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Abstract: We generalize Schrödinger’s factorization method for Hydrogen from the conventional
separation into angular and radial coordinates to a Cartesian-based factorization. Unique to this
approach is the fact that the Hamiltonian is represented as a sum over factorizations in terms of
coupled operators that depend on the coordinates and momenta in each Cartesian direction. We
determine the eigenstates and energies, the wavefunctions in both coordinate and momentum space,
and we also illustrate how this technique can be employed to develop the conventional confluent
hypergeometric equation approach. The methodology developed here could potentially be employed
for other Hamiltonians that can be represented as the sum over coupled Schrödinger factorizations.

Keywords: bound states of hydrogen; Schrödinger factorization method; reverse Bessel polynomials;
separation of variables; operator methods

1. Introduction

The Hydrogen atom was originally solved by Pauli employing operator methods
by discovering the Lie algebra of the SO(4) symmetry in the problem [1]. Schrödinger
followed shortly with the differential equation approach of wave mechanics [2,3]. In 1940,
Schrödinger developed the factorization method for quantum mechanics [4] and employed
it to solve Hydrogen as well [5]. This factorization method was extensively reviewed
by Infeld and Hull [6]. Our focus in this work is on an operator-based method to solve
Hydrogen. Similar to how the wave-equation approach can be solved directly in Cartesian
coordinates [7], we develop here the Cartesian factorization method for Hydrogen. While it
shares some of the characteristics of the spherical coordinate-based factorization method, it
is distinctly different. It is surprising that one can discover a new methodology for solving
Hydrogen nearly one hundred years since its first solution.

There are two new developments that arise with this solution. First, this approach gen-
eralizes the Schrödinger factorization method, which employs a single raising and lowering
operator factorization, into an approach that works with the sum over three coupled raising
and lowering operator factorizations—one for each Cartesian coordinate. These raising and
lowering operators also depend on the radial coordinate, so the operators corresponding
to the different Cartesian directions do not commute with each other. Nevertheless, a full
operator-based approach can be employed to solve the quantum problem. Second, the
strategy used here, where we solve first for the energy eigenstate as a sequence of operators
acting on the ground state of an auxiliary Hamiltonian, allows us to then construct the
eigenfunctions in both real space and momentum space by simply projecting onto the
coordinate-space and momentum-space eigenfunctions, whereby both solutions proceed
using the same methodology. This is quite different from conventional differential equation
approaches, which are quite dissimilar for coordinate and momentum space. It does turn
out that the algebra required for the momentum-space eigenfunctions is somewhat more
complicated than for the real-space functions.
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Conventional quantum mechanics suffers from overuse of the coordinate-space repre-
sentation. This is solely for convenience—the Schrödinger equation is a second-order linear
differential equation in coordinate space; in momentum space, it generically becomes an
integral equation, which is much more difficult to work with. One might argue that this is
just fine. After all, the Stone–von Neumann theorem [8,9] tells us that all representations
are equivalent to the coordinate-space representation. However, the ability to formulate
quantum mechanics in a representation-independent fashion is an important cornerstone
of the theory. In this work, we show how to determine wavefunctions independent of
the basis.

One other notable result is that nearly all of the operator-based derivations we employ
can be performed without using any calculus. We illustrate this throughout the paper.
Calculus ends up being needed only for the normalization of the wavefunctions and
for the derivation of some identities we require when calculating the momentum-space
wavefunctions. Of course, one can map this problem onto a differential equation as well.
We illustrate how one can extract the conventional confluent hypergeometric equation for
the wavefunction of Hydrogen in coordinate space below.

While the differential equation approach to solving Hydrogen in spherical coordi-
nates is performed in almost every quantum textbook, the operator method in spherical
coordinates is limited to only a handful of textbooks. Starting with Harris and Loeb [10],
and followed shortly thereafter by Green [11], Bohm [12], Ohanian [13] and de Lange and
Raab [14], Schrödinger’s factorization method (and the closely related ladder-operator
method) has been covered amply in many texts. One might even say it has been increasing
in popularity, as it has appeared in a number of recent texts as well, including Hecht [15],
Binney and Skinner [16], Schwabl [17] and Razavy [18]. All of these texts employ essentially
the same technique, closely related to Schrödinger’s original method [5]. Only de Lange
and Raab [14] also solve the problem in momentum space, but they employ a direct opera-
tor problem formulated in momentum space, which is a completely different technique and
is not closely related to the coordinate-space approach. Judd [19] also solves the problem
directly in momentum space by determining the spherical harmonics of a four-sphere,
following Fock’s original derivation [20].

Here, we proceed differently. The Cartesian factorization of the Coulomb Hamiltonian
was first worked out by Andrianov, Borisov and Ioffe in 1984 [21]. We begin by writing
down the Hydrogen Hamiltonian Ĥ as

Ĥ =
p̂2

x + p̂2
y + p̂2

z

2m
− e2

r̂
, (1)

where we use hats to denote operators, p̂α (α = x, y, and z) are the momentum operators in
the αth direction, r̂α are the corresponding coordinate operators, and [r̂α, p̂β] = ih̄δαβ, with
h̄ Planck’s constant. We work in electrostatic units, where |e| is the magnitude of the charge
of a proton or electron, m is the mass of the electron, and r̂2 = r̂2

x + r̂2
y + r̂2

z . Reduced mass
effects are taken into account by simply replacing m→ memH/(me + mH) = µ, but all of
our formulas here will use m for the mass.

The Cartesian factorization rewrites the Hydrogen Hamiltonian in the following form:

Ĥ = ∑
α=x,y,z

Â†
α(λ=1)Âα(λ=1) + E(λ=1), (2)

where the raising and lowering operators are Hermitian conjugates Â†
α(λ) = [Âα(λ)]†

given by

Âα(λ) =
1√
2m

(
p̂α − i

h̄
λa0

r̂α

r̂

)
. (3)
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Here, we have used a0 = h̄2/me2, which is the Bohr radius, and that the energy
satisfies

E(λ) = − e2

2a0λ2 . (4)

In the Hydrogen Hamiltonian, we have λ = 1, but we will be using these operators
and energies for different values of λ throughout the work.

The verification that Equation (2) is equal to Equation (1) follows from a direct compu-
tation. We have

Â†
α(λ)Âα(λ) =

p̂2
α

2m
− i

h̄
2mλa0

[
p̂α,

r̂α

r̂

]
+

h̄2

2mλ2a2
0

r̂2
α

r̂2 . (5)

We use the fact that [r̂2, p̂α] = ∑β=x,y,z[r̂2
β, p̂α] = 2ih̄r̂α, which can be employed to show

that [ p̂α, 1/r̂] = ih̄r̂α/r̂3 (for further details, see the appendix in [22] and Section 2 below).
The commutator can then be computed, and yields

Â†
α(λ)Âα(λ) =

p̂2
α

2m
− e2

2λ

(
1
r̂
− r̂2

α

r̂3

)
+

e2

2λ2a0

r̂2
α

r̂2 . (6)

Summing over the spatial indices α immediately gives us

∑
α=x,y,z

Â†
α(λ)Âα(λ) =

p̂2
x + p̂2

y + p̂2
z

2m
− e2

λr̂
+

e2

2λ2a0
. (7)

Hence, we find that Equations (2) and (4) produce the Hydrogen Hamiltonian and
ground state energy when we set λ = 1.

Note that the raising and lowering operators do not commute with each other for
different Cartesian coordinates. Hence, the factorization involves coupled operators and
is different in character from the Cartesian factorization of the isotropic simple harmonic
oscillator in three dimensions, where the raising and lowering operators for different
directions commute with each other.

The form of the Hamiltonian in Equation (2) allows us to directly determine the
ground-state energy and the ground-state wavefunction in coordinate space. Because the
factorized form of the Hamiltonian is the sum of positive semidefinite operator terms and
a constant, the ground-state energy is given by the constant Egs = E(λ=1) = −e2/2a0 and
the ground-state wavefunction satisfies

Âα(λ=1)|φλ=1〉 = 0, (8)

for all α = x, y, z. We use the symbol |φλ〉 to denote the ground state of the auxiliary
Hamiltonian

Ĥ(λ) = ∑
α=x,y,z

Â†
α(λ)Âα(λ) + E(λ) =

p̂2
x + p̂2

y + p̂2
z

2m
− e2

λr̂
, (9)

which satisfies
Âα(λ)|φλ〉 = 0 (10)

for fixed λ (and all α = x, y, z) with energy E(λ).
We find the ground-state wavefunction ψgs(rx, ry, rz) by taking the overlap of Equa-

tion (8) with the position eigenstate bra 〈rx, ry, rz|:

ψgs(rx, ry, rz) = 〈rx, ry, rz|φλ=1〉. (11)
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Using the condition for the ground-state wavefunction in Equation (8), we find that

〈rx, ry, rz| p̂α|φλ=1〉 = i
h̄
a0

rα

r
ψgs(rx, ry, rz). (12)

We can proceed in one of two ways at this point. We can use the coordinate-space
representation of the momentum operator, given by p̂α = −ih̄∂/∂rα, to find the three
differential equations

∂

∂rα
ψgs(rx, ry, rz) = −

rα

a0r
ψgs(rx, ry, rz). (13)

These three equations can be immediately solved via

ψgs(rx, ry, rz) = ψgs(rx=0, ry=0, rz=0)e−
r

a0 . (14)

This is the well-known ground-state solution for Hydrogen, with the overall normal-
ization constant still needing to be determined.

We can also solve this problem without calculus. However, it turns out the algebra for
this is a bit more complex. We illustrate why here and provide some additional details in
the Appendix A. First, we use the translation operator to write

|rx, ry, rz〉 = e−
i
h̄ (rx p̂x+ry p̂y+rz p̂z)|rx=0, ry=0, rz=0〉. (15)

Then, we compute

ψgs(rx, ry, rz) = 〈rx=0, ry=0, rz=0|
[

∞

∑
n=0

1
n!

(
∑

α=x,y,z

irα p̂α

h̄

)n]
|φλ=1〉. (16)

To evaluate this expression, we want to use Equation (8) to replace p̂α by ih̄r̂α/(a0r̂).
There are two issues that arise for this: (i) one cannot immediately evaluate operators such
as r̂α/r̂ onto the coordinate eigenstate at the origin, without some appropriate limiting
procedure and (ii) the fact that p̂α does not commute with r̂α/r̂ creates many additional
terms that one must carefully keep track of. It is easier to discuss a strategy for how to work
on this after one has developed a bit more formalism, so this discussion continues in the
Appendix A. The full expression of the translation operator and the methodology needed
to complete the algebraic determination of the maximal angular momentum wavefunctions
has already been completed elsewhere [22].

The momentum wavefunction is also not so simple to determine and we postpone
discussing it until we work on the general case below. The organization of the remainder of
the paper is as follows: in Section 2, we derive the operator form for the eigenfunctions and
eigenvalues for the general case after briefly summarizing the properties of harmonic poly-
nomials. The coordinate-space wavefunctions are derived in Section 3 and the momentum
space wavefunctions in Section 4. Section 5 provides a derivation of the more conventional
confluent hypergeometric equation approach. We conclude in Section 6.

2. Deriving the Energy Eigenstate

We begin with a short “tutorial” on how to compute commutators without taking
derivatives or working with an explicit representation for the operators. This methodology
was introduced by Dirac [23], and is an elegant way to determine commutators without
calculus. A rather complete discussion can also be found in the appendix in [22]. We
employ this methodology throughout.

