field produced by the incident
electron. For a slowly moving incident electron, this distortion has been taken into account
by the method of polarized orbitals of Temkin [6], assuming that the atom follows the
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instantaneous motion of the scattered electron. He proved that the target function, now
polarized, for an incident electron at a distance r1 is given by

Φpol(
→
r 1,
→
r 2) = φ0(

→
r 2)−

ε(r1, r2)

r2
1

u1s→p(
→
r 2) (13)

u1s→p(
→
r 2) =

cos θ12

(Zπ)0.5 e−Zr2(
Z
2

r2
2 + r2) (14)

In Equation (13), ε(r1, r2) is a step function which allows polarization of the target
electron only when the incident electron is outside the orbit of the target because the step
function is equal to 1 when r1 is greater than r2, zero otherwise. The integro-differential
equation for the function u(r1) for all angular momenta has been given by Sloan [7]. The
method of polarized orbitals has been used extensively for atoms as well as for molecules.
However, this method is not variationally correct, and only the long-range correlations can
be included.

The method has been modified in the hybrid theory [8] by replacing the step function
ε(r1, r2) by a cutoff function χ(r1) = (1− e−βr1)

n, where β and n are optimized to get the
maximum phase shifts and now the polarization of the target takes place whether the
incident electron is inside or outside the orbit of the target electron. Phase shifts have lower
bounds, i.e., they are always below the exact phase shifts, but approaching the correct value
as the number of short-range correlations is increased. Short-range correlations are also
included by writing the wave function as

Ψ(
→
r 1,
→
r 2) = u(

→
r 1)Φpol(

→
r 1,
→
r 2) + (1↔ 2) + ∑ CiΦi

l(
→
r 1,
→
r 2) (15)

The last term in the above equation representing correlation functions for any angular
momentum l are of the Hylleraas type. The equation for the scattering function is now
obtained from ∫

dΩ1d
→
r 2Ylo(Ω1)Φpol

∣∣∣H − E
∣∣∣Ψ(
→
r 1,
→
r 2) = 0 (16)

In the above equation, H is the Hamiltonian of the system and E is the energy.
The resulting equation is given in Ref. [8]. This formulation gives accurate phase shifts

and resonance parameters of He atoms and Li+ ions. The results compare well with those
obtained using other approaches.

The initial state Φ in Equation (2) can be a (1s1s) 1S state or (1s2s) 1,3S states. This
function Φ can be chosen of the Hylleraas form and is accurately known when calculating
energy of the state by the Rayleigh–Ritz variational principle and the final state function
can be calculated accurately using the hybrid theory or any other approach. Cross sections
have been calculated using the Hylleraas functions with 364 terms for the initial state
function, and when 35 short-range correlations are also included in the final state wave
function, as indicated in Equation (15). These results are given in Table 1 of ref. [9] and are
now given here in Table 1. We see that the inclusion of the short-range correlations does
change the cross sections slightly. Bell and Kingston [10], using the method of polarized
orbitals, also calculated these cross sections. Their results are also given in Table 1 along
with the close-coupling results of Wishart [11], who used the close-coupling approximation
for the continuum functions. We find that the results of ref. [10] differ from those calculated
using the hybrid theory which provides accurate scattering functions.
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Table 1. Photodetachment cross section (Mb) of H−.

k
Cross Section without

Short-Range
Correlations

Cross Sections with
Short-Range
Correlations

Bell and
Kingston,
Ref. [10]

Wishart,
Ref. [11]

0.01 0.0245 - - -
0.02 0.1959 - - -
0.03 0.6444 - - -
0.04 1.4736 1.4750 - -
0.05 2.7480 2.7517 - -
0.06 4.4914 4.4988 - -
0.07 6.6844 - - -
0.1 15.2465 15.3024 12.34 15.937
0.2 38.3688 38.5443 40.48 37.870

0.23 39.4354 39.6366 - 38.707
0.24 39.2882 - - -
0.25 38.9121 39.1350 - 38.116
0.26 38.3850 - - -
0.3 34.9684 35.2318 36.40 34.829
0.4 24.2537 25.4709 25.296 23.858
0.5 15.8692 16.0858 16.43 15.720
0.6 10.4924 10.7410 11.29 10.431
0.7 7.1258 7.4862 - 7.101

0.74 6.1530 6.6072 - 6.139
0.8 4.9768 5.6512 5.31 4.978

0.8544 4.1421 4.1421 - -
0.8631 4.0224 6.8976 - -
0.8660 3.9846 7.623 - -

We find that the maximum of the cross sections is at k = 0.23, which corresponds to a
photon of wavelength 8406.3 Å, (using λ = 911.267/ω Å). As the momentum of the emitted
electron, k, tends to zero, the photodetachment cross sections of the negative hydrogen ion
tend to zero because the final state function is proportional to j1(kr) which goes to zero for
as k tends to zero. Further, the cross section is directly proportional to k. Therefore, cross
section is equal to zero at k = 0.0.

Ohmura and Ohmura [12], using the effective range theory and the loosely bound
structure of hydrogen ion, obtained

σ =
6.8475× 10−18γk3

(1− γρ)(γ2 + k2)3 cm2 (17)

In the above expression, γ = 0.2355883 is the square root of the binding energy and
ρ = 2.646 ± 0.004 is the effective range. The maximum of these cross sections occurs at
k = 0.236 or at 8195 Å which is close to the maximum of the cross sections obtained using
the hybrid theory. Miyska at el. [13], using the R-matrix approach, have obtained accurate
results for the photodetachment of the negative H ion. However, their results are given in
form of curves and it is difficult to get accurate results for comparison. The experimental
results [14,15] are also given in the form of curves and it is difficult to get accurate results
for comparison. However, they appear to be close to the present results. The maximum is
around 8000 Å, which is close to 8406.3 Å obtained using the hybrid theory. The results
obtained using the hybrid theory and those obtained using Equation (17) are given in
Figure 1. We find that the two sets of results are very close to each other.
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sections obtained by Ohmura and Ohmura using the effective range theory, Equation (17). 

