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Abstract: A fully differential cross section for single ionization of helium induced by 1 MeV proton
impact is calculated using the parabolic convoluted quasi-Sturmian (CQS) method. In the framework
of this approach the transition amplitude is extracted directly from the asymptotic behavior of the so-
lution of an inhomogeneous Schrödinger equation for the Coulomb three-body system (e−, He+, p+).
The driven equation is solved numerically by expanding in convolutions of quasi-Sturmians for the
two-body proton-He+ and electron-He+ systems. It is found, at least in the high energy limit, that
the calculated cross sections within the proposed CQS method converge quickly as the number of
terms in the expansions is increased, and are in reasonable agreement with experimental data and
other theoretical results.

Keywords: ionization by proton impact; parabolic coordinates; Green’s function; quasi-Sturmian;
asymptotic behavior

1. Introduction

Recently, the fully differential cross sections (FDCSs) of singly ionizing 1-MeV p+ +He
collisions in various kinematical regimes characterized by momentum-transfer values
q . 2 a.u. and ejected-electron energy Ee . 20 eV, have been measured with high preci-
sion [1,2] using cold target recoil ion momentum spectroscopy (COLTRIMS) [3–5]. The
data analysis clearly revealed insufficiencies of the first Born approximation (FBA). For
this reason, more advanced approaches have been tested. The well-known continuum-
distorted-wave eikonal initial state (CDW-EIS) model [6,7] and its variations have been
applied to the calculation of FDCSs [8–10]. Another semiclassical approach called the
wave-packet convergent close-coupling (WP-CCC) method [11,12] has also been used.
Within this method the electronic part of the wave function in a combined potential of
the projectile and target (in the framework of the frozen-core approximation) is expanded
in terms of bound states and wave-packet pseudostates describing the active electron of
the helium atom; these wave-packet pseudostates represent a finite interval of the active
electron continuum. Along with the semiclassical approaches, fully quantum mechanical
treatments beyond FBA have also been considered. In Refs. [2,13], FDCSs were calculated
using the 3C model [14,15] which takes into account paired Coulomb interactions between
the final charged fragments (p+, e−, He+) by means of the corresponding Coulomb wave
functions with, in general, effective charges.

Despite the considerable theoretical effort, none of the approaches have been able to
completely explain the experimental observations. The measured ejected-electron angular
distribution in the scattering plane and the corresponding theoretical calculations present
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a usual two-peak structure: a large (named binary) and a small (named recoil) peak
separated by minima of almost zero intensity. The FBA predicts the binary peak to be
located exactly in the momentum transfer direction and the recoil peak in its opposite
direction. However, in the experimental data both peaks are shifted towards the forward
direction. The theoretical approaches that go beyond the FBA explain the shift only partly
but clearly fail to give a proper account of the experimentally observed features of the binary
peak. This failure clearly calls for further development of our theoretical understanding of
ion–atom ionizing collisions.

In this work we propose and apply a novel quantum approach, based on convoluted
quasi-Sturmian functions, and named CQS, that accounts for the total energy spectrum of
the active electron. In order to satisfy properly the boundary conditions involving the plane
wave of high-energy protons, it is convenient to use parabolic coordinates with the axis ẑ
chosen along the incident proton momentum K0. Within the frozen-core approximation,
we consider an inhomogeneous Schrödinger equation for the Coulomb three-body system
(e−, He+, p+), in which the driven term contains the incident channel interaction. The
driven equation is solved with an expansion in convolutions of quasi-Sturmians for the
(e−, He+) and (He+, p+) subsystems. An auxiliary proton plane wave (with a momentum
Q . K0) is introduced into the basis functions in order to avoid numerical evaluations
of integrals with very rapidly oscillating integrands. Within the proposed approach the
Coulomb p− e interaction is treated as a perturbation and approximated by a truncated
basis of square integrable (L2) Sturmian functions in parabolic coordinates. Making use
of asymptotic properties of the CQS basis functions, the transition amplitude is extracted
directly from the asymptotic behavior of the solution, without the need of calculating a
six-dimensional matrix element.