To begin, we note that the commutator of r̂2 = r̂2
x + r̂2

y + r̂2
z with p̂α, is simple to

compute, but by also employing the product rule, we quickly learn that

[r̂2, p̂α] = 2ih̄r̂α = r̂[r̂, p̂α] + [r̂, p̂α]r̂, (17)
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or [r̂, p̂α] = ih̄r̂α/r̂. Note that we have to move the commutator through r̂ to complete this
derivation. This is easy to establish a posteriori, but it can actually be directly verified by the
Jacobi identity and the fact that the operator r̂2 has the same eigenvectors as the operator
r̂ [12,22]. With a simple inductive argument, one can then establish that [r̂n, p̂α] = ih̄nr̂α r̂n−2,
for all integers n.

Next, we work with the Hermitian (but not self-adjoint) radial momentum operator,
p̂r, defined to be

p̂r =
1
r̂ ∑

α=x,y,z
r̂α p̂α − i

h̄
r̂

. (18)

One immediately sees that

[r̂, p̂r] =

[
r̂,

1
r̂
(r̂x p̂x + r̂y p̂y + r̂z p̂z)− i

h̄
r̂

]
= ih̄, (19)

after using the identity derived above and the fact that r̂2
x + r̂2

y + r̂2
z = r̂2. The radial

momentum determines the radial component of the kinetic energy T̂, separating it into the
radial component and the perpendicular component T̂⊥ via

T̂⊥ = T̂ − p̂2
r

2m
=

p̂2
x + p̂2

y + p̂2
z

2m
− p̂2

r
2m

. (20)

The perpendicular component of the kinetic energy commutes with the radial coordi-
nate, as can be seen by direct computation:

[r̂, T̂⊥] =
1

2m
[r̂, p̂2

x + p̂2
y + p̂2

z − p̂2
r ]

=
ih̄
2m

(
p̂x

r̂x

r̂
+

r̂x

r̂
p̂x + p̂y

r̂y

r̂
+

r̂y

r̂
p̂y + p̂z

r̂z

r̂
+

r̂z

r̂
p̂z − 2p̂r

)
= 0. (21)

The cancellation follows from a simple rearrangement of operators using the commu-
tation relation and the definition of the radial momentum in Equation (18).

One of the subtleties we have to work with is that the Cartesian components of
momentum do not commute with the radial momentum. In particular, we find that

[ p̂r, p̂α] =

[
1
r̂
(r̂x p̂x + r̂y p̂y + r̂z p̂z − ih̄), p̂α

]
=

1
r̂

ih̄ p̂α − ih̄
r̂α

r̂3 (r̂x p̂x + r̂y p̂y + r̂z p̂z − ih̄) (22)

= ih̄
1
r̂

p̂α − ih̄
r̂α

r̂2 p̂r.

Similarly, the Cartesian components of position do not commute with the radial
momentum

[r̂α, p̂r] =

[
r̂α,

1
r̂
(r̂x p̂x + r̂y p̂y + r̂z p̂z − ih̄)

]
= ih̄

r̂α

r̂
. (23)

These results allow us to compute our final commutator, that of the radial momentum
with the perpendicular kinetic energy:

[ p̂r, T̂⊥] =
1

2m
( p̂x[ p̂r, p̂x] + [ p̂r, p̂x] p̂x + p̂y[ p̂r, p̂y] + [ p̂r, p̂y] p̂y + p̂z[ p̂r, p̂z] + [ p̂r, p̂z] p̂z)

= 2ih̄
1
r̂

T̂⊥, (24)

which follows after some complex algebra.
We do not use a separation of variables into radial and angular coordinates, nev-

ertheless, similar to the Cartesian differential equation approach [7], we need to work
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with harmonic polynomials, but here in operator form. Kramers originated the use of
harmonic polynomials for angular momentum [24] (see also Brinkman [25] and Powell and
Crasemann [26]), which has been revitalized recently by Weinberg [27]. Here, we follow
the approach of Avery [28] and define the lth-order harmonic polynomial Pl

h(r̂x, r̂y, r̂z) to
be a homogeneous polynomial, so that[

r̂ p̂r, Pl
h(r̂x, r̂y, r̂z)

]
= −ih̄lPl

h(r̂x, r̂y, r̂z), (25)

for l a nonnegative integer. Here, we have r̂ p̂r = r̂x p̂x + r̂y p̂y + r̂z p̂z − ih̄. Note that the
radial momentum operator is a Hermitian operator that is conjugate to the radial coordinate
operator and satisfies Equation (19).

The result in Equation (25) follows by simply evaluating the commutator, which yields
a term given by −ih̄ times the monomial term for every coordinate factor in each monomial
term of the polynomial; when the polynomial is homogeneous, the number of terms in each
monomial is the same, and hence, the entire polynomial is multiplied by −ih̄l. In addition,
these polynomials satisfy Laplace’s equation, written in the operator form

∑
α=x,y,z

[
p̂α,
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]]
= 0. (26)

These harmonic polynomials are defined up to an overall multiplicative factor. The
low-order ones are just what we expect them to be from our knowledge of Cartesian
spherical harmonics. The zeroth-order one is just 1. The first-order ones are r̂x, r̂y, and
r̂z. The second-order ones are r̂x r̂y, r̂y r̂z, r̂z r̂x, r̂2

x − r̂2
y, and −r̂2

x − r̂2
y + 2r̂2

z . One should note
that the harmonic polynomials have all the r̂2 dependence removed from them, because
the Laplacian of r̂2 is nonzero. We will be employing the harmonic polynomial operators
heavily in the derivation below.

However, before getting there, we want to note one other special property about the
harmonic polynomials. First, we can easily verify from the commutation relations derived
above that [

p̂r,
r̂α

r̂

]
= 0, (27)

which then implies that [
p̂r,

1
r̂l Pl

h(r̂x, r̂y, r̂z)

]
= 0. (28)

The factor 1/r̂l is needed to divide each of the l r̂α factors in each monomial term of the
harmonic polynomial to ensure that each monomial commutes with the radial momentum.

Now, with these technical details finished, we are ready to move on to the derivation
of the eigenfunctions and eigenvalues of Hydrogen. In Schrödinger’s original factorization
method, he constructed higher-energy states by acting a chain of operators on the ground
state of an auxiliary Hamiltonian, which was related to the original Hamiltonian, but
employed a series of different raising and lowering operators, as well as different constant
terms. He derived this result by showing that the wavefunction constructed must be an
eigenfunction of the original Hamiltonian. We will follow similar strategy here, but it has a
few places where the steps are modified because our Hamiltonian has a sum of factorized
terms instead of just one. While it may seem like we are just going to guess the solution
and then verify it, which is a valid approach, the motivation for the guess comes from the
standard operator formalism solution for Hydrogen.

To begin, we first must define another set of raising and lowering operators that we
call B̂†

r (λ) and B̂r(λ), with B̂†
r (λ) = [B̂r(λ)]†. The operator is defined by

B̂r(λ) =
1√
2m

[
p̂r − ih̄

(
1

(λ + 1)a0
− λ + 1

r̂

)]
, (29)
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following de Lange and Raab’s convention [14]. This operator can be expressed in terms of
our Cartesian operators as follows:

B̂r(λ) = ∑
α=x,y,z

r̂α

r̂
Âα(λ + 1) + i

λh̄√
2mr̂

. (30)

One can immediately verify that

Ĥ(λ=1) = B̂†
r (λ)B̂r(λ) + T̂⊥ −

h̄2λ(λ + 1)
2mr̂2 + E(λ + 1)

= B̂r(λ)B̂†
r (λ) + T̂⊥ −

h̄2(λ + 1)(λ + 2)
2mr̂2 + E(λ + 1). (31)

Before we construct the ansatz for the eigenstate, we need to establish the following
identity:

T̂⊥Pl
h(r̂x, r̂y, r̂z)|φλ〉 =

h̄2l(l + 1)
2mr̂2 Pl

h(r̂x, r̂y, r̂y)|φλ〉. (32)

The proof requires a number of steps. First, we establish the action of the radial
momentum on the auxiliary Hamiltonian ground state via

p̂r|φλ〉 =
(

∑
α

r̂α

r̂
p̂α −

ih̄
r̂

)
|φλ〉 =

(
∑
α

r̂α

r̂
ih̄r̂α

λa0r̂
− ih̄

r̂

)
|φλ〉

= ih̄
(

1
λa0
− 1

r̂

)
|φλ〉, (33)

where we used the fact that Âα(λ)|φλ〉 = 0 implies that

p̂α|φλ〉 =
ih̄r̂α

λa0r̂
|φλ〉 (34)

for all α = x, y, z. Second, we show that T̂⊥|φλ〉 = 0.
This is done with the following steps:

T̂⊥|φλ〉 =
(

T̂ − p̂2
r

2m

)
|φλ〉 =

(
Ĥ(λ) +

e2

λr̂
− p̂2

r
2m

)
|φλ〉

=

(
− e2

2λ2a0
+

e2

λr̂
− i

h̄
2m

p̂r

[
1

λa0
− 1

r̂

])
|φλ〉

=

(
− e2

2λ2a0
+

e2

λr̂
− h̄2

2mr̂2 +
h̄2

2m

[
1

λa0
− 1

r̂

]2
)
|φλ〉 (35)

= 0,

where Equation (33) is applied twice. Next, we evaluate T̂⊥ acting on the harmonic
polynomial and the auxiliary Hamiltonian ground-state via

T̂⊥Pl
h(r̂x, r̂y, r̂z)|φλ〉 =

[
T̂⊥, Pl

h(r̂x, r̂y, r̂z)
]
|φλ〉 =

[
T̂ − p̂2

r
2m

, Pl
h(r̂x, r̂y, r̂z)

]
|φλ〉 (36)

because T̂⊥|φλ〉 = 0. We evaluate each piece of the commutator next. First, we compute
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[T̂, Pl
h(r̂x, r̂y, r̂z)]|φλ〉 =

1
2m ∑

α

(
p̂α[ p̂α, Pl

h(r̂x, r̂y, r̂z)] + [ p̂α, Pl
h(r̂x, r̂y, r̂z)] p̂α

)
|φλ〉

=
1

2m ∑
α

(
[ p̂α, [ p̂α, Pl

h(r̂x, r̂y, r̂z)]] + 2[ p̂α, Pl
h(r̂x, r̂y, r̂z)]

ih̄r̂α

λa0r̂

)
|φλ〉

=
e2l
λr̂

Pl
h(r̂x, r̂y, r̂z)|φλ〉. (37)

In the second line, the double commutator vanishes because the harmonic polynomial
satisfies Laplace’s equation as shown in Equation (26), while the second term simplifies
because the harmonic polynomial is homogeneous, as shown in Equation (25). We used the
definition of the Bohr radius to simplify the final result as well.