Similar calculations have been carried out for the photoionization of He and Li+. The 
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the experimental results, the agreement is good. Cross sections for photoionization of He 
agree with those obtained using the R-matrix theory [16] and the experimental results 
[17,18]. These results are given in Table 2 and are also shown in Figure 2. All the three 
curves overlap. It is not possible to distinguish one curve from the other. This indicates 
that the hybrid theory gives results which are as accurate as those obtained using the R-
matrix formulation, which is a very a versatile but is a very complicated theory. Photoab-
sorption in He played an important role in indicating the presence of resonances and in 
determining their positions and widths [19]. The line shape parameter q [20] is inversely 
proportional to the matrix element in the calculation of photoionization given in Equation 
(2). This parameter can be calculated accurately because the matrix element is known ac-
curately. The matrix element appearing in the expression for q depends on the bound state 
wave function and the continuum function of the ejected electron in the photoionization 
cross section, and these functions can be obtained with very high accuracy. 

Figure 1. Photodetachment of a hydrogen negative ion. The lowest curve is obtained when only
the long-range correlations in Equation (15) are included; the middle curve is obtained when the
short-range and long-range correlations are included in Equation (15). The top curve is obtained for
cross sections obtained by Ohmura and Ohmura using the effective range theory, Equation (17).

Similar calculations have been carried out for the photoionization of He and Li+. The
results have been compared with the results obtained in other calculations and also with the
experimental results, the agreement is good. Cross sections for photoionization of He agree
with those obtained using the R-matrix theory [16] and the experimental results [17,18].
These results are given in Table 2 and are also shown in Figure 2. All the three curves
overlap. It is not possible to distinguish one curve from the other. This indicates that the
hybrid theory gives results which are as accurate as those obtained using the R-matrix
formulation, which is a very a versatile but is a very complicated theory. Photoabsorption
in He played an important role in indicating the presence of resonances and in determining
their positions and widths [19]. The line shape parameter q [20] is inversely proportional
to the matrix element in the calculation of photoionization given in Equation (2). This
parameter can be calculated accurately because the matrix element is known accurately.
The matrix element appearing in the expression for q depends on the bound state wave
function and the continuum function of the ejected electron in the photoionization cross
section, and these functions can be obtained with very high accuracy.

It should be pointed out that these cross sections are finite as k goes to zero. In this
case, the final continuum functions are Coulomb functions which behave like reciprocal of
the square root of k. The k outside cancels with k inside the square of the matrix element
giving finite cross sections as k goes to zero.

Yan et al. [21] using the accurate measurements at low energies and theoretical calcu-
lated results at high energies have calculated photoionization cross sections of He and H2.
Their interpolated results for He agree well with cross sections obtained using the hybrid
theory given in Table 2. They have also calculated photoionization cross sections of H2 as
well as sum rules for He and H2.
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Table 2. Photoionization cross sections (Mb) for the ground state of He obtained with correlations.

k Hybrid Theory [8] R-Matrix [16] Experiment Ref. [17] Experiment Ref. [18]

0.1 7.3300 7.295 7.51 7.44
0.2 7.1544 7.115 7.28 7.13
0.3 6.8716 6.838 6.93 6.83
0.4 6.4951 6.474 6.49 6.46
0.5 6.0461 6.006 5.99 6.02
0.6 5.5925 5.535 5.46 5.55
0.7 5.0120 4.995 4.92 5.04
0.8 4.4740 4.482 4.38 4.51
0.9 3.9649 - - -
1.0 3.4654 3.476 3.38 3.48
1.1 3.0206 3.023 2.91 3.00
1.3 2.2561 2.271 2.17 2.19
1.4 1.9821 1.943 1.87 1.89
1.5 1.6817 - - -
1.6 1.6329 - - -
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and R-matrix approximation [16] with the experimental results [17,18] is shown.

Similar calculations [9] for photoionization of (1s2s) 1S and 3S states of He have
been carried using the hybrid theory [8] with 455 terms in the bound state wave function.
These results are shown in Table 3. The cross sections are compared with those obtained
by Norcross [22], using the method of coupled equations for calculating the continuum
functions. The results obtained using the hybrid theory are also compared with those of
Jacobs [23], who also used pseudostates in the coupled equations.

Similar calculations [9] also have been carried for Li+ using the hybrid theory with
165 terms for the ground state wave function. Calculations have also been carried out by
the method of polarized orbits. The results obtained using the hybrid theory are given in
Table 4 and they are compared with results of Bell and Kingston [10] and Daskhan and
Ghosh [24]; the method of polarized orbitals [6] has been used in Refs. [10,24].
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Table 3. Photoionization cross sections (Mb) for the metastable states of He.