The plan of the paper is as follows. In Section 2.1, in the framework of the frozen-core
approximation, a driven equation is formulated, whose solution’s asymptotic behavior
is directly related to the transition amplitude. In Section 2.2, we give the parabolic quasi-
Sturmian functions over which the solution is expanded (Section 2.3). Making use of the
analytically known asymptotic properties of the basis functions, we express the transition
amplitude in terms of basis amplitudes. In Section 2.4, we describe the matrix equation
method allowing one to obtain the coefficients of the expansion. Specifically, the matrix
equation is obtained from the driven equation by using finite Sturmian-expansion represen-
tations of the p− e interaction and Green’s function of the two non-interacting subsystems
(e−, He+) and (He+, p+). In Section 3, after providing some details of our FDCSs calcu-
lations, we make a comparison with the experimental data and theoretical cross sections
obtained by other authors. A summary is presented in Section 4.

Atomic units are used throughout unless otherwise specified.

2. The CQS Approach

We outline, here, the convoluted quasi-Sturmian (CQS) treatment (more details will be
provided in [16]) of the ionization process

He(1s2) + p+ → e− + p+ + He+(1s). (1)

2.1. Amplitude

In the framework of the frozen-core model the amplitude is cast in the form

TK,ke =
〈

Ψ(−)
K,ke

, ψHe+
1s

∣∣∣V̂∣∣∣K0, Φ(0)
〉

. (2)

Here the final state Ψ(−)
K,ke

is a solution to the Schrödinger equation

[
E− Ĥ

]∣∣∣Ψ(−)
K,ke

〉
= 0, (3)
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for the three-body system (e−, He+, p+) = (1, 2, 3), where ke denotes the momentum of
the ejected electron while K is the momentum of the scattered proton (we assume that
the helium nucleus is at rest during the process). The energy of the system is given by

E = k2
e

2 + K2

2mp
. We define the electron and proton relative coordinates as

r = r1 − r2,

R = r3 − r2,
(4)

and denote by (θe, φe) and (θp, φp) the respective polar and azimuthal angles. The initial

state
∣∣∣K0, Φ(0)

〉
is represented by the product of a helium ground state Φ(0)(r, r′) and the

plane wave
〈R |K0〉 = eiK0·R (5)

describing the incident proton, whereas V̂ is the incident channel interaction

V(R, r) =
1
R
− 1
|R− r| . (6)

The amplitude, symmetrized in the coordinates r and r′, of the electrons is:

TS
K,ke

=
√

2
〈

Ψ(−)
K,ke

∣∣∣V̂|K0, f 〉, (7)

where
f (r) =

∫
ψHe+

1s (r′)Φ(0)(r, r′)d3r′. (8)

Let us apply the three-body Green function Ĝ(+)(E) ≡
[
E− Ĥ

]−1 corresponding
to Equation (3) to the vector V̂|K0, f 〉. Since the latter vanishes sufficiently rapidly for

large values of the hyperradius ρ =
√

mpR2 + r2, the final state Ψ(−)
K,ke

(R, r) appears in the
leading asymptotic form of [17,18]

〈R, r|Ĝ(+)V̂|K0, f 〉 ' mp
(2π)2

(2E)3/4e
iπ
4

(2π)1/2

× exp{i[
√

2Eρ+W0(R,r)]}
ρ5/2

〈
Ψ(−)

K,ke

∣∣∣V̂∣∣∣K0, f
〉

,
(9)

where W0 is the Coulomb phase [17]

W0(R, r) = − ρ√
2E

(
1
R −

1
r −

1
|R−r|

)
ln
(

2
√

2Eρ
)

. (10)

Here the K̂ and k̂e directions are those of R̂ and r̂, respectively, while the ratio K/ke is
determined by the hyperangle γ

tan γ =
r

√mpR
, (11)

namely
K =

√
2E cos(γ), ke =

√
2E sin(γ). (12)

Thus, the problem of determining the transition amplitude can be cast in the form of
the inhomogeneous equation [

E− Ĥ
]∣∣∣Φ(+)

〉
= V̂|K0, f 〉 (13)

with outgoing boundary conditions, whose asymptotic behavior contains the sought-for
amplitude.
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2.2. Parabolic Quasi-Sturmians

To properly account for the high-energy incident proton, we set the problem in
parabolic coordinates with the ẑ−axis defined by the direction of the incident proton
momentum K0. Specifically, we suggest solving the driven Equation (13) numerically using
an expansion ∣∣∣Φ(+)

〉
= ∑

N

CN

∣∣∣S (+)
Q,N

〉
, (14)

in terms of the so-called parabolic shifted quasi-Sturmians that satisfy the equation[
E− Ĥ0