The second piece of the commutator is

−
[

p̂2
r

2m
, Pl

h(r̂x, r̂y, r̂z)

]
|φλ〉 = −

[
p̂2

r
2m

,
r̂l Pl

h(r̂x, r̂y, r̂z)

r̂l

]
|φλ〉 = −

Pl
h(r̂x, r̂y, r̂z)

2mr̂l [ p̂2
r , r̂l ]|φλ〉

= −
Pl

h(r̂x, r̂y, r̂z)

2mr̂l ih̄( p̂rlr̂l−1 + lr̂l−1 p̂r)|φλ〉

= −
h̄2Pl

h(r̂x, r̂y, r̂z)

2mr̂l

(
2l
[

1
λa0
− 1

r̂

]
r̂l−1 − l(l − 1)r̂l−2

)
|φλ〉

= Pl
h(r̂x, r̂y, r̂z)

(
h̄2l(l + 1)

2mr̂2 − e2l
λr̂

)
|φλ〉. (38)

Adding Equations (37) and (38) establishes the identity in Equation (32).
We also need to determine how T̂⊥ − h̄2l(l + 1)/(2mr̂2) commutes with B̂†

r (λ). A
direct computation, employing Equations (21) and (24) yields[

T̂⊥ −
h̄2l(l + 1)

2mr̂2 , B̂†
r (λ)

]
= − 2ih̄√

2mr̂

(
T̂⊥ −

h̄2l(l + 1)
2mr̂2

)
. (39)

This equation can be rearranged to an intertwining relation[
T̂⊥ −

h̄2l(l + 1)
2mr̂2

]
B̂†

r (λ) =

[
B̂†

r (λ)−
2ih̄√
2mr̂

][
T̂⊥ −

h̄2l(l + 1)
2mr̂2

]
(40)

indicating that the operator T̂⊥− h̄2l(l + 1)/(2mr̂2) can be moved through B̂†
r (λ) by shifting

the latter operator to B̂†
r (λ)− 2ih̄/(

√
2mr̂). One can derive a similar intertwining relation

given by
h̄2

2mr̂2 B̂†
r (λ) =

[
B̂†

r (λ)−
2ih̄√
2mr̂

]
h̄2

2mr̂2 . (41)

In the Schrödinger factorization method, an intertwining relation is employed to
construct the higher-energy eigenstates of the original Hamiltonian from a series of raising
operators acting on an auxiliary Hamiltonian ground state. Here, we employ the exact same
technique, except the intertwining relation is complicated due to the fact that it generates
many extra terms proportional to T̂⊥ − h̄2l(l + 1)/(2mr̂2). Since these terms vanish when
they operate on Pl

h(r̂x, r̂y, r̂z)|φλ〉, they do not corrupt the final intertwining relation, but
they make the derivation more cumbersome. We now go carefully through the construction
of all of the remaining eigenstates.
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We start with the modification of the intertwining relation, which is derived by com-
muting Ĥ(1) through B̂†

r (λ):

Ĥ(1)B̂†
r (λ) =

[
B̂†

r (λ)B̂r(λ) + T̂⊥ −
h̄2λ(λ + 1)

2mr̂2 + E(λ + 1)

]
B̂†

r (λ)

= B̂†
r (λ)

[
B̂r(λ)B̂†

r (λ) + T̂⊥ −
h̄2λ(λ + 1)

2mr̂2 + E(λ + 1)

]

− 2ih̄√
2mr̂

(
T̂⊥ −

h̄2λ(λ + 1)
2mr̂2

)

= B̂†
r (λ)

[
Ĥ(1) +

h̄2(λ + 1)
mr̂2

]
− 2ih̄√

2mr̂

(
T̂⊥ −

h̄2λ(λ + 1)
2mr̂2

)
. (42)

This derivation proceeds by first using the top relation in Equation (31). Next, we
construct the Hamiltonian via the lower relation in Equation (31) and also employ the
commutator in Equation (39). This differs from the conventional intertwining relation due
to the extra term on the last line of Equation (42).

We now show how to determine the energy eigenstates using a quasi-inductive argu-
ment. We build up subsequent eigenstates and see why, in each case, the λ values used
are integers chosen according to a specific procedure. This ends up being a constructive
methodology for generating the energy eigenstates.

We begin with an ansatz for the first (unnormalized) eigenstate in the chain of eigen-
states. It has the form (with the subscript nn− 1 of ψ to be understood a posteriori)

|ψnn−1〉 = r̂γ−n+1Pn−1
h (r̂x, r̂y, r̂z)|φλ〉. (43)

Here, the symbol λ in the ket on the right-hand side is a parameter, and our initial
goal is to show that we must have λ = n and γ = n− 1. To do so, we actH(λ=1) onto this
state, which yields

H(1)|ψnn−1〉 =
(

p̂2
r

2m
+ T̂⊥ −

e2

r̂

)
r̂γ−n+1Pn−1

h (r̂x, r̂y, r̂z)|φλ〉. (44)

Our first step is to move T̂⊥ through the powers of r̂. This is possible because [T̂⊥, r̂] =
0, as we now show

[T̂⊥, r̂] =
1

2m
[ p̂2

x + p̂2
y + p̂2

z − p̂2
r , r̂] =

1
2m

(
∑

α=x,y,z
{ p̂α[ p̂α, r̂] + [ p̂α, r̂] p̂α}+ 2ih̄ p̂r

)

= − ih̄
2m ∑

α=x,y,z

(
p̂α

r̂α

r̂
+

r̂α

r̂
p̂α

)
+

ih̄ p̂r

m
= 0. (45)

Verifying this result required us to use three facts: [r̂, p̂α] = ih̄r̂α/r̂; [r̂, p̂r] = ih̄ and the
definition of the radial momentum in Equation (18).

This commutator means we can move the T̂⊥ operator through the power of r̂ and
have it act on the harmonic polynomial operator and the state. We use the identity in
Equation (32) to replace the T̂⊥ term by a number, yielding

Ĥ(1)|ψnn−1〉 =
(

p̂2
r

2m
+

h̄2n(n− 1)
2mr̂2 − e2

r̂

)
r̂γ−n+1Pn−1

h (r̂x, r̂y, r̂z)|φλ〉. (46)

What remains to do is operating p̂2
r onto the state. We need Equation (33) for the action

of the radial momentum onto the auxiliary Hamiltonian ground state and the fact that we
can commute Pn−1

h (r̂x, r̂y, r̂z)/r̂n−1 through p̂r. This leaves us with the final calculation
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p̂2
r r̂γ|φλ〉 = p̂r([ p̂r, r̂γ] + r̂γ p̂r)|φλ〉 = ih̄ p̂r

(
−(γ + 1)r̂γ−1 +

r̂γ

λa0

)
|φλ〉 (47)

= (ih̄)2

(
γ(γ + 1)r̂γ−2 − 2

γ + 1
λa0

r̂γ−1 +
r̂γ

λ2a2
0

)
|φλ〉.

Substituting into Equation (46) and using the definition of the Bohr radius gives us

Ĥ(1)|ψnn−1〉 =
(

h̄2[n(n− 1)− γ(γ + 1)]
2mr̂2 +

e2

λr̂
(γ + 1− λ)− e2

2λ2a0

)
× r̂γ−n+1Pn−1

h (r̂x, r̂y, r̂z)|φλ〉

= − e2

2n2a0
|ψnn−1〉. (48)

Clearly, we must have γ = λ − 1 and γ(γ + 1) = n(n − 1) (which means λ = n,
because we also require λ ≥ 0) in order for this to be an eigenstate, with the eigenvalue
given on the last line. This establishes the correct integers for the first eigenstate in the series.
The requirement that λ ≥ 0 arises when we construct the ground-state wavefunction (see
Appendix A)—if we do not make this requirement, then the ground-state wavefunction is
not normalizable. We apply this constraint here, knowing this requirement.

For the general case, we choose a set of real and nonnegative parameters {νl , · · · , νn−2}
and form the trial eigenstate via

|ψnl〉 = B̂†
r (νl)B̂†

r (νl+1) · · · B̂†
r (νn−2)r̂γ−l Pl

h(r̂x, r̂y, r̂z)|φλ〉. (49)

When we actH(1) from the left, we can move it through the terms one by one to the right.
It will generate a number of terms proportional to T̂⊥ − h̄2C/(2mr̂2), for some number
C, but those will all vanish when operated to the right against the state, because we will
organize the terms so that C = l(l + 1). We are then left with

Ĥ(1)|ψnl〉 = B̂†
r (νl) · · · B̂†

r (νn−2)

(
H(1) +

h̄2

mr̂2

n−2

∑
j=l

(νj + 1)

)
r̂γ−l Pl

h(r̂x, ry, rz)|φλ〉. (50)

Acting Ĥ(1) to the right proceeds exactly like what we did above and yields

Ĥ(1)r̂γ−l Pl
h(r̂x, r̂y, r̂z)|φλ〉 =

(
h̄2

2mr̂2

[
l(l + 1) + 2

n−2

∑
j=l

(νj + 1)− γ(γ + 1)

]

+
e2

λr̂
(γ + 1− λ)− e2

2λ2a0

)
r̂γ−l Pl

h(r̂x, r̂y, r̂z)|φλ〉. (51)

Clearly, we must have again that γ = λ − 1. To determine the νj terms, we must
determine the factor C whenH(1) + h̄2 ∑k−1

j=l (νj + 1)/(mr̂2) moves to the right past B̂†
r (νk),

for each value of k such that l ≤ k ≤ n− 2. A simple calculation shows that

Ck = νk(νk + 1)− 2
k−1

∑
j=l

(νj + 1). (52)

Starting from the first term, we must have νl = l, otherwise Cl 6= l(l + 1). Given
νl = l, then we have νl+1 must satisfy νl+1(νl+1 + 1)− 2(l + 1) = l(l + 1), or νl+1 = l + 1
(because all νl are nonnegative). Continuing, in turn, we immediately see that we must
have νj = j for the state to be an eigenstate. Then, we have
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2
n−2

∑
j=l

(j + 1) = n(n− 1)− l(l + 1), (53)

which further tells us that we must have γ = n− 1 again. Hence, λ = n and the energy
eigenvalue is −e2/(2n2a0)—the same value for every state in the chain that we can create,
down to l = 0. This completes the argument that we must choose consecutive integers in
the chain of operators to yield an energy eigenstate. The results are shown in Figure 1 for
the first three energy multiplets. We next establish these results rigorously, deriving all of
the required details. A schematic of how the calculation is structured is given in Figure 2.

l=0 l=1 l=2

n=1

n=3

En
er
gy

n=2

angular
momentum

Figure 1. First three energy eigenstate multiplets, plotted to show the energy and the corresponding
state, along with the angular momentum. The energies are the same for all inequivalent harmonic
polynomials with the same l value. The dotted line is the limit point for the energy eigenvalues.

Figure 2. Schematic for how the energy eigenstate calculation works.
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We next establish the following identity, which involves multiple applications of the
intertwining identity to move the Hamiltonian operator through the sequence of raising
operators involving the product with λ chosen from the n − l − 1 factors {l, l + 1, l +
2, · · · , n− 3, n− 2} in order from left to right:

Ĥ(1)
[

B̂†
r (l)B̂†

r (l + 1) · · · B̂†
r (n− 2)

]
= B̂†

r (l) · · · B̂†
r (n− 2)

[
Ĥ(1) +

h̄2

mr̂2

n−l−1

∑
j=1

(n− j)

]
(54)

+

{[
B̂†

r (l)−
2ih̄√
2mr̂

]
· · ·
[

B̂†
r (n− 2)− 2ih̄√

2mr̂

]
−
[

B̂†
r (l) · · · B̂†

r (n− 2)
]}

×
[

T̂⊥ −
h̄2l(l + 1)

2mr̂2

]
.