(1s2s) 1S State of He

k Hybrid Theory [9] Norcross [22] Jacobs [23]

0.1 8.7724 8.973 -
0.2 7.5894 7.344 -
0.3 6.0523 5.885 -
0.4 4.5403 4.595 -
0.5 3.2766 3.467 3.260
0.6 2.2123 2.515 2.357
0.7 1.6047 1.725 1.661
0.8 1.1230 1.104 1.141
0.9 0.7863 0.647 0.771
1.0 0.5474 0.360 0.521
1.1 0.3796 0.240 0.364
1.3 0.1858 - 0.212
1.4 0.1279 - 0.162
1.5 0.07001 - 0.090

(1s2s) 3S state of He

0.1 5.2629 4.749 -
0.2 5.0795 4.564 -
0.3 4.2004 4.112 -
0.4 3.4403 3.537 -
0.5 2.7189 2.912 -
0.6 2.1531 2.295 -
0.7 1.4564 1.733 -
0.8 1.3539 1.256 -
0.9 0.9728 0.885 -
1.0 0.6551 0.623 -
1.1 0.5577 0.463 -
1.2 0.3744 0.383 -
1.3 0.2898 0.347 -
1.5 0.2218 - -

Table 4. Photoionization cross sections (Mb) of the ground state (1s1s) 1S of Li+..

k (Ry) Hybrid Theory,
Ref. [8] Ref. [10] Ref. [24]

1.6 1.1706 1.183 1.146
1.5 1.2768 1.297 1.248
1.4 1.3879 1.414 1.353
1.3 1.5035 1.533 1.459
1.2 1.6219 1.652 1.566
1.1 1.7396 1.770 1.674
1.0 1.8613 1.886 1.780
0.9 1.9792 1.998 1.885
0.8 2.0921 2.105 1.988
0.7 2.0005 2.206 2.087
0.6 2.2088 2.993 2.182
0.5 2.3870 2.384 2.271
0.4 2.4373 2.457 2.355
0.3 2.5231 2.520 2.432
0.2 2.5677 2.569 2.501

Photoionization cross sections of the metastable states of Li+ ion have been calculated
using the hybrid theory and 165 terms for the (1s2s) 1S state and 120 terms for the (1s2s) 3S
state [9]. These results are shown in Table 5.
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Table 5. Cross sections (Mb) for the metastable states of Li+ ion.

K (Ry) (1s2s) 1S (1s2s) 3S

0.1 - 2.4456
0.2 2.5677 2.3780
0.3 2.5231 2.235
0.4 2.4622 2.0516
0.5 2.3869 1.8437
0.6 2.2998 1.6284
0.7 2.1999 1.4175
0.8 2.0925 1.2173
0.9 1.9789 1.0349
1.0 1.8605 0.8733
1.1 1.7414 0.7327
1.2 1.6219 0.6096
1.3 1.5037 0.5071
1.4 1.3886 0.4252
1.5 1.2777 0.3556
1.6 1.1716 0.2979
1.7 1.0712 0.2503
1.8 0.9770 0.2109
1.9 0.8892 0.1788
2.0 0.8079 0.1524
2.1 0.7332 0.1311
2.2 0.6649 0.1141
2.3 0.6034 0.1012
2.4 0.5488 0.0931
2.5 0.5025 0.0936

2. Radiative Attachment

Until this point, we have discussed the photodetachment process. However, the
inverse process, namely, the radiative attachment is also possible. This process plays an
important role in solar- and astrophysical problems. This is an important process, creating
negative hydrogen ions which are important in understanding opacity of the solar system.
The formation of the hydrogen molecule takes place through such processes:

e + H → H− + hν (18)

H− + H → H2 + e (19)

Such recombination processes take place in the early Universe when the temperature
of matter and radiation was close to a few thousand degrees. In Equations (18) and (19),
H can be replaced by He+ and Li2+ to form a He atom and Li+ ion in the final state. The
attachment cross section in terms of the photodetachment cross sections or photoionization
cross section σ is given by

σa = (
hν

cpe
)

2 g f

gi
σ = (

hν

cpe
)

2 1
2mE

g f

gi
σ (20)

This relation follows from the principle of detailed balance. In Equation (20), pe = k is
the incident electron momentum. The radiative-attachment cross sections are smaller than
the photoabsorption cross sections. In Equation (20),

gi = (2le + 1)(2Se + 1)(2SH + 1) = 3× 2× 2 = 12

and
g f = (2× lhν + 1)(2)(2SH− + 1) = 6(2SH− + 1)
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The electron has an angular momentum = 1 = photon angular momentum, photon
has two polarization directions, spin of the electron = 0.5 = spin of H, while the spin of
the negative H− = 0. Combining all these factors, we get gi and g f . These cross sections
averaged over the Maxwellian velocity distribution f (E) is given by

αR(T) = 〈σave f (E)〉 (21)

The electron velocity is ve, the recombination rate coefficient is given by

αR(T) = (
2
π
)

0.5 c

(mc2kBT)1.5

g f

gi

∫
dE(E + I)2σe−E/kBT (22)

E = k2 is the energy of the electron in Equation (22), kB is the Boltzmann constant, T
is the electron temperature, and photon energy is E = I + k2, where I is the threshold for
photoabsorption. In Table 6, we give the recombination rates, averaged over the Maxwellian
velocity distribution, at various temperature for the negative hydrogen ion, He, and Li+. A
comparison with R-matrix results is also given in Table 6.

Table 6. Recombination rate coefficients (cm3/s) for (1s1s) state of H−, He, and Li+. A comparison
with R-matrix results (interpolated) is also indicated.

T αR(T)×1015, H− αR(T)×1013, He αR(T)×1011, Li+

- - Using Hybrid Theory
Cross Sections Results

Using R-Matrix
Cross Sections [25] -

1000 0.99 2.50 4.75 0.12
2000 1.28 2.30 3.43 1.04
5000 2.40 1.87 2.15 2.62
7000 2.82 1.66 1.79 2.92

10,000 3.20 1.45 1.48 3.03
12,000 3.37 1.35 1.36 3.02
15,000 3.56 1.23 1.22 2.95
17,000 3.65 1.17 1.19 2.89
20,000 3.75 1.10 1.08 2.79
22,000 3.79 1.05 1.04 2.73
25,000 3.83 0.99 0.99 2.63
30,000 3.83 0.92 0.93 2.49
35,000 3.77 0.87 0.89 2.36
40,000 3.67 0.82 0.86 2.25

The radiative rate coefficients for attachment to metastable states (1s2s) 1,3S states of
He and Li+ are given in Table 7. A comparison of the results obtained using the hybrid
theory with those obtained using the R-matrix formalism is also given in Table 7.