]∣∣∣S (+)
Q,N

〉
=
∣∣∣Q, Ñ

〉
, (15)

where Ĥ0 is the Hamiltonian

Ĥ0 = − 1
2mp
∇2

R −
1
2
∇2

r +
1
R
− 1

r
. (16)

In analogy with the driven Equation (13), we have introduced into the right-hand
side of (15) an auxiliary proton plane wave with the momentum Q = εK0, ε < 1. Its
purpose will be explained in Section 3. The symbol N denotes the labels {n1, n2, m1, m2,κ}
of products of basis Sturmian functions [19]:

|N〉 ≡ |n1, n2,κ〉|m1, m2,−κ〉, (17)

of the parabolic coordinates ξ1, η1, φ1 and ξ2, η2, φ2 associated with R and r, respectively.
Specifically,

〈ξ, η, φ |n1, n2,κ〉 = eiκφ

√
2π

ϕ
|κ|
n1 (ξ) ϕ

|κ|
n2 (η), (18)

where the square-integrable functions ϕλ
n , λ = |κ|, are defined in terms of the associated

Laguerre polynomials Lλ
n [20],

ϕλ
n(x) =

√
2bn!

(n + λ)!
(2bx)λ/2e−bρLλ

n(2bx) (19)

with the basis scale parameter b. In turn,
∣∣∣Ñ〉 represents the orthogonal complement to (17):∣∣∣Ñ〉 ≡ ∣∣∣ ˜n1, n2,κ

〉∣∣∣ ˜m1, m2,−κ
〉

, (20)

where
|ñ, m,κ〉 = w|n, m,κ〉, w(ξ, η) =

4
ξ + η

, (21)

so that 〈
ñ, m,κ

∣∣n′, m′,κ′
〉
= δn,n′δm,m′δκ,κ′ and

〈
Ñ
∣∣N′ 〉 = δN,N′ . (22)

2.3. Basis Amplitudes

Formally, the quasi-Sturmians
∣∣∣S (+)

Q,N

〉
are expressed as a convolution of the two

quasi-Sturmians [19]:∣∣∣S p(+)
Q,n

〉
= Ĝp(+)

0

(
P2

2mp

)
|Q〉

∣∣∣ ˜n1, n2,κ
〉

, n ≡ {n1, n2,κ}, (23)

and ∣∣∣S e(+)
m

〉
= Ĝe(+)

0

(
k2

2

)∣∣∣ ˜m1, m2,−κ
〉

, m ≡ {m1, m2,κ}, (24)
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where Ĝp(+)
0 and Ĝe(+)

0 are the two-body Green’s functions for the proton and electron
moving in the Coulomb field of the ion, with, respectively, Sommerfeld parameters βp =

mp
P

and βe = − 1
k . On the other hand, Equation (15) is equivalent to∣∣∣S (+)

Q,N

〉
= Ĝ(+)

0 (E)
∣∣∣Q, Ñ

〉
, (25)

where Ĝ(+)
0 (E) ≡

[
E− Ĥ0

]−1 is the three-body Green’s function associated with Ĥ0. Thus,

the asymptotic behavior of
∣∣∣S (+)

Q,N

〉
can be obtained from that of Ĝ(+)

0 [17]. Specifically, we
may use its representation in the form of a convolution integral (see, e.g., [21,22])

Ĝ(+)
0 (E) =

1
2πi

∫
C

dE Ĝe(+)
0 (E)Ĝp(+)

0 (E− E), (26)

where the contour C runs just above the unitary cut and bound-state poles of Ĝe(+)
0 (see

Figure 1).

E-E
0

2C1C
C

E
0 Re E

Im E

i

Figure 1. The path of integration of the convolution integral is the whole real E axis, from ∞ to −∞.

The gray line is the unitarity branch cut for Ĝe(+)
0 . The path C1 is obtained by a negative angle ϕ

rotation of C, about some point E0 on the positive real axis. The argument of Ĝp(+)
0 therewith follows

the path C2.

The integration can be performed with the method of stationary phase (see, e.g., [17]),
and one finds

〈R, r
∣∣∣S (+)

Q,N

〉
' mp

(2E)3/4e
iπ
4

(2π)1/2

× exp{i[
√

2Eρ−βp ln(2
√

2Eρ(cos γ)2)−βe ln(2
√

2Eρ(sin γ)2)]}
ρ5/2

× eiκ(φp−φe)

2π Ap(+)
n (K, Q; θp)Ae(+)

m (ke; θe).