We proceed by induction. One can immediately verify that if we set λ = l = n− 2,
then Equation (42) is the base case for the above intertwining identity. We next assume
it holds for the above case and proceed to show it also holds when we add the B̂†

r (l − 1)
operator to the product on the left. This yields

Ĥ(1)
[

B̂†
r (l − 1)B̂†

r (l) · · · B̂†
r (n− 2)

]
= B̂†

r (l − 1)

[
Ĥ(1) +

h̄2l
mr̂2

]
B̂†

r (l) · · · B̂†
r (n− 2)

− 2ih̄√
2mr̂

(
T̂⊥ −

h̄2(l − 1)l
2mr̂2

)
B̂†

r (l) · · · B̂†
r (n− 2) (55)

after using Equation (42). Now, we employ Equation (55) along with (40) and (41) to find

Ĥ(1)
[

B̂†
r (l − 1) · · · B̂†

r (n− 2)
]
= B̂†

r (l − 1) · · · B̂†
r (n− 2)

[
Ĥ(1) +

h̄2

mr̂2

n−l−1

∑
j=1

(n− j)

]

+ B̂†
r (l − 1)

{[
B̂†

r (l)−
2ih̄√
2mr̂

]
· · ·
[

B̂†
r (n− 2)− 2ih̄√

2mr̂

]

−
[

B̂†
r (l) · · · B̂†

r (n− 2)
]}[

T̂⊥ −
h̄2l(l + 1)

2mr̂2

]
(56)

+ B̂†
r (l − 1)

[
B̂†

r (l)−
2ih̄√
2mr̂

]
· · ·
[

B̂†
r (n− 2)− 2ih̄√

2mr̂

]
h̄2l
mr̂2

− 2ih̄√
2mr̂

[
B̂†

r (l)−
2ih̄√
2mr̂

]
· · ·
[

B̂†
r (n− 2)− 2ih̄√

2mr̂

][
T̂⊥ −

h̄2(l − 1)l
2mr̂2

]
.

The terms in the last two rows can be combined with those in the upper rows to
finally yield

Ĥ(1)
[

B̂†
r (l − 1) · · · B̂†

r (n− 2)
]
= B̂†

r (l − 1) · · · B̂†
r (n− 2)

[
Ĥ(1) +

h̄2

mr̂2

n−l

∑
j=1

(n− j)

]

+

{[
B̂†

r (l − 1)− 2ih̄√
2mr̂

]
· · ·
[

B̂†
r (n− 2)− 2ih̄√

2mr̂

]
−
[

B̂†
r (l − 1) · · · B̂†

r (n− 2)
]}

×
[

T̂⊥ −
h̄2(l − 1)l

2mr̂2

]
. (57)

This completes the inductive proof.
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When constructing an ansatz for the eigenfunctions, we will find that the fact that the
B̂r operators have integer parameters will require the power of r̂ and the parameter λ to
both be integers. So, we choose λ = n and the integer degree of the harmonic polynomial l
to label the eigenstate via

|ψnl〉 = B̂†
r (l)B̂†

r (l + 1) · · · B̂†
r (n− 2)r̂n−l−1Pl

h(r̂x, r̂y, r̂z)|φλ=n〉, (58)

with the restriction that 0 ≤ l ≤ n− 1 because harmonic polynomials are not defined for
negative l, and our wavefunction ansatz restricts l to be less than n. Now, we verify that it
is indeed an eigenfunction and we also determine the eigenvalue.

This is the homestretch, but it still takes a number of steps. We use the intertwining
relation (recalling all of the extra terms vanish when acting on the state to the right) and
find that

Ĥ(1)|ψnl〉 = Ĥ(1)B̂†
r (l) · · · B̂†

r (n− 2)r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉 (59)

= B†
r (l) · · · B̂†

r (n− 2)

[
Ĥ(1) +

h̄2

2mr̂2 {n(n− 1)− l(l + 1)}
]

r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉,

which follows from Equation (55) and because the sum satisfies

n−l−1

∑
j=1

(n− j) = n(n− l − 1)− 1
2
(n− l − 1)(n− l) =

1
2
[n(n− 1)− l(l + 1)]. (60)

Next, we recall that Ĥ(1) = T̂ − e2/r̂ and focus on evaluating the term from the total
kinetic energy as follows:

T̂r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉 = [T̂, r̂n−l−1Pl

h(r̂x, r̂y, r̂z)]|φλ=n〉+ r̂n−l−1Pl
h(r̂x, r̂y, r̂z)T̂|φλ=n〉. (61)

For the last term in Equation (61), we have

T̂|φλ=n〉 =
[
Ĥ(n) +

e2

nr̂

]
|φλ=n〉 =

[
E(n) +

e2

nr̂

]
|φλ=n〉. (62)

The first term in Equation (61) is evaluated by directly computing the commutator,
which uses a number of the operator relations we already derived above (including the
commutator in Equation (28), the identity in Equation (32), and the action of p̂r on |φλ〉 in
Equation (33)). The result becomes[

T̂, r̂n−l−1Pl
h(r̂x, r̂y, r̂z)

]
|φλ=n〉 =

[
T̂⊥, r̂n−l−1Pl

h(r̂x, r̂y, r̂z)
]
|φλ=n〉

+

[
p̂2

r
2m

, r̂n−l−1Pl
h(r̂x, r̂y, r̂z)

]
|φλ=n〉

=
h̄2l(l + 1)

2mr̂2 r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉+

Pl
h(r̂x, r̂y, r̂z)

r̂l

[
p̂2

r
2m

, r̂n−1
]
|φλ=n〉 (63)

=

[
h̄2{l(l + 1)− (n− 2)(n− 1)}

2mr̂2 +
h̄2

mr̂

(
1

na0
− 1

r̂

)
(n− 1)

]
r̂n−l−1Pl

h(r̂x, r̂y, r̂z)|φλ=n〉.

Note that it is at this point where we require λ = n. If this was not the case, the
term proportional to h̄2/(mr̂a0) = e2/r̂ in the last equality would have a coefficient of
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(n − 1)/λ instead of 1− 1/n. We only obtain an eigenstate if the coefficient is exactly
1− 1/n. Combining all of these results then gives

T̂r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉 =

[
h̄2{l(l + 1)− n(n− 1)}

2mr̂2 +
e2

r̂
+ E(n)

]
× r̂n−l−1Pl

h(r̂x, r̂y, r̂z)|φλ=n〉. (64)

Introducing this result into Equation (59) finally shows that

Ĥ(1)|ψnl〉 = E(n)|ψnl〉, (65)

which is the eigenvalue-eigenvector relation we wanted to establish.
We have not yet considered the normalization of the wavefunction. To do this, we

must compute the norm

〈ψnl |ψnl〉 = 〈φλ=n|Pl
h(r̂x, r̂y, r̂z)r̂n−l−1B̂r(n− 2) · · · B̂r(l) (66)

× B̂†
r (l) · · · B̂†

r (n− 2)r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉.

We replace B̂r(l)B̂†
r (l) = Ĥ(1)− T̂⊥ − E(l + 1) + h̄2(l + 1)(l + 2)/(2mr̂2) in the center

and then commute the terms through. Using the results we have derived in computing
the eigenfunction above, a careful calculation shows that this result is equal to the factor
[E(n)− E(l + 1)] multiplied by the expression in Equation (66) with the middle two factors
B̂r(l)B̂†

r (l) removed. Continuing in this fashion, we find that

〈ψnl |ψnl〉 =
n−1

∏
j=l+1

[E(n)− E(j)]〈φλ=n|r̂2n−2l−2
[

Pl
h(r̂x, r̂y, r̂z)

]2
|φλ=n〉. (67)

We assume that the initial state r̂n−1|φλ=n〉 is normalized and we choose the harmonic
polynomials to be normalized when integrated over the angular variables only. In other
words, we choose the harmonic polynomials, which can be multiplied by an overall
constant, in such a fashion that

〈φλ=n|r̂2n−2l−2
[

Pl
h(r̂x, r̂y, r̂z)

]2
|φλ=n〉 = 1. (68)

Since Pl
h(r̂x, r̂y, r̂z)/r̂l is a linear combination of the conventional spherical harmonics,

the above relation simply says the angular part of the wavefunction is normalized (given
that the radial part was already normalized). This is because it can be converted into an
integration over the angular parts of the squared wavefunction (a discussion for how to do
this in general is given in the work on the spherical translation operator [22]). Or one can
directly evaluate the matrix element, and scale the harmonic polynomial to force it to be
equal to 1. Then, we find that the normalized eigenstates are

|ψnl〉norm =
(
√

2a0)
n−l−1

en−l−1

√
∏n−1

j=l+1

(
1
j2 −

1
n2

) B̂†
r (l) · · · B̂†

r (n− 2)r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉, (69)

with the normalization factor for the auxiliary Hamiltonian ground state satisfying

〈r̂x=0, r̂y=0, r̂z=0|φλ=n〉 =
(

2
na0

)n+ 1
2 1√

(2n)!
. (70)

The last result requires calculus to compute, and is the standard normalization condi-
tion. Note that the e appearing in the denominator of Equation (69) is the electric charge of
the proton.
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This derivation has produced all of the bound states of Hydrogen labeled by the
principle quantum number n and the total angular momentum l. However, because we
are working with harmonic polynomials, we are not generically in an eigenstate of the
z-component of angular momentum. We have the restriction that 0 ≤ l < n, which implies
that there is a degeneracy across l and we have determined the well-known bound-state
energy E(n) = −e2/(2n2a0). All of this is as expected, but it used no angular momentum
and no calculus (except for the final normalization step)!

3. The Wavefunction in Coordinate Space

Now, we focus on determining the coordinate representation for the unnormalized
wavefunction given by the overlap

ψnl(rx, ry, rz) = 〈rx, ry, rz|ψnl〉. (71)

This wavefunction can also be found algebraically, employing no calculus, as we
show next.

To begin, we first determine 〈rx, ry, rz|ψnn−1〉, which satisfies

〈rx, ry, rz|ψnn−1〉 = 〈rx, ry, rz|Pn−1
h (r̂x, r̂y, r̂z)|φλ=n〉. (72)

We can immediately act the harmonic polynomial on the coordinate state to the left
to obtain

〈rx, ry, rz|ψnn−1〉 = Pn−1
h (rx, ry, rz)〈rx, ry, rz|φλ=n〉. (73)

Then, we use the techniques from Equations (15), (16) and the Appendix A to find the
result generalizing Equation (14) as follows:

〈rx, ry, rz|ψnn−1〉 = Pn−1
h (rx, ry, rz)e

− r
na0 〈rx=0, ry=0, rz=0|φλ=n〉, (74)

where 〈rx=0, ry=0, rz=0|φλ=n〉 is the normalization constant in Equation (70). This requires
calculus to determine it in the usual fashion. Note that this result might not be in a form
that is easily recognized, since we do not have a conventional spherical harmonic factor.
Rest assured, this result is the same as the conventional result, with a radial wavefunction
behaving like rl near the origin. We simply rewrite it as

〈~r|ψnn−1〉norm =

(
2

na0

)n+ 1
2 1√

(2n)!
rn−1e−

r
na0

Pn−1
h (rx, ry, rz)

rn−1 , (75)

where the last term is a properly normalized linear combination of the conventional spheri-
cal harmonics Ylm(θ, φ); that normalization is with respect to the angular coordinates.