An extensive search to find the R-matrix calculations on recombination to Li ion failed
to find any results. It seems such a calculation has not been carried out.

Nahar [25] has carried out R-matrix calculations of photoionization of the helium atom
and recombination rate coefficients. Her photoionization results have been discussed above.
The agreement between the cross sections obtained using the hybrid theory and R-matrix,
along with the experimental results, is very good. The recombination rate coefficients to
the ground state using the hybrid theory given in Table 6 agree with the results obtained
using the R-matrix theory. The results for metastable states are indicated in Table 7. The
agreement of the rate coefficients for the metastable states is quite good. This is surprising
because the photoionization cross sections for metastable states obtained using the hybrid
theory agree well with those obtained using the close-coupling approximation [22,23].

The reason that the method of polarized orbitals works well for atoms as well as for
ions to provide accurate results for photoabsorption cross sections is the fact that the polar-
ized target function depends on the nuclear charge Z only, as indicated in Equation (13).
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Table 7. Recombination rate coefficients (cm3/s) of the metastable states of He and Li+, and compari-
son with the R-matrix results (interpolated).

- He Li+

- 3S 1S 3S 1S

- Hybrid R-Matrix Hybrid R-Matrix Hybrid Hybrid

T αR(T)×1014 αR(T)×1015 αR(T)×1014 αR(T)×1014

1000 2.13 4.33 8.27 17.13 4.68 2.99
2000 2.08 3.20 7.97 12.55 4.47 2.87
5000 1.71 2.05 7.30 7.85 3.48 2.37
7000 1.56 1.71 5.71 6.43 3.09 2.03

10,000 1.40 1.39 5.05 5.12 2.68 1.78
12,000 1.32 1.26 4.73 4.54 2.49 1.66
15,000 1.23 1.11 4.35 3.93 2.26 1.52
17,000 1.18 1.04 4.15 3.64 2.14 1.45
20,000 1.12 0.97 3.90 3.33 1.98 1.36
22,000 1.09 0.94 3.75 3.19 1.90 1.31
25,000 1.04 0.91 3.57 3.05 1.79 1.24
30,000 0.98 0.90 3.31 2.97 1.64 1.15
35,000 0.93 0.92 3.10 3.03 1.52 1.08
40,000 0.89 0.97 2.93 3.18 3.14 1.02

3. Photoejection with Excitation

Up to now we have considered photoabsorption when the remaining atom or ion is
left in the ground state. However, it is possible to leave the remaining atom or ion in an
excited state [26]. For example, in the photoionization process

hν + He→ He+ + e (23)

In the above equation, ionized helium can be in the excited 22S or 22P states. When
the remaining atom or ion is in the 22P state, there is a possibility of emission of Lyman-α
radiation of 304 Å, as in the photodetachment of the negative hydrogen ion or photoabsorp-
tion. The outgoing photoelectron can be in the angular momentum l f = 0 or 2 when the
resulting state is in 2P state and l f = 1 when the resultant state is 2S state. Similar processes
can take place when the targets are H−, Li+, Be2+, and C4+.The cross section in the dipole
approximation is given by

=
4παkω

3(2li + 1)
(|M0|2 + |M2|2) (24)

for 2P states and
=

4παω

3(2li + 1)
|M1|2 (25)

for 2S states. The matrix M is defined as

Ml f
= (2l f + 1)0.5|〈Ψ f |z1 + z2|Φi〉| (26)

The continuum functions are calculated in the exchange approximation (cf. Equa-
tion (5)). Table 8 gives the ratios R1 = σ(22S)/σ(12S) and R2 = [σ(22S) + σ(22P)]/σ(12S)
for the negative hydrogen ion. He and Li2+. Komninos and Nicolaides [27] have calculated
ratios of leaving the He ion in 2p and 2s states using the K-matrix theory. Jacobs and
Burke [28] have also calculated these ratios using the close-coupling approximation. The
agreement with the results of [27,28] is not good because the continuum functions are
calculated in the exchange approximation, instead of using the hybrid theory. However,
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the calculations are much easier than using other approximations. The simpler approach
might not give definitive results but is helpful in understanding various processes.

Table 8. Ratios R1 and R2.

k R1 R2

- H−

0.1 1.1760 (−4) 8.1873 (−2)
0.2 3.9946 (−4) 4.4460 (−2)
0.3 2.2783 (−3) 4.9332 (−2)
0.4 1.3944 (−2) 6.1779 (−2)
0.5 6.4958 (−2) 1.0498 (−1)
0.6 1.6743 (−1) 2.0920 (−1)
0.7 2.6673 (−1) 3.2210 (−1)
0.8 3.3490 (−1) 3.9742 (−1)

- He

0.1 8.0146 (−3) 1.2794 (−2)
0.2 8.6667 (−3) 1.3318 (−2)
0.3 9.6384 (−3) 1.4112 (−1)
0.4 1.0774 (−2) 1.5065 (−1)
0.5 1.1935 (−2) 1.6097 (−2)
0.6 1.3075 (−2) 1.7206 (−2)
0.7 1.4252 (−2) 1.8497 (−2)
0.8 1.5551 (−2) 2.0062 (−2)