(27)

The amplitudes Ae(+)
m and Ap(+)

n , derived by analytical techniques developed in [19]
and whose lengthy mathematical derivation is to be found in [16], are given by

Ae(+)
m (k; θe) =

i
k

√
m1!m2!

(m1+λ)!(m2+λ)! ζ−iβe e−
πβe

2

(
1
ζ − ζ

)λ+1( sin θe
2

)λ

×(−ζ)m1+m2
m1
∑

ν1=0

m2
∑

ν2=0
c(m1,λ)

ν1 c(m2,λ)
ν2 Γ(iβe + λ + ν1 + ν2 + 1)

×(1− ζ−2)ν1+ν2
(

cos θe
2

)2ν1
(

sin θe
2

)2ν2
,

ζ =
b + ik

2

b− ik
2

,

(28)
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Ap(+)
n (P, Q; θp) =

i
P

√
n1!n2!

(n1+λ)!(n2+λ)!

[
1+(p+q)
1−(p−q)

1
c2+αs2

]iβp
e−

πβp
2

×
[

4p
1−(p−q)2

1
c2+αs2

]1+λ( sin θp
2

)λ[
− 1−(p+q)

1+(p+q)

]n1
[
− 1−(p−q)

1+(p−q)

]n2

×
n1
∑

µ1=0

n2
∑

µ2=0
c(n1,λ)

µ1 c(n2,λ)
µ2 Γ(iβp + λ + µ1 + µ2 + 1)

×
[

−4p
[1−(p+q)][1−(p−q)]

1
c2+αs2

]µ1+µ2(
c2)µ1

(
αs2)µ2 ,

p = − iP
2b , q = − iQ

2b , α = 1−(p+q)2

1−(p−q)2 ,

c = cos
θp

2
, s = sin θp

2 .

(29)

Here,

λ = |κ|, c(n,λ)
ν = (−1)ν (n + λ)!

(n− ν)!(ν + λ)!ν!
. (30)

Finally, comparing the asymptotic behavior (9) of the solution
∣∣∣Φ(+)

〉
to (13) and that

of the quasi-Sturmians (27) we deduce that the transition amplitude TK,ke is expressed up
to a phase factor in terms of the coefficients CN of the expansion (14), as

TS
K,ke

=
√

22π ∑
N

CNeiκ(φp−φe)Ap(+)
n (K, Q; θp)Ae(+)

m (ke; θe). (31)

A remarkable feature of this result is that the angular dependence of the transition
amplitude is found only in Ap(+)

n and Ae(+)
m that we name basis amplitudes.

2.4. Equation for CN

Let us write the Hamiltonian Ĥ in the frozen-core approximation

Ĥ = Ĥ0 + Û, (32)

U(R, r) = − 1
|R− r| . (33)

Using the proposed expansion (14), projecting by |Q,N〉 from the left, and inserting
the unit operator ∑M

∣∣∣M〉〈M̃∣∣∣, the driven Equation (13) is converted into the following
matrix equation

∑
N′

[
δN,N′ − 〈N|Û|M〉

〈
Q, M̃

∣∣∣Ĝ(+)
0 (E)

∣∣∣Q, Ñ′
〉]

CN′ = DN, (34)

where
DN ≡ 〈N|V̂|K0 −Q, f 〉. (35)

Since the Coulomb proton–electron interaction in (33) is treated as a perturbation,
the corresponding logarithmic phase factor will not be present in the solution

∣∣∣Φ(+)
〉

asymptotic behavior. Nevertheless, we believe that this absence will not substantially
affect the cross section, at least in this high-energy case. In our approach the operator Û is
approximated by the truncated expansion over parabolic Sturmians (17):

ÛN0 =
M0
∑

κ,κ′=−M0

N0−1
∑

n1,n2,m1,m2=0

N0−1
∑

n′1,n′2,m′1,m′2=0

˜|n1, n2,κ〉 ˜|m1, m2,−κ〉Uκ; κ′
n1,n2,m1,m2; n′1,n′2,m′1,m′2

˜〈
n′1, n′2,κ′

∣∣ ˜〈
m′1, m′2,−κ′

∣∣, (36)
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where

Uκ; κ′
n1,n2,m1,m2; n′1,n′2,m′1,m′2

= 〈n1, n2,κ|〈m1, m2,−κ|Û
∣∣n′1, n′2,κ′

〉∣∣m′1, m′2,−κ′
〉
. (37)

The Green’s function operator matrix elements are evaluated numerically by using
the contour C1 (see Figure 1) [22,23]:〈

Q, Ñ
∣∣∣Ĝ(+)

0 (E)
∣∣∣Q, Ñ′

〉
=

1
2πi

∫
C1

dE ˜〈m1, m2,−κ|Ĝe(+)
0 (E) ˜∣∣m′1, m′2,−κ

〉
× ˜〈n1, n2,κ|〈Q|Ĝp(+)

0 (E− E)|Q〉 ˜∣∣n′1, n′2,κ
〉
.