For the general wavefunction |ψnl〉, we must work with the B̂r(λ) operators. The
general wavefunction satisfies

〈~r|ψnl〉 = 〈~r|B̂†
r (l) · · · B̂†

r (n− 2)r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉. (76)

The first step is to note that we can move the “spherical harmonic” factor Pl
h(r̂x, r̂y, r̂z)/r̂l

all the way to the left and have it act on the position eigenstate because that term commutes
with all B̂†

r operators. Doing so gives

〈~r|ψnl〉 =
Pl

h(rx, ry, rz)

rl 〈~r|B̂†
r (l) · · · B̂†

r (n− 2)r̂n−1|φλ=n〉, (77)



Atoms 2022, 10, 14 16 of 38

and we focus all of our efforts on evaluating the remaining matrix element. Note that evalu-
ating a generic term, such as B̂†

r (λ)r̂µ|φn〉 can always be carried out by using Equation (33)
and the relation

B̂†
r (λ)r̂

µ|φλ=n〉 =
[

B̂†
r (λ), r̂µ

]
|φn〉+ r̂µ B̂†

r (λ)|φn〉

=
ih̄√
2m

[
−µr̂µ−1 +

r̂µ

na0
− r̂µ−1 +

r̂µ

(λ + 1)a0
− (λ + 1)r̂µ−1

]
|φλ=n〉. (78)

So, each time a B̂†
r operator acts on a power of r̂ multiplied by an auxiliary Hamiltonian

ground state, it produces a number times the same power plus another number times the
power minus one. Hence, the remaining matrix element in Equation (77) is a polynomial in
r of degree n− 1 (that has a lowest power of n− l − 1) and is multiplied by the auxiliary
Hamiltonian ground-state wavefunction (exponential function) in Equation (75).

We call this (unnormalized) radial wavefunction Rnl(r), which satisfies

Rnl(r) = (−i)n−l−1〈~r|B̂†
r (l) · · · B̂†

r (n− 2)r̂n−1|φλ=n〉. (79)

The factor (i)n−l−1 is just a phase factor, which is introduced so that this function
agrees with the conventional definition of the radial wavefunction. We can immediately
compute the first few of these functions. Namely, we find that the first function in each
series satisfies

Rnn−1 =

(
2

na0

)n+ 1
2 1√

(2n)!
rn−1e−

r
na0 , (80)

the second satisfies

Rnn−2(r) =
(

2
na0

)n+ 1
2 1√

(2n)!
h̄(2n− 1)√

2m

[
1

(n− 1)(na0)
rn−1 − rn−2

]
e−

r
na0 (81)

and the third

Rnn−3(r) =
(

2
na0

)n+ 1
2 1√

(2n)!
h̄2(2n− 1)

2m
(82)

×
[

(2n− 2)
(n− 1)(n− 2)(na0)2 rn−1 − (2n− 2)(2n− 3)

(n− 1)(n− 2)(na0)
rn−2 + (2n− 3)rn−3

]
e−

r
na0 .

The strategy we employ to determine the polynomial in the general case is to employ
Rodrigues formulas, but here expressed in an operator language in terms of the radial
momentum operator, instead of derivatives. The proof of this result requires a proof by
induction. It is key to note that the identity that is derived is not a pure operator identity.
It only holds for the string of operators acting on the specific energy eigenstate. This
will become clear as we work it out. The wavefunction can also be found by explicitly
computing the polynomials that are created from the string of B̂†

r operators. This calculation
was completed elsewhere [22].

To start, we need to be sure we have the proper Rodrigues formula for the Laguerre
polynomials. We define the order k polynomial via

Lα
k (x) =

k

∑
j=0

(−1)j

j!

(
k + α
k− j

)
xj, (83)

where k is a non-negative integer. This is the modern convention for the Laguerre poly-
nomials (and used by many texts, such as the one by Powell and Crasemann [26]); it is
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different from the one used by Schiff [29], which is the more common notation employed
in quantum mechanics textbooks. The Rodrigues formula is

Lα
k (x) =

x−α

k!
ex dk

dxk

(
xk+αe−x

)
. (84)

One can directly check that these two definitions are exactly the same.
Before we can begin with our derivation, we need to evaluate some operator identities.

We start from the Hadamard lemma

eÂ B̂e−Â = B̂ + [Â, B̂] +
1
2
[Â, [Â, B̂]] + · · · (85)

where the summation includes a sequence of multiple nested commutators, with the n-fold
nested commutator weighted by 1

n! . Then, one immediately finds that

ear̂ p̂re−ar̂ = p̂r + ih̄a (86)

and
r̂b p̂r r̂−b = eb ln r̂ p̂re−b ln r̂ = p̂r + ih̄

b
r̂

. (87)

The second identity can also be derived from [r̂b, p̂r] = ih̄br̂b−1, by multiplying from
the right by r̂−b.

Now, we are ready to work out the base case for the proof by induction. We need to
convert

B̂†
r (n− 2)r̂n−1|φλ=n〉 =

1√
2m

[
p̂r +

ih̄
(n− 1)a0

− ih̄(n− 1)
r̂

]
r̂n−1|φλ=n〉 (88)

into a Rodrigues formula for an operator acting on |φn〉. Using the two operator identities
above, we can rewrite this as

B̂†
r (n− 2)r̂n−1|φλ=n〉 =

1√
2m

r̂−(n−1)e
r̂

(n−1)a0 p̂re
− r̂

(n−1)a0 r̂2(n−1)|φλ=n〉. (89)

The power of r̂ on the right-hand side, just before the state is 2(n − 1). We next
“multiply by one” in two places and then recognize and evaluate a Hadamard lemma:

B̂†
r (n− 2)r̂n−1|φλ=n〉 =

1√
2m

r̂−(n−1) e
r̂

na0 e−
r̂

na0︸ ︷︷ ︸
=1

e
r̂

(n−1)a0 p̂re−
r̂

(n−1)a0 e
r̂

na0 e−
r̂

na0︸ ︷︷ ︸
=1

r̂2(n−1)|φλ=n〉

=
1√
2m

r̂−(n−1)e
r̂

na0 e−
r̂

a0
( 1

n−
1

n−1 ) p̂re
r̂

a0
( 1

n−
1

n−1 )︸ ︷︷ ︸
Hadamard lemma

e−
r̂

na0 r̂2(n−1)|φλ=n〉 (90)

=
1√
2m

r̂−(n−1)e
r̂

na0 p̂re−
r̂

na0 r̂2(n−1)|φn〉+
1√
2m

ih̄
n(n− 1)a0

r̂n−1|φλ=n〉.

We construct another Hadamard lemma with powers of r̂:

B̂†
r (n− 2)|φλ=n〉 =

1√
2m

r̂−(n−2)e
r̂

na0
1
r̂

p̂r r̂︸︷︷︸
Hadamard

e−
r̂

na0 r̂2n−3|φλ=n〉

+
1√
2m

ih̄
n(n− 1)a0

r̂n−1|φλ=n〉

=
1√
2m

r̂−(n−2)e
r̂

na0 p̂re−
r̂

na0 r̂2n−3|φλ=n〉 (91)

+
1√
2m

1
2(n− 1)

(
2ih̄
na0
− 2ih̄(n− 1)

r̂

)
r̂n−1|φλ=n〉.
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Next, using Equation (33), we replace ih̄
(

1
na0
− n

r̂

)
acting on r̂n−1|φλ=n〉 by p̂r acting

on the same state. Hence, we have

B̂†
r (n− 2)|φλ=n〉 =

1√
2m

r̂−(n−2)e
r̂

na0 p̂re−
r̂

na0 r̂2n−3|φλ=n〉

+
1√
2m

1
2(n− 1)

(
p̂r +

ih̄
na0
− ih̄(n− 2)

r̂

)
r̂n−1|φλ=n〉 (92)

=

(
1 +

1
2(n− 1)

)
1√
2m

r̂−(n−2)e
r̂

na0 p̂re−
r̂

na0 r̂2n−3|φλ=n〉

after we use the Hadamard identities again on the second term. Note how we must use
properties of the state to complete this derivation. This is why it is not a pure operator
identity, but instead is an identity that requires the chain of operators to act on the state, in
order for it to hold.

So, we have shown that

B̂†
r (n− 2)r̂n−1|φλ=n〉 =

2n− 1
2n− 2

1√
2m

r̂−(n−2)e
r̂

na0 p̂re−
r̂

na0 r̂2n−3|φλ=n〉. (93)

This is our base case for the proof by induction. Determining the general case requires
working out some additional examples to determine the general pattern for how this works.
We find the induction hypothesis is

B̂†
r (l)B̂†

r (l + 1) · · · B̂r(n− 3)B̂†
r (n− 2)r̂n−1|φλ=n〉

=
(2n− 1)! l!

2n−l−1(n + l)! (n− 1)!
1√

(2m)n−l−1
r̂−le

r̂
na0 ( p̂r)

n−l−1e−
r̂

na0 r̂n+l−1|φλ=n〉. (94)

In order to make the equations a bit less cumbersome, we define

c(l) =
(2n− 1)! l!

2n−l−1(n + l)! (n− 1)!
1√

(2m)n−l−1
. (95)

Having established the base case already for angular momentum equal to n− 2, we
assume it holds for all angular momenta down to l and use this information to prove the
result for angular momentum l − 1. So, our starting point is

B̂†
r (l − 1)B̂†

r (l) · · · B̂†
r (n− 2)r̂n−1|φλ=n〉

=
1√
2m

(
p̂r +

ih̄
la0
− ih̄l

r̂

)
c(l)r̂−le

r̂
na0 ( p̂r)

n−l−1e−
r̂

na0 r̂n+l−1|φλ=n〉 (96)

=
c(l)√

2m

(
r̂−le

r̂
la0 p̂re−

r̂
la0 r̂l

)
r̂−le

r̂
na0 ( p̂r)

n−l−1e−
r̂

na0 r̂n+l−1|φλ=n〉.

The r̂l term cancels with the r̂−l term in between the radial momentum operators. We
combine the two exponential operators and move the single radial momentum operator
through the exponential term to join with the remaining radial momentum operator. This
is done using our multiply-by-one and Hadamard lemma identities yielding

B̂†
r (l − 1)B̂†

r (l) · · · B̂†
r (n− 2)r̂n−1|φλ=n〉

=
c(l)√

2m
r̂−le

r̂
na0 ( p̂r)

n−le−
r̂

na0 r̂n+l−1|φλ=n〉 (97)

+
c(l)√

2m
r̂−le

r̂
na0 ( p̂r)

n−l−1e−
r̂

na0 r̂n+l−1 ih̄
a0

n− l
nl
|φλ=n〉.
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Next, we take one factor of r̂ from the right, and commute it through the radial
momentum terms in the first term on the right-hand side. This gives

B̂†
r (l − 1)B̂†

r (l) · · · B̂†
r (n− 2)r̂n−1|φλ=n〉

=
c(l)√

2m
r̂−l+1e

r̂
na0 ( p̂r)

n−le−
r̂

na0 r̂n+l−2|φλ=n〉

+
c(l)√

2m
r̂−le

r̂
na0 ( p̂r)

n−l−1e−
r̂

na0 r̂n+l−1
(

ih̄
a0

n− l
nl
− (n− l)

ih̄
r̂

)
|φλ=n〉. (98)

=
c(l)√

2m
r̂−l+1e

r̂
na0 ( p̂r)

n−le−
r̂

na0 r̂n+l−2|φλ=n〉

+
n− l

2l
c(l)√

2m
r̂−le

r̂
na0 ( p̂r)

n−l−1e−
r̂

na0 r̂n+l−1
(

p̂r +
ih̄

na0
− (2l − 1)

ih̄
r̂

)
|φλ=n〉,

where the last line arises by factoring out n−l
2l and replacing

(
ih̄

na0
− ih̄

r̂

)
|φλ=n〉 = p̂r|φλ=n〉

in the last term. Next, we move the factor in the parenthesis through the exponential and
power factors using the Hadamard lemma. The radial momentum term can then join the
other radial momentum terms. This gives

B̂†
r (l − 1)B̂†

r (l) · · · B̂†
r (n− 2)r̂n−1|φλ=n〉

=
c(l)√

2m
r̂−l+1e

r̂
na0 ( p̂r)

n−le−
r̂

na0 r̂n+l−2|φλ=n〉

+
n− l

2l
c(l)√

2m
r̂−le

r̂
na0 ( p̂r)

n−le−
r̂

na0 r̂n+l−1|φλ=n〉 (99)

+
n− l

2l
c(l)√

2m
r̂−le

r̂
na0 ( p̂r)

n−l−1
(

ih̄
n− l

r̂

)
e−

r̂
na0 r̂n+l−1|φλ=n〉.