- Li+

0.2 4.9346 (−3) 6.4426 (−3)
0.3 4.9889 (−3) 6.5041 (−3)
0.4 5.0594 (−3) 6.5849 (−3)
0.5 5.1422 (−3) 6.6814 (−2)
0.6 4.0317 (−3) 5.2310 (−3)
0.7 5.3781 (−3) 6.9693 (−3)
0.8 5.5344 (−3) 7.1657 (−3)
0.9 5.7203 (−3) 7.4081 (−3)
1.0 5.9438 (−3) 7.6979 (−3)
1.1 6.2085 (−3) 8.0436 (−3)
1.2 6.5170 (−3) 8.4476 (−3)
1.3 6.8761 (−3) 8.9126 (−3)
1.4 7.2914 (−3) 9.4507 (−3)
1.5 7.7664 (−3) 1.0062 (−2)
1.6 8.3090 (−3) 1.0753 (−2)

The radiative rate coefficients averaged over the Maxwellian velocity distribution are
given in Table 9.

Table 9. Recombination rate coefficients (cm3/s) to (1s1s) 1S state from 2S and 2P states.

T αR×1016, H− αR×1016, He αR×1016, H− αR×1016, He

- Final State is 2S Final State is 2P

2000 4.36 (−3) 19.3 0.75 33.7
4000 2.86 (−2) 16.8 1.00 25.0
5000 5.83 (−2) 15.9 1.10 22.1
7000 1.73 (−1) 14.5 1.24 17.9

10,000 5.07 (−1) 13.2 1.35 14.0
12,000 8.30 (−1) 12.6 1.38 12.2
15,000 1.43 11.8 1.39 10.2
17,000 1.93 11.4 1.38 9.25
20,000 2.59 10.9 1.36 8.07
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Table 9. Cont.

T αR×1016, H− αR×1016, He αR×1016, H− αR×1016, He

- Final State is 2S Final State is 2P

22,000 3.17 10.7 1.34 7.43
25,000 3.89 10.3 1.30 6.64
30,000 4.97 9.98 1.24 5.64
35,000 5.86 9.55 1.18 4.89
40,000 6.55 9.28 1.12 4.31
45,000 7.06 9.06 1.06 3.86
50,000 7.43 8.88 1.00 3.48
60,000 7.81 8.62 0.904 2.91
70,000 7.88 8.42 0.818 2.50
80,000 7.76 8.26 0.742 2.18
90,000 7.53 8.11 0.676 1.93

100,000 7.25 7.97 0.619 1.73
200,000 4.48 6.38 0.307 0.82
300,000 2.96 4.94 0.189 0.511

4. Photoionization of Lithium and Sodium

Until this point, we discussed photoabsorption where the continuum functions were
calculated using hybrid theory. However, we have some calculations mentioned above
where the method of polarized orbitals was used. There are other calculations like pho-
toionization of lithium [29] where the method of polarized orbitals was used. Cross sections
for this process are given in Table 10.

Table 10. Photoionization cross sections (10−18 cm2).

k Cross Section K Cross Section

0.10 1.601 0.80 0.905
0.20 1.672 0.90 0.724
0.30 1.709 1.00 0.574
0.35 1.697 1.20 0.355
0.40 1.660 1.40 0.219
0.50 1.521 1.60 0.136
0.54 1.427 1.80 0.087
0.60 1.324 1.90 0.069
0.70 1.110 - -

Similar calculations [30] have been carried out for the photoionization of sodium
atoms. These results are given in Table 11 and are compared with the close-coupling results
of Butler and Mendoza [31]. Cross sections at low energies agree fairly well with those
obtained using the close-coupling approximation.

Table 11. Photoionization cross sections (10−20 cm2) of Na atoms.

k Pol. Orb. Approx. [30] Close-Coupling Approx. [31]

0.0 8.419 8.496
0.1 5.748 5.390
0.2 1.228 1.142
0.3 0.319 0.264
0.4 3.536 3.513
0.5 7.832 7.773
0.6 11.111 11.416
0.7 12.627 13.411
0.8 12.815 13.740
0.9 12.157 12.957
1.0 11.047 12.102
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Table 11. Cont.

k Pol. Orb. Approx. [30] Close-Coupling Approx. [31]

1.1 9.934 12.102
1.2 8.602 -
1.3 7.714 -
1.4 6.893 -
1.5 6.134 -
1.6 5.361 -
1.7 4.843 -
1.8 4.392 -
1.9 3.905 -
2.0 3.507 -

5. Photodetachment of 3Pe State of Negative Hydrogen Ion

It is well known that the negative hydrogen ion has only one bound state. However,
there is another bound triplet (2p2p)P state of even parity, which is not well known. The
bound state function has been calculated using Hylleraas type functions [32], where the
energy of the state is given as −0.2506536415 Rm, and Rm is the reduced Rydberg. This
photodetachment process is similar to photoejection mentioned above in Equation (22). The
continuum functions were calculated using the 1s-2s-2p close coupling approximation [33].
Cross sections are given in Table 12.

Table 12. Cross sections (cm2) for the photodetachment of the 3Pe state of a negative hydrogen ion.

Photon Energy (Ry) Final State Is (2s) Final State Is (2p)

0.002 8.74 (−17) 3.99 (−16)
0.004 6.67 (−17) 4.01 (−16)
0.006 4.61 (−17) 3.03 (−16)
0.008 3.52 (−17) 2.43 (−16)
0.010 2.90 (−17) 2.18 (−16)
0.014 2.16 (−17) 1.99 (−16)
0.018 1.69 (−17) 1.76 (−16)
0.022 1.38 (−17) 1.50 (−16)
0.026 1.16 (−17) 1.27 (−16)
0.030 1.01 (−17) 1.10 (−16)
0.040 7.93 (−18) 8.33 (−17)
0.050 6.81 (−18) 6.79 (−17)
0.150 2.64 (−18) 1.69 (−17)
0.250 8.63 (−18) 6.37 (−18)

Radiative attachment
e + H(2s)→ H(2 3Pe) + hν (27)

e + H(2p)→ H(23Pe) + hν (28)

These two processes are important sources of infrared emission. The radiative attac-
ment cross sections are given in Ref. [30].