(38)

Both factors in the integrand are expressed analytically (see, e.g., [19]). Ideally we
would put Q = K0 and thereby incorporate the incident proton plane wave into the Green’s
function matrix element. However, we found out that the correct evaluation of the contour
integral (38) requires the condition

E− E0 >
Q2

2mp
. (39)

Note that E− E0 is the point of the intersection of the contour C2 with the real energy
axis (see Figure 1).

The ‘external’ coefficients CN, whose indices are not involved in the expansion (36),
coincide with the corresponding coefficients DN of the expansion of the driven term while
the ‘internal’ coefficients are found as a solution to a finite system (34) with an appropriately
modified right-hand side.

3. Results and Discussion

We now present results of numerical calculations of FDCS which, in the laboratory
frame, reads

d5σ

dEedΩedΩp
= ke

m2
p

(2π)5
K
K0

∣∣∣TS
K,ke

∣∣∣2. (40)

We consider here the ionization in coplanar geometry, and fix the kinematic conditions
as follows [1]: the incident proton energy is Ep = 1 MeV, the ejected electron energy is
Ee = 6.5 eV, and the momentum transfer is relatively small, q = 0.75 a.u. We will therefore
plot the calculated FDCS as a function of the electron scattering angle θe. These differential
cross sections typically feature two peaks: one (binary) peak is close to the direction of
the momentum transfer q = K0 −K while the other (recoil) peak is close to the opposite
direction. In our calculations we have used the ground state wave function Φ(0) obtained
by diagonalization of the helium Hamiltonian (see, e.g., [24]).

We have examined the convergence behavior of the expansion (31) (with CN equal
to DN (35) for Q = K0) and thus determined limits M and N to the ranges |κ| ≤ M and
nj, mj < N, j = 1, 2. Specifically, we have found that satisfactory convergence of the cross
section can be achieved with N ≈ 20. Moreover, the value of M turns out to be limited due
to the smallness of the proton scattering angle θp, so that convergence is observed already
at M = 3. In all calculations, we set the basis (19) scale parameter b = 1.

The driven Equation (13) is then solved numerically using separable expansions
for both Û and Ĝ(+)

0 . The auxiliary proton plane wave |Q〉 has been introduced into
the basis functions (23) as to eliminate the rapidly oscillating factor from the right-hand
side of Equation (13). For this purpose it would be convenient to put Q = K0. On the
other hand, numerical computation of the Green’s function matrix elements imposes the
constraint (39) on Q. In order to bring Q as close as possible to K0, we should choose
the value of E0 > 0 as small as possible. In our case, the energy of the incident proton is
Ep ' 36,749.33, so that the total energy of the scattered proton and the ejected electron is

E = Ep + εHe
0 − εHe+

0 ' 36,748.42. Then putting E0 = E× 10−5 ' 0.36748 enables us to
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choose Q = 0.999945K0 and get the value 0.63893 for the difference K0 −Q which appears
when computing the coefficients (35).

Then by considering the matrix Equation (34) for the ‘internal’ coefficients, we have
examined the convergence behavior of the transition amplitude (31) as the number of terms
in the representation (36) is increased. It has been found that the convergence of the cross
section is achieved at M0 = 3 and N0 = 9. (For N0 = 9 the total number N0 of Sturmian
functions (17) involved in the potential separable expansion (36) is equal to 45,927.)

We have also considered refining the final channel interaction by replacing the Coulomb
potential 1/R for the proton and −1/r for the electron by, respectively, with the Hartree
potentials for the (e−, He+) and (p+, He+) systems. This means that Û (33) is replaced by

Ũ(R, r) = − 1
|R−r|

− 1
r +

〈
ψHe+

1s

∣∣∣ 1
|r−r′ |

∣∣∣ψHe+
1s

〉
+ 1

R −
〈

ψHe+
1s

∣∣∣ 1
|R−r′ |

∣∣∣ψHe+
1s

〉
.