The final step is to take one factor of r̂ from the right and commute it through the radial
momentum terms in the middle term on the right-hand side. The commutator cancels the
third term, and the second term becomes identical to the first, except for the constant factor
in front. Adding those two terms gives us the final result

B̂†
r (l − 1)B̂†

r (l) · · · B̂†
r (n− 2)r̂n−1|φλ=n〉

=
c(l)√

2m
n + l

2l
r̂−l+1e

r̂
na0 ( p̂r)

n−le−
r̂

na0 r̂n+l−2|φλ=n〉. (100)

The coefficient in front is c(l − 1) because c(l − 1) = c(l)√
2m

n+l
2l . This completes the

proof. Hence, Equation (94) holds.
We still need to show that this formula is the Rodrigues formula for the Laguerre poly-

nomial. Key to this derivation is constructing a state |ψn〉 from |φλ=n〉 that is annihilated

by p̂r. Using Equation (33), we see that |ψn〉 = e
r̂

na0 1
r̂ |φλ=n〉 because

p̂r|ψn〉 = p̂re
r̂

na0
1
r̂
|φλ=n〉

=

[
p̂r, e

r̂
na0

1
r̂

]
|φλ=n〉+ e

r̂
na0

1
r̂

p̂r|φλ=n〉 (101)

= e
r̂

na0
1
r̂

− ih̄
na0

+
ih̄
r̂︸ ︷︷ ︸

commutator

+
ih̄

na0
− ih̄

r̂︸ ︷︷ ︸
state

|φλ=n〉 = 0.
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We use a multiply by one to introduce this state (via |φλ=n〉 = e−
r̂

na0 r̂|ψn〉), then the
powers of momentum operators can be replaced by nested commutators, because

p̂r f (r̂)|ψn〉 = [ p̂r, f (r̂)]|ψn〉, (102)

since p̂r|ψn〉 = 0. This allows us to reduce the operator Rodrigues formula in Equation (94)
to a series of nested commutators via

B̂†
r (l) · · · B̂†

r (n− 2)r̂n−1|φλ=n〉

= c(l)r̂−le
r̂

na0 ( p̂r)
n−l−1e−

2r̂
na0 r̂n+l |ψn〉 (103)

= c(l)r̂l+1e−
r̂

na0

(
r̂−(2l+1)e

2r̂
na0

[
p̂r,
[

p̂r

[
, · · · ,

[
p̂r, e−

2r̂
na0 r̂n+l

]
· · ·
]]]

n−l−1

)
|ψn〉.

Since the commutator of p̂r with f (r̂) acts like −ih̄ times a derivative with respect to
r̂ of f , this is nearly in the form of a Rodrigues formula. We only need to ensure that the
powers of r̂ are multiplied by the right constant to make them dimensionless and equal
to the argument of the Laguerre polynomial (which is determined by the argument of the
exponential function); we also need to ensure the derivative term is likewise dimensionless.
Hence, the operator form of the Rodrigues formula for the associated Laguerre polynomial
becomes(

ina0

2h̄

)n−l−1( 2r̂
na0

)−(2l+1)
e

2r̂
na0

[
p̂r,

[
p̂r

[
, · · · ,

[
p̂r, e−

2r̂
na0

(
2r̂

na0

)n+l
]
· · ·
]]]

n−l−1

= (n− l − 1)! L2l+1
n−l−1

(
2r̂

na0

)
. (104)

Defining

ρ̂ =
2r̂

na0
, (105)

our final operator-state identity is

B̂†
r (l) · · · B̂†

r (n− 2)r̂n−1|φλ=n〉

=
(2n− 1)! l! (n− l − 1)!
2n−l−1(n + l)! (n− 1)!

(
h̄

i
√

2m

)n−l−1(na0

2

)l
L2l+1

n−l−1(ρ̂)ρ̂
l |φλ=n〉. (106)

To finish the calculation of the wavefunction in real space, we multiply the operator
expression from the right by the position-space bra 〈rx, ry, rz|, which allows us to replace
ρ̂→ 2r

na0
= ρ. The remaining bra-ket 〈rx=0, ry=0, rz=0|φλ=n〉 is computed in Equation (70).

We compute the overall normalization by employing the results from Equation (69). After
some significant algebra, we find that the normalized radial wavefunction satisfies

Rnl(ρ) =

√(
2

na0

)3 (n− l − 1)!
2n(n + l)!

ρl L2l+1
n−l−1(ρ)e

− 1
2 ρ, (107)

which is the standard result for Hydrogen.

4. The Wavefunction in Momentum Space

Unfortunately, the derivation of the wavefunction in momentum space is even more
complicated. This is because neither the coordinate eigenfunctions, nor the momentum
eigenfunctions are eigenstates of the radial momentum operator. Indeed, even though
this operator is manifestly Hermitian (or perhaps more correct technically, symmetric),
it is not self adjoint [30]. Hence, it has no eigenfunctions that we can employ to expand
the momentum wavefunctions with respect to. Nevertheless, one can still determine the
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momentum wavefunctions in a straightforward fashion, employing only algebraic methods
(we do require some identities of binomial coefficients, which we could only derive using
calculus, as we illustrate below). The approach we develop is the most direct way to obtain
the momentum wavefunctions and does not require any complex Fourier transformations.

Unfortunately, these technical issues require that the journey to compute the momen-
tum wavefunctions is a long one. The momentum wavefunction for the general case is
given by the following normalized form:

ψnl(px, py, pz) =
(
√

2a0)
n−l−1

en−l−1

√
∏n−1

j=l+1

(
1
j2 −

1
n2

)
× 〈px, py, pz|B̂†

r (l) · · · B̂†
r (n− 2)r̂n−l−1Pl

h(r̂x, r̂y, r̂z)|φλ=n〉. (108)

Because neither the momentum eigenstate nor the auxiliary Hamiltonian ground state
are eigenstates of the radial coordinate or the radial momentum, we cannot immediately
evaluate the matrix element that defines the momentum wavefunction. Instead, our
strategy is to first determine how one evaluates the expectation value of a power of the
radial coordinate (we will actually find it simpler to find the matrix element of a reverse
Bessel polynomial of the radial coordinate, as we develop below). Then, we show how one
removes the harmonic polynomial from the matrix element. Finally, we put both together
to evaluate the expectation value of the full operator. Each step is rather long and technical.

Our first step is to try to evaluate the matrix element of powers of r̂ between the
momentum eigenstate and the auxiliary Hamiltonian ground state, which we define to be

µm(~p, λ=n) = 〈px, py, pz|r̂m|φλ=n〉. (109)

Since we cannot evaluate the r̂ operator on the momentum eigenstate or the auxiliary
Hamiltonian ground state, we rewrite the r̂ term as ∑α r̂2

α/r̂, and then, we can use the fact
that each of the Cartesian annihilation operators with λ=n annihilate the |φλ=n〉 state to
find that

µm(~p, λ=n) = 〈px, py, pz|r̂m−1 ∑
α

r̂α
r̂α

r̂
|φλ=n〉

= ∑
α

na0

ih̄
〈px, py, pz|r̂m−1r̂α p̂α|φλ=n〉

= ∑
α

na0

ih̄
〈px, py, pz| p̂α r̂m−1r̂α|φλ=n〉+ ∑

α

na0

ih̄
〈px, py, pz|[r̂m−1r̂α, p̂α]|φλ=n〉

= ∑
α

na0

ih̄
pα〈px, py, pz|r̂m−1r̂α|φλ=n〉 (110)

+ ∑
α

na0(m− 1)〈px, py, pz|r̂m−3r̂2
α|φλ=n〉+ 3na0〈px, py, pz|r̂m−1|φλ=n〉

= na0(m + 2)µm−1(~p, λ=n) + ∑
α

(na0

ih̄

)2
pα〈px, py, pz|r̂m p̂α|φλ=n〉

=
(na0 p

ih̄

)2
µm(~p, λ=n) + na0(m + 2)µm−1(~p, λ=n)

+
(na0)

2

ih̄ ∑
α

mpα〈px, py, pz|r̂m−2r̂α|φλ=n〉.

In this derivation, we used the annihilation operator relation to create a momentum
operator on the right, commute it through to the left, where it can operate on the bra, collect
the commutator terms, and repeat with the remaining r̂α term; note that we also used the
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fact that p2 = p2
x + p2

y + p2
z . We combine the µm(~p, λ=n) terms on the left and then repeat

the procedure to remove additional powers of r̂ as follows:[
1 +

(na0 p
h̄

)2
]

µm(~p, λ=n)

= na0(m + 2)µm−1(~p, λ=n) +
(na0)

3

(ih̄)2 ∑
α

mpα〈px, py, pz|r̂m−1 p̂α|φλ=n〉

= na0(m + 2)µm−1(~p, λ=n) +
(na0 p

ih̄

)2
na0mµm−1(~p, λ=n) (111)

+
na0

ih̄
(na0)

2m(m− 1)∑
α

pα〈px, py, pz|r̂m−3r̂α|φλ=n〉

= na0(m + 2)µm−1(~p, λ=n)−
(na0 p

h̄

)2 m

∑
k=1

m!
(m− k)!

(na0)
kµm−k(~p, λ=n).

The last line results by repeating the above procedure m − 1 more times. This is
an m-term recurrence relation, which is not simple to work with. We can reduce it to a
two-term recurrence relation by taking the recurrence relation for m− 1 and multiplying it
by mna0. This yields

mna0

[
1 +

(na0 p
h̄

)2
]

µm−1(~p, λ=n) = (na0)
2m(m + 1)µm−2(~p, λ=n)

−
(na0 p

h̄

)2 m

∑
k=2

m!
(m− k)!