6. Photodetachment of Negative Positronum Ion

Photodetachment of the negative positronium ion is very much like the photodetach-
ment of a negative hydrogen ion. It is indicated by

hν + Ps− → e− + Ps (29)

This process also contributes to the opacity of the Sun and the stellar atmosphere. The
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binding energy of the positronium ion has been calculated by Bhatia and Drachman [34].
Following Ohmura and Ohmura [12], we write the wave function of the positronium ion as

Φ(Rj, rk) = C
e−γRj

Rj
φ(rk) (30)

The constant C is determined using the exact wave function given in Ref. [34], where
3γ2

2 = binding energy = 0.024010113. We use plane waves for the scattering function [35].
The expression for the cross section is given in Equation (31). The cross section is the same
for the process obtained by the charge conjugation of the process indicated in Equation (29).
The cross section [35] is given by

σ = 1.32× 10−18 k3

(k2 + γ2)3 cm2 (31)

In Table 13, cross sections for the photodetachment are given, and they are also
indicated in Figure 3.

Table 13. Photodetachment. Cross sections (cm2).

Photon Energy (Ry) Cross Section

0.26 1.58 (−17)
0.22 1.98 (−17)
0.20 2.41 (−17)
0.16 2.97 (−17)
0.13 3.81 (−17)
0.12 4.17 (−17)
0.11 4.59 (−17)
0.10 5.08 (−17)
0.08 6.27 (−17)
0.07 6.97 (−17)
0.065 7.33 (−17)
0.060 7.67 (−17)
0.05 8.13 (−17)
0.04 7.66 (−17)
0.03 4.16 (−17)

We can use the Thomas–Reiche–Kuhn sum rule to judge the accuracy of our calculation.
The sum rule is given by

S−1 =
1

2π2αa2
0

λ0∫
0

dλ

λ
σ(λ) =

8
27
〈(→r 1 +

→
r 2)

2
〉 = 8

27
(4〈r2

1〉 − 〈r2
12〉) (32)

In the above equation, λ0 is the threshold wave length for the photodetachment
of the negative positronium ion. The expectation values of 〈r2

1〉 and 〈r2
12〉 have been

calculated using the exact wave function of the positronium ion [34]. The left-hand side of
Equation (32) is equal to 31.7 and the right-hand side is equal to 29.775. This shows that
our cross section using the approximate wave functions exceed by 6.5%. This is confirmed
by Ward et al. [36], who have carried out accurate calculations using accurate initial state
wave function having 95 linear parameters of Ps− and continuum functions were obtained
using the Kohn variational principle with 220 linear parameters. Their results for the cross
sections are lower (cf. figure in their paper) than those obtained in Ref. [35].
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This calculation [35] has been extended to the photodetachment of the positronim
ion when the positronium atom is left in nP states, n = 2, 3, 4, 5, 6, and 7 [37]. The 2P
state can decay into 1S state which would correspond to Lyman-α Ps-radiation, just like
1216 Å radiation which has been observed from the center of galaxy [38], where it is due
to a transition from 2P to 1S in a hydrogen atom. The photodetachment cross sections to
various excited states are given below:

σ(2p) = 164.492C(k)
σ(3p) = 26.3782C(k)
σ(4p) = 9.1664C(k)
σ(5p) = 4.3038C(k)
σ(6p) = 2.3764C(k)
σ(7p) = 0.2675C(k)

where,

C(k) =
10−20k

(γ2 + k2)
cm2 (33)

Similar calculations can be carried out for leaving the positronium atom in ns states,
n = 2 to 7. The transition from the 2s state to 1s state would be with the emission of
2 photons just like that in the case of a hydrogen atom.

We have discussed photoionization and photoabsorption for various systems using
the expression for the cross section given in Equation (2). The derivation of this formula in
Equation (2) is given in [39] (repeated in the Appendix A). In this article, photoionization
cross sections of the (1s1s 1S), (1s2s 1,3S), (1s3s 3S) states of Be2+, C4+, and O6+, along with
radiative recombination rate coefficients at various electron temperatures, are given. Fitting
formulae for photoionization cross sections are also given in [39].

Until this point, we have mostly mentioned two-electron systems and we have given
cross sections using the exchange approximation, method of polarized orbitals, plane-wave
approximation, R-matrix formulation, and hybrid theory. There are other calculations like
coupled cluster study of photoionization by Tenoril et al. [40]. They use an asymptotic
Lanczos algorithm to calculated photoionization and photodetachment cross sections of
of He and give results in the form of a curve. It is difficult to get meaningful results for
a comparison. However, they do give the sum rule S(0) = 1.999 for He, which is close to
the exact value equal to 2, the number of electrons in the He atom, indicating the accuracy
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of their calculation. The exterior complex scaling has been used by Andric et al. [41] to
calculate photoionization cross section of positive HCl ion. Measurements of photodetach-
ment cross sections of Li−, Be−, and B− have been carried out using interacting beams by
Pegg [42]. Photoionization cross sections of excited states of CO, N2, and H2O have been
calculated by Ruberti et al. [43] using the many-electron Green’s function approach. In a
simple system like a hydrogen atom, Broad and Reinhardt [44] used L2 basis to calculate
photoionization of a hydrogen atom in the energy range 1.002 to 3.50 Rydberg; their results
are given in Table 14. Their results appear close to those given by Joachain [45] in his book
and also to the result 0.225 a2

0 at the threshold. These cross sections obtained using L2 basis
are higher than those obtained using the R-matrix approach. Perhaps, there is possibility
of improving the L2 basis approach. It is very important to try other approximations in
addition to the R-matrix approach.