(41)

The results of this refinement are shown in Figure 2 in comparison with those corre-
sponding to purely Coulomb potentials. It can be seen that such short-range additions to
the Coulomb interactions have little effect on the positions of the cross section’s peaks.

 

 

d5
 / 

dE
ed

ed
p  (

 1
06  a

.u
. )

e
 (degrees)

C-plane:
 Hartree 
 Coulomb

Ee = 6.5 eV
q = 0.75 a.u.

q

Figure 2. FDCS for single ionization of helium by 1-MeV protons in the collision plane. The electron
emission energy is Ee = 6.5 eV, and the total momentum transfer q = 0.75 a.u. Solid curve shows the
results obtained with the Hartree potentials for the (e−, He+) and (p+, He+) systems. Dash-dotted
line corresponds to the case of pure Coulomb interactions. The arrow indicates the direction of the
momentum transfer.

In Figure 3 we present a comparison of our laboratory frame cross sections with
experimental data and other theoretical calculations. Theoretical values are obtained
using our approach, the WP-CCC method [11] (the latter results calculated in the relative
coordinate system are multiplied by (mp/µ)2 = 25/16), the first Born approximation
(FBA) and 3C model [13]. The experimental values are due to Ref. [1] with normalization
of Ref. [13].
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Figure 3. FDCS for single ionization of helium by 1-MeV protons in the collision plane. The electron
emission energy is Ee = 6.5 eV, and the total momentum transfer q = 0.75 a.u. Solid curve shows the
results obtained with our method of convoluted quasi-Sturmians (CQS). Experimental data are shown
by filled circles with error bars, the FBA and 3C calculations (using a strongly correlated ground-state
wave function of helium [25]) by dashed and dotted lines respectively, and the dash-dotted line
represents the WP-CCC results.

Since the WP-CCC calculations were presented in Ref. [11] without convolution and
with experimental uncertainties; in order to compare our results and those of other the-
oretical approaches on equal footing, we also present our calculations without such a
convolution and use the unconvoluted FBA and 3C values of Ref. [13] (see Figure 5 therein).
While all theoretical FDCSs in Figure 3 have a common two-peak structure with a larger,
binary, peak and a smaller, recoil, peak, they differ in the recoil/binary ratio and in the
peaks’ positions. On the whole our CQS result provides a ratio which is in better agree-
ment with experiment than in the case of the other theoretical calculations. At the same
time, for the binary-peak position we get practically the same discrepancy of almost 10◦

as obtained with the 3C and WP-CCC approaches. It should be noted that the convolu-
tion with experimental uncertainties can explain only about 2◦ of the discrepancy (see
Figure 9 of Ref. [2] and the relevant discussion therein). The unexplained shift suggests
therefore that the discussed theoretical treatments may miss some important feature of the
binary-encounter mechanism.

4. Summary and Conclusions

We have suggested and applied a novel method for calculating fully differential cross
sections for the proton-impact ionization of helium by representing the transition amplitude
in terms of amplitudes of the quasi-Sturmian basis functions in parabolic coordinates.
The coefficients of the expansion, in the framework of the frozen-core model, are found
by solving a driven equation for the three-body system (e−, He+, p+). Specifically, the
inhomogeneous matrix equation is obtained by using Sturmian-expansion representations
of the Green’s function operator Ĝ(+)

0 and the interaction Û, which includes the proton–
electron potential, treated as a perturbation. This approach turns out to be effective in
the high-energy limit: the convergence of the cross section is achieved with a moderate
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number of expansion terms and also at a reasonable size of the matrix representation of the
p− e potential.

The nature of the calculated angular distribution of ejected electrons is common to all
theoretical methods. They differ in the ratio of the binary and recoil peak intensities; our
CQS approach seems to provide a ratio that is in slightly better agreement with experimental
data. In spite of the variety of theoretical approaches, none of them can reproduce the
experimentally observed angular position of the binary peak (the discrepancy reaches 10◦).
This demands of theory the development of more accurate methods and approaches. For
instance, it has been found in [9] that the calculated cross sections, at least at moderate
incident energies, are very sensitive to the details on the description of the interaction
between the projectile and the target core. We plan to investigate the effect of this short-
range part of the projectile–target interaction in the high-energy regime. In addition, we
intend to study proton and antiproton impact ionization of heavier atoms, still treated as
one-electron targets.
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