(na0)
kµm−k(~p, λ=n). (112)

We use this result to replace the m− 1 terms in the summation in Equation (112) with
2 ≤ k ≤ m, to find that[

1 +
(na0 p

h̄

)2
]

µm(~p, λ=n) = 2na0(m + 1)µm−1(~p, λ=n)− (na0)
2m(m + 1)µm−2(~p, λ=n) (113)

or

µm(~p, λ=n) =
2na0(m + 1)

1 +
( na0 p

h̄
)2 µm−1(~p, λ=n)− (na0)

2m(m + 1)

1 +
( na0 p

h̄
)2 µm−2(~p, λ=n). (114)

Our next step is to solve the recurrence relation. We define the mth moment matrix
element via

µm(~p, λ=n) =
Qm(ξ2

n)(na0)
m

[1 + ξ2
n]

m 〈px, py, pz|φλ=n〉 (115)

where Qm(ξ2
n) is a m-degree polynomial in ξ2

n = (na0 p/h̄)2. This recurrence relation then
becomes

Qm(ξ
2
n) = 2(m + 1)Qm−1(ξ

2
n)−m(m + 1)(1 + ξ2

n)Qm−2(ξ
2
n). (116)

This recurrence relation is solved by

Qm(ξ
2
n) =

(m + 2)!
2

bm+1
2 c

∑
j=0

(−1)j (m + 1)!
(m + 1− 2j)!(2j + 1)!

ξ
2j
n . (117)

To verify this, we must go through the inductive proof for even and odd m.
To start, we need to establish the base cases. The first one is for m = 0, which is trivial,

because Q0(ξ
2
n) = 1. The case with m = 1 requires some work. In particular, we have

〈px, py, pz|r̂|φλ=n〉 = ∑
α

〈px, py, pz|r̂α
r̂α

r̂
|φλ=n〉. (118)
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Using the fact that Âα(λ=n)|φλ=n〉 = 0, then yields

〈px, py, pz|r̂|φλ=n〉 =
na0

ih̄ ∑
α

〈px, py, pz|r̂α p̂α|φλ=n〉. (119)

We move the p̂α operator to the left. This gives

〈px, py, pz|r̂|φλ=n〉 =
na0

ih̄ ∑
α

pα〈px, py, pz|r̂α|φλ=n〉+ 3na0〈px, py, pz|φλ=n〉. (120)

We insert 1 = r̂/r̂ in the center of the first term on the right, and use the annihilation
operator relation again

〈px, py, pz|r̂|φλ=n〉 =
(na0

ih̄

)2
∑
α

pα〈px, py, pz|r̂ p̂α|φλ=n〉+ 3na0〈px, py, pz|φλ=n〉. (121)

Once more, we move the p̂α to the left.

〈px, py, pz|r̂|φλ=n〉 = −
(na0 p

h̄

)2
〈px, py, pz|r̂|φλ=n〉+

(na0)
2

ih̄ ∑
α

pα〈px, py, pz|
r̂α

r̂
|φλ=n〉

+ 3na0〈px, py, pz|φλ=n〉. (122)

The operator in the middle term on the right can be replaced by p̂α. Then, we collect
terms and solve the the first-order term. We end up with

〈px, py, pz|r̂|φλ=n〉 =
3−

( na0 p
h̄
)2

1 +
( na0 p

h̄
)2 (na0)〈px, py, pz|φλ=n〉, (123)

or Q1(ξ
2
n) = 3− ξ2

n.
Using the recurrence relation, then gives

Q2(ξ
2
n) = 6(3− ξ2

n)− 6(1− ξ2
n) = 12(1− ξ2

n), (124)

which is exactly what we get if we substitute m = 2 into Equation (117). Of course, this
is also what one would get if one derived the polynomial directly using the operator
techniques discussed above, but this approach becomes tedious for large m. Instead, we
now show the proof by induction that establishes these results for all m.

First, we work with even m = 2k, assuming the relation holds for all cases up to m− 1.
Then, we find that the recurrence relation becomes the following, after replacing Qm−1 and
Qm−2 by their summation forms,

Q2k(ξ
2
n) = 2(2k + 1)

(2k + 1)!
2

k

∑
j=0

(2k)!(−1)j

(2k− 2j)!(2j + 1)!
ξ

2j
n

− 2k(2k + 1)(1 + ξ2
n)

(2k)!
2

k−1

∑
j=0

(2k− 1)!(−1)j

(2k− 2j− 1)!(2j + 1)!
ξ

2j
n . (125)

We examine the coefficients of ξ
2j
n for 0 ≤ j ≤ k to determine the polynomial for

m = 2k. There are three different cases. For j = 0, we have

(2k + 1)!(2k + 1)!
(2k)!

− (2k)!(2k + 1)!
2(2k− 1)!

= (2k + 1)!(k + 1) =
(2k + 2)!

2
, (126)
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which is the j = 0 term in Equation (117). Next, we examine the case with 1 ≤ j < k:

(2k + 1)!(2k + 1)!(−1)j

(2k− 2j)!(2j + 1)!
− (2k)!(2k + 1)!(−1)j

2(2k− 2j− 1)!(2j + 1)!
+

(2k)!(2k + 1)!(−1)j

2(2k− 2j + 1)!(2j− 1)!

=
(2k)!(2k + 1)!(−1)j

2(2k− 2j + 1)!(2j + 1)!
[2(2k + 1)(2k− 2j + 1− (2k− 2j)(2k− 2j + 1) + 2j(2j + 1)]

=
(2k + 1)!(2k + 2)!(−1)j

2(2k + 1− 2j)!(2j + 1)!
, (127)

which also agrees with the coefficient of the jth term in the summation in Equation (117).
The last term we need to check is for j = k, which is

(2k + 1)!(−1)k + (2k + 1)!(−1)kk =
(2k + 2)!(−1)k

2
, (128)

which also agrees with the j = k term in Equation (117). This establishes the inductive
proof for the case of even m.

Next, we work out the case with odd m = 2k + 1. Once again, we start with the two-
term recurrence relation and replace the polynomials Q2k and Q2k−1 by their corresponding
power series expressions, which are assumed to be true. This yields

Q2k+1(ξ
2
n) = 2(2k + 2)

k

∑
j=0

(2k + 2)!(2k + 1)!(−1)j

2(2k + 1− 2j)!(2j + 1)!
ξ

2j
n

− (2k + 1)(2k + 2)(1 + ξ2
n)

k

∑
j=0

(2k + 1)!(2k)!(−1)j

2(2k− 2j)!(2j + 1)!
ξ

2j
n . (129)

We examine the coefficients of ξ
2j
n . There are three cases: (i) j = 0; (ii) 1 ≤ j ≤ k; and

(iii) j = k + 1. For the first case, we have

(2k + 2)!(2k + 2)!
(2k + 1)!

− (2k + 1)!(2k + 2)!
2(2k)!

= (2k + 2)!
[
(2k + 2)−

(
k +

1
2

)]
=

(2k + 3)!
2

, (130)

which is the j = 0 term in Equation (117) for m = 2k + 1. The general case, with 1 ≤ j ≤ k
has

(2k + 2)!(2k + 2)!(−1)j

(2k + 1− 2j)!(2j + 1)!
− (2k + 1)!(2k + 2)!(−1)j

2(2k− 2j)!(2j + 1)!
+

(2k + 1)!(2k + 2)!(−1)j

2(2k− 2j + 2)!(2j− 1)!

=
(2k + 1)!(2k + 2)!(−1)j

2(2k− 2j + 2)!(2j + 1)!
[2(2k + 2)(2k− 2j + 2)

− (2k− 2j + 1)(2k− 2j + 2) + 2j(2j + 1)] (131)

=
(2k + 3)!

2
(2k + 2)!(−1)j

(2k + 2− 2j)!(2j + 1)!
,

which agrees with the jth term ( 1 ≤ j ≤ k) in Equation (117) for m = 2k + 1.
The final case is j = k + 1, where we have

(−1)k+1 (2k + 1)!(2k + 2)!
2(2k + 1)!

=
(2k + 2)!

2
(−1)k+1, (132)

which also is the coefficient of the j = k + 1 term in Equation (117) for m = 2k + 1.
With the proof by induction complete, we have established Equation (115) with the

polynomials Qm(ξ2
n) determined by Equation (117). We are now ready to move on to

the second phase, which shows how to extract the harmonic polynomial from the matrix
element. This step is also technical and complex.
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We begin with the task of evaluating the following matrix element

〈px, py, pz|r̂m−l Pl
h(r̂x, r̂y, r̂z)|φλ=n〉. (133)

Similar to the previous calculations, we cannot evaluate any of these operators against
the momentum states, but we can exchange r̂α terms by na0r̂ p̂α/(ih̄) when it acts on the
state |φλ=n〉. Then, the pα term can be moved to the left, where it can operate on the
momentum eigenstate, which is an eigenvector for that operator. Because it does not
commute with the harmonic polynomial or the radial coordinate, we have to evaluate some
additional commutators. This is shown in the next equation

〈px, py, pz|r̂m−l Pl
h(r̂x, r̂y, r̂z)|φλ=n〉 = −

1
ih̄l
〈px, py, pz|r̂m−l ∑

α

[
p̂α, Pl

h(r̂x, r̂y, r̂z)
]
r̂α|φλ=n〉

= − na0

(ih̄)2l ∑
α

〈px, py, pz|r̂m−l
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]
r̂ p̂α|φλ=n〉

= − na0

(ih̄)2l ∑
α

pα〈px, py, pz|r̂m+1−l
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]
|φλ=n〉

− na0

(ih̄)2l ∑
α

〈px, py, pz|
[
r̂m+1−l , p̂α

][
p̂α, Pl

h(r̂x, r̂y, r̂z)
]
|φλ=n〉

+
na0

(ih̄)2l ∑
α

〈px, py, pz|r̂m+1−l
[

p̂α,
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]]
|φλ=n〉

= − na0

(ih̄)2l ∑
α

pα〈px, py, pz|r̂m+1−l
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]
|φλ=n〉 (134)

− na0(m + 1− l)
ih̄l ∑

α

〈px, py, pz|r̂m−l
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

] r̂α

r̂
|φλ=n〉

= − na0

(ih̄)2l ∑
α

pα〈px, py, pz|r̂m+1−l
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]
|φλ=n〉

− (na0)
2(m + 1− l)
(ih̄)2l ∑

α

〈px, py, pz|r̂m−l
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]
p̂α|φλ=n〉

= − na0

(ih̄)2l ∑
α

pα〈px, py, pz|r̂m−l [r̂ + na0(m− l + 1)]
[

p̂α, Pl
h(r̂x, r̂y, r̂z)

]
|φλ=n〉

+ (na0)
2(m− l + 1)(m− l)〈px, py, pz|r̂m−l−2Pl

h(r̂x, r̂y, r̂z)|φλ=n〉.

Let us take a moment to understand what this last equation has accomplished. The
first term has replaced one occurrence of r̂α in the harmonic polynomial by pα; the power
of the radial coordinate was multiplied by a monomial in r̂, while the remaining har-
monic polynomial of the position operators has had its order reduced by one. The second
term reduced the power of the radial coordinate operator by two, leaving the harmonic
polynomial unchanged.