Table 14. Photoionization cross sections (a2
0) of a hydrogen atom.

Photon Energy (Ry) Cross Section R-Matrix Cross Section a

1.002 0.4478 -
1.500 0.1494 0.0747
2.000 0.0666 0.03327
2.500 0.0350 0.01438
3.000 0.0206 0.01045
3.500 0.0130 0.00654

a These cross sections calculated by S. N. Nahar are given in NORAD Atomic-Data.

Very recently, Nahar [46] has carried out very detailed and accurate calculations of
photoionization cross sections and electron-ion recombination of n = 1 to very high n values
of hydrogenic ions. Since hydrogen is very abundant in the universe, the results of this
calculation are of immense importance in applications to solar- and astrophysics.

Paul and Ho [47] have calculated cross sections of H in the presence of Debye potential,
while Kar and Ho [48] have calculated cross sections of the hydrogen negative ion in the
Debye potential. Sahoo and Ho [49] have also calculated photoionization cross sections
of Li and Na in the presence of the Debye potential. They find that in the presence of a
Debye potential, the maximum of the photodetachment cross section of the negative ions
moves to higher wave lengths as the Debye length decreases, making the plasma dense.
The plasma is least dense when the Debye length is infinite.

7. Opacity

Opacity implies the loss of photons as in the photoabsorption indicated in
Equations (1) and (29). We know the photodetachment cross sections of the negative hy-
drogen ion and of the positronium ion, we can compare their contributions to the opacity
of the atmosphere of the Sun and the interstellar medium provided we include the free-
free transitions:

hν + e + H → e + H (34)

hν + e + Ps→ e + Ps (35)

In these processes the electron with energy k2
0 absorbs an energy hν of a photon

in the initial state and the final energy of the electron is k2, the change in energy is
hν = ∆k2 =

∣∣k2
0 − k2

∣∣. The same kind of processes take place when the electrons in
Equations (34) and (35) are replaced by positrons. The formula for free-free transitions
has been given by Chandrasekhar and Breen [50]. Positrons had not been considered earlier
and they contribute substantially, as indicated in Table 15, where a few values of cross
sections are given at T = 6300 K.



Atoms 2022, 10, 9 17 of 21

Table 15. Comparison of bound-free (σb f ) and free-free (σf f ) cross sections (cm2) for electrons and
positrons, T = 6300 K.

hν (Ry) Electrons Positrons

- σbf σff σbf+σff σbf σff σbf+σff

0.26 2.26 (−17) 4.28 (−20) 2.27 (−17) 8.61 (−18) 4.14 (−21) 8.61 (−18)
0.24 2.47 (−17) 4.94 (−20) 2.47 (−17) 9.58 (−18) 4.74 (−21) 9.58 (−18)
0.22 2.70 (−17) 5.81 (−20) 2.70 (−17) 1.08 (−17) 3.49 (−21) 1.08 (−17)
0.20 2.96 (−17) 6.95 (−20) 2.96 (−17) 1.22 (−17) 6.45 (−21) 1.22 (−17)
0.18 3.25 (−17) 8.53 (−20) 3.25 (−17) 1.39 (−17) 7.71 (−2 1) 1.39 (−17)
0.16 3.56 (−17) 1.07 (−19) 3.57 (−17) 1.62 (−17) 9.49 (−21) 1.62 (−17)
0.14 3.87 (−17) 1.39 (−19) 3.88 (−17) 1.90 (−17) 1.19 (−20) 1.90 (−17)
0.12 4.15 (−17) 1.88 (−19) 4.17 (−17) 3.17 (−17) 1.56 (−20) 3.17 (−17)
0.10 4.13 (−17) 2.69 (−19) 4.16 (−17) 4.17 (−17) 2.15 (−20) 4.17 (−17)
0.08 3.50 (−17) 4.20 (−19) 3.35 (17) 3.42 (−17) 3.20 (−20) 3.42 (−17)
0.06 7.05 (−18) 7.45 (−19) 7.80 (−18) 8.96 (−17) 5.38 (−20) 8.97 (−17)
0.04 0.0 a 1.68 (−18) 1.68 (−18) 1.65 (−16) 1.13 (−19) 1.65 (−16)
0.03 0.00 2.99 (−18) 2.99 (−18) 2.53 (−16) 1.96 (−19) 2.53 (−16)
0.02 0.00 6.74 (−18) 6.74 (−18) 4.64 (−16) 4.30 (−19) 4.64 (−16)
0.01 0.00 2.70 (−17) 2.70 (−17) 1.30 (−15) 1.68 (−15) 1.30 (−15)

0.005 0.00 1.08 (−16) 1.08 (−16) 3.63 (−15) 6.72 (−15) 3.64 (−15)
0.003 0.00 3.00 (−16) 3.00 (−16) 7.69 (−15) 1.87 (−17) 7.71 (−15)
0.001 0.00 2.70 (−15) 2.70 (−15) 3.55 (−14) 1.68 (−16) 3.57 (−14)

a Photon energy less than 0.055 (Ry) is not sufficient for photodetachment.

In Figure 4, we give the total (detachment plus free-free) electron and positron cross
sections. We find that the positron contribution is substantial and should be taken into
account in the opacity calculations.
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Figure 4. (Color online). The top curve refers to positron cross sections (Mb), while the lower curve
refers to electron cross sections (Mb). Wavelengths are in units of Å.



Atoms 2022, 10, 9 18 of 21

Similarly, photoionization of other atoms and ions and free-free transitions contribute
to opacity. However, hydrogen is the most abundant atom in the universe compared to
other atoms and ions, whose concentrations decrease as Z, the nuclear charge, increases.

8. Conclusions

Here we described the photoabsorption process of two-electron systems for which
scattering functions are required. There are various approaches to calculate continuum
functions. We also described calculations in which we have used the exchange approxi-
mation, method of polarized orbitals, hybrid theory, close-coupling approximation, and
R-matrix formalism. Further, we have mentioned photoabsorption cross sections of var-
ious molecules and sum rules. Cross sections were calculated using the coupled cluster
formalism, which uses the asymptotic Lanczos algorithm, complex exterior scaling, and
L2 basis. These methods are briefly mentioned. Cross sections were compared with those
obtained in other calculations and also with the experimental results. The photodetachment
cross sections of the negative positronium ion, Ps−, were calculated using the Ohmura and
Ohmura approximation for the bound state and the plane-wave approximation for the final
continuum state wave function. For a long time, it was thought that only processes involv-
ing electrons contribute to the opacity of the Sun and the interstellar medium. However,
positrons do exist in many regions of the Sun and the interstellar medium [51]. Therefore, it
is necessary to consider positrons in calculations of opacity. We have indicated in Table 15
that not only electrons but positrons also contribute substantially to the opacity of the Sun
and of the interstellar medium.

Since the observation of the photoionization process in metals by Lenard [52] in
1902, there have been many experiments to observe photoionization in atoms, ions, and
molecules and theoretical developments to calculate cross sections for this process. We
have mentioned a few of the experiments and theoretical approaches.
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Appendix A

We briefly derive the photoionization formula for the hydrogen atom.
Photoionization is given by

hν + H → H+ + e (A1)

The interaction Hamiltonian is given by

H′ = − e
2mc

(
→
A ·→p +

→
p ·
→
A) = − e

mc

→
A ·→p (A2)

In the above equation,
→
A is the vector potential and

→
p is the electron momentum. The

vector potential satisfies the condition div
→
A = 0 and it is represented by

→
A = A0

→
ε ei
→
k ·→r (A3)

In the above equation
→
k is the photon momentum which in magnitude is less than the

radius of the atom, which implies that the exponential factor can be taken as equal to 1.0.
This is called the dipole approximation and

→
ε is the polarization direction, perpendicular to
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the z-axis, the incident photon direction. There are two polarization directions. However, for
the derivation we need to consider only one of them and we can consider the polarization
in the direction of the x-axis. The density of states is given by

ρ(k) =
mk

(2π)3}2
sin(θ)dθdϕ (A4)

Here θ is the angle between
→
k and the photon direction. The incident flux is given by

ω2 A2
0

2πc(}ω)
=

ωA2
0

2π}c
(A5)

The electron momentum satisfies the commutation relation

〈→p 〉 = m
d
→
r

dt
= m〈 1

i} [H,
→
r ]〉 = mE

i} }ω〈→r 〉 (A6)

Therefore,

〈H′〉 = − e
mc
〈
→
A ·→p 〉 = − eωA0

ic
〈→ε ·→r 〉 (A7)

The transition probability is given by

ωp =
2π

} ρ(k)|〈H′〉|2 =
2π

} ρ(k)
e2ω2 A2

0
c2 |〈→ε ·→r 〉|2 (A8)

Therefore, the differential cross section is given by

σ(θ, ϕ) sin(θ)dθdϕ =
ωp

Flux
(A9)

This gives

σ(θ, ϕ) =
2π

}
mk

(2π)3}2

e2ω2

c2

A2
0

∣∣∣〈→ε ·→r 〉∣∣∣2(2π}c)

ωA2
0

(A10)

Since
→
ε ·→r = (

→
ε · k̂)(k̂·→r ) = sin(θ) cos(ϕ)(k̂ ·→r ) (A11)

σ(θ, ϕ) sin(θ)dθdϕ =
mke2}ω

2π}3c
|〈k̂ ·→r 〉|2 sin3(θ) cos2(ϕ)dθdϕ (A12)

Using
∫

sin3(θ) cos (ϕ)2dθdϕ = 4π
3 , we get the total cross section

σ =
2mk
}2

e2

}c
}ω
|〈k̂ ·→r 〉|2

3
(A13)

where, 2m
}2 = 1

1Ry·a2
0

and e2

}c = α, the fine-structure constant, we get, using }ω = I + k2

σ = kα(I + k2)|〈k̂ ·→r 〉|2/3 (A14)

The cross section given above is in the units of a2
0, I and k2 are in Ry units.

Since the normalization is a plane-wave normalization, the scattering function has
a normalization

(4π(2l f + 1))0.5 (A15)

Here l f = 1 and

k̂ ·→r = r cos(θ1) = z (A16)
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We get
σ(a2

0) = 4παk(I + k2)〈z〉2 (A17)

Since there is no ϕ dependence because the scattering functions and bound state
functions are functions of angle θ1, x and y components do not contribute because, in
Equation (4), only the magnetic quantum m = 0 is being considered, x corresponds to m = 1
and y corresponds to m = −1. We get

σ(a2
0) = 4παk(I + k2)〈z〉2 (A18)

This formula can be generalized to more than one electron, as indicated in Equation (2).
We have considered polarization direction in x-axis only. We could also add to (A11) the
polarization in the y-direction but then we would have to average the result.
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