This recursion is complex, so we first solve it for the simplest case where m = l = n− 1,
which corresponds to the ψnn−1(~p) set of wavefunctions, which have maximal angular
momentum for the given principal quantum number. In this case, after j iterations (j < n),
we have

ψnn−1(~p) = 〈px, py, pz|Pn−1
h (r̂x, r̂y, r̂z)|φλ=n〉 =

(na0)
2j(n− 1− j)!

h̄2j(n− 1)!
∑

α1···αj

pα1 · · · pαj

× 〈px, py, pz|θj

(
r̂

na0

)[
p̂αj , · · ·

[
p̂α1 , Pn−1

h (r̂x, r̂y, r̂z)
]
· · ·
]

j
|φλ=n〉, (135)

where θ0 = 1 and the j subscript on the commutators is to remind us that there are j
nested commutators. We remove another power of r̂α from the harmonic polynomial
to determine the recurrence relation of the polynomial θ. This uses similar steps as we
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employed above, and after bringing one power of p̂αj+1 all the way to the left and using the
fact that [ f (r̂), p̂α] = [ f (r̂), p̂r]r̂α/r̂, we obtain

〈px, py, pz|Pn−1
h (r̂x, r̂y, r̂z)|φλ=n〉

= − (na0)
2j(n− 2− j)!

ih̄2j+1(n− 1)!
∑

α1 ···αj+1

pα1 · · · pαj

× 〈px, py, pz|r̂θj

(
r̂

na0

)[
p̂αj+1 , · · ·

[
p̂α1 , Pn−1

h (r̂x, r̂y, r̂z)
]
· · ·
]

j+1

r̂αj+1

r̂
|φλ=n〉

=
(na0)

2j+2(n− 2− j)!
h̄2j+2(n− 1)!

{
∑

α1 ···αj+1

pα1 · · · pαj+1

× 〈px, py, pz|
r̂

na0
θj

(
r̂

na0

)[
p̂αj+1 , · · ·

[
p̂α1 , Pn−1

h (r̂x, r̂y, r̂z)
]
· · ·
]

j+1
|φλ=n〉

+ ∑
α1 ···αj+1

pα1 · · · pαj

× 〈px, py, pz|
[

r̂
na0

θj

(
r̂

na0

)
, p̂r

][
p̂αj+1 , · · ·

[
p̂α1 , Pn−1

h (r̂x, r̂y, r̂z)
]
· · ·
]

j+1

r̂αj+1

r̂
|φλ=n〉

}
. (136)

Since θj is an order j polynomial, we can continue the recursion above j more times, to
end with

θj+1

(
r̂

na0

)
=

r̂
na0

θj

(
r̂

na0

)
+

na0

ih̄

[
r̂

na0
θj

(
r̂

na0

)
, p̂r

]
+ · · ·

+
(na0

ih̄

)j+1
[
· · ·
[

r̂
na0

θ

(
r̂

na0

)
, p̂r

]
, · · · p̂r

]
j+1

(137)

=
j+1

∑
k=0

(na0

ih̄

)k
[
· · ·
[

r̂
na0

θj

(
r̂

na0

)
, p̂r

]
, · · · p̂r

]
k
,

where the subscript k means we have k iterated commutators with p̂r.
We repeat this procedure until we reach j = n− 1. Here, the n− 1 nested commutators

result in a number, because a power of r̂ is removed with each nesting. The wavefunction
then becomes

ψnn−1(~p) =
(na0)

2n−2

h̄2n−2(n− 1)!
∑

α1···αn−1

pα1 · · · pαn−1

× 〈px, py, pz|θn−1

(
r̂

na0

)[
p̂αn−1 , · · ·

[
p̂α1 , Pn−1

h (r̂x, r̂y, r̂z)
]
· · ·
]

n−1
|φλ=n〉 (138)

=
(na0)

2n−2

(ih̄)n−1 Pn−1
h (px, py, pz)〈px, py, pz|θn−1

(
r̂

na0

)
|φλ=n〉,

which requires determining the expectation value of the polynomial. Note that the emergence
of the harmonic polynomial as a function of the momenta is subtle. The multiple commutators
sequentially remove every factor of r̂α in each term of the polynomial leaving behind the
constant prefactor. This is then multiplied by the corresponding pα factors, which allow us to
reconstruct the harmonic polynomial as a function of momentum as follows:

Pn−1
h (px, py, pz) = ∑

α1···αn−1

pα1 · · · pαn−1

[ p̂αn−1 , [· · · , [ p̂1, Pn−1
h (r̂x, r̂y, r̂z)] · · · ]n−1

(−ih̄)n−1(n− 1)!
. (139)

So, we have only the matrix element left to evaluate. Since we have already found the
matrix elements for arbitrary powers of r̂, we can then determine this result once we have
an explicit formula for the θn−1 polynomial.
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The polynomial recurrence relation can be rewritten in terms of derivatives as follows:

θj

(
r

na0

)
=

j

∑
k=0

(na0)
k dk

drk

[
r

na0
θj−1

(
r

na0

)]
. (140)

This polynomial is a reverse Bessel polynomial [31], which satisfies

θj

(
r

na0

)
=

j

∑
k=0

(j + k)!
(j− k)!k!

1
2k

(
r

na0

)j−k
. (141)

The proof can be done with or without calculus—it is identical, because 1/(ih̄) times
the commutator of the radial momentum operator with a power of the radial coordinate
operator is the same as the derivative with respect to the radial coordinate operator. The
base case has θ0 = 1 and θ1 = r̂/na0 + 1 from Equation (135) with m = l = n− 1. We next
work with the derivative form and note that

(na0)
k dk

drk

[
r

na0
θj−1

(
r

na0

)]
=

j−k

∑
k′=0

(j− 1 + k′)!(j− k′)
(j− k′ − k)!k′!

1
2k′

(
r

na0

)j−k′−k
. (142)

Plugging this into the derivative relation in Equation (140) yields

θj

(
r

na0

)
=

j

∑
k=0

j−k

∑
k′=0

(j− 1 + k′)!(j− k′)
(j− k′ − k)!k′!

1
2k′

(
r

na0

)j−k′−k
. (143)

We now change the summation indices. We let m = k + k′ and m′ = k′. Then, we have

θj

(
r

na0

)
=

j

∑
m=0

m

∑
m′=0

(j− 1 + m′)!(j−m′)
(j−m)!m′!

1
2m′

(
r

na0

)j−m
. (144)

One can easily verify the sum over m′ by induction (for fixed j) to show that

m

∑
m′=0

(j− 1 + m′)!(j−m′)
m′!2m′ =

(j + m)!
m!2m . (145)

We easily see the base case m = 0 is satisfied since both sides are j!. Assume it holds up
to m, then after separating the sum for m′ up to m and adding in the term with m′ = m + 1,
we have

m+1

∑
m′=0

(j− 1 + m′)!(j−m′)
m′!2m′ =

(j + m)!
m!2m +

(j + m)!(j−m− 1)
(m + 1)!2m+1

=
(j + m)!

m!2m

(
1 +

j−m− 1
2m + 2

)
=

(j + m + 1)!
(m + 1)!2m+1 . (146)

So, the polynomial becomes

θj

(
r

na0

)
=

j

∑
m=0

(j + m)!
(j−m)!m!

1
2m

(
r

na0

)j−m
, (147)

which establishes that θj is the jth inverse Bessel polynomial. Note that the recurrence
relation with derivatives in Equation (140) appears to be a new relation for the reverse
Bessel polynomials (that is, it is not in [31]).

We now must return to the problem of determining the matrix element in Equation (133).
We have already found that the result for m = l = n− 1 can be expressed in terms of the
reverse Bessel polynomial θn−1. This result can be immediately generalized to m = l − 1,
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which can be expressed in terms of a reverse Bessel polynomial θl−1. To be more concrete,
consider the following:

〈px, py, pz|
1
r̂

Pl
h(r̂x, r̂y, r̂z)|φλ=n〉 =

i
h̄l ∑

α

〈px, py, pz|[ p̂α, Pl
h(r̂x, r̂y, r̂z)]

r̂α

r̂
|φλ=n〉

=
na0

h̄2l
∑
α

pα〈px, py, pz|[ p̂α, Pl
h(r̂x, ry, rz)]|φλ=n〉 (148)

=
(na0)

2l−1

(ih̄)l Pl
h(px, py, pz)〈px, py, pz|θl−1

(
r̂

na0

)
|φλ=n〉.

Unfortunately, this approach does not produce simple results for other powers. What
does produce simple results is matrix elements of reverse Bessel polynomials times har-
monic polynomials. We now describe why. As we already saw in Equation (136), if we have
an expectation value of a reverse Bessel polynomial in r̂/na0 times a harmonic polynomial,
then the recurrence relation continues to have a reverse Bessel polynomial times a harmonic
polynomial until the recursion ends because there are no more terms left in the harmonic
polynomial. Hence, instead of starting with a power times a harmonic polynomial, we can
easily compute the result if we start from a reverse Bessel polynomial times a harmonic
polynomial. This allows us to immediately write down the following identity, which is
illustrated graphically in Figure 3:

〈px, py, pz|θm−l

(
r̂

na0

)
Pl

h(r̂x, r̂y, r̂z)|φλ=n〉

=
(na0)

2l

(ih̄)l Pl
h(px, py, pz)〈px, py, pz|θm

(
r̂

na0

)
|φλ=n〉. (149)

repeat l times until the commutator
in the brackets becomes a number

Figure 3. Schematic for how to remove the harmonic polynomial from the operator matrix element
to determine the wavefunction in momentum space. Here, θ is a reverse Bessel polynomial and Pl

h is
a harmonic polynomial.

We already know how to complete the calculation of those expectation values. We
simply use the definition of the reverse Bessel polynomial in Equation (147) and the results
for the expectation value of powers of the radial coordinate in Equations (115) and (117) to
compute the final result. We find
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〈px, py, pz|θm

(
r̂

na0

)
|φλ=n〉 =

m

∑
j=0

(m + j)!
(m− j)!j!2j 〈px, py, pz|

(
r̂

na0

)m−j
|φλ=n〉

=
m

∑
j=0

(m + j)!
(m− j)!j!2j

Qm−j(ξ
2
n)[

1 +
( na0 p

h̄
)2
]m−j 〈px, py, pz|φλ=n〉

=
m

∑
j=0

(m + j)!
(m− j)!j!2j

∑

⌊
m−j+1

2

⌋
k=0 (−1)k (m−j+2)!(m−j+1)!

2(m−j+1−2k)!(2k+1)! ξ
2k
n[

1 +
( na0 p

h̄
)2
]m−j 〈px, py, pz|φλ=n〉. (150)

It turns out that these complicated summations can be simplified, but they require
some significant computation. Because we have not seen the details of this elsewhere, we
present them here for completeness.

The innermost summation can be schematically written as follows:

b n−1
2 c

∑
k=0

(−1)k
(

n
2k + 1

)
ξ2k

n , (151)

with n = m− j + 2 and suppressing constant factors with respect to the summand index
k. This summation can be easily done. Simply use the binomial theorem to re-express the
difference of two powers as follows:

1
2iξn

[(1 + iξn)
n − (1− iξn)

n] =
n

∑
k=0

(
n
k

)[
(iξn)k − (−iξn)k

2iξn

]

=
b n−1

2 c
∑
k=0

(
n

2k + 1

)
(−1)kξ2k

n , (152)

because only terms with odd exponents contribute to the sum on the right-hand side of the top
line (we changed k→ 2k + 1 in the second line). This completes the innermost summation.

The outermost sum becomes

m

∑
j=0

(m + j)!(m− j + 1)
j!2j

(1 + ξ2
n)

j−m

2ξn
Im[(1 + iξn)

m−j+2]

= Im

{
m!(1 + iξn)m+2

2ξn(1 + ξ2
n)

m

m

∑
j=0

(
m + j

j

)
(m− j + 1)

(
1− iξn

2

)j
}

. (153)

This remaining sum can be performed exactly. We go through the details next. We
start by investigating the summation

m

∑
j=0

(
m + j

j

)
zj. (154)

Since we can write the binomial expansion as

(1 + x)m+j =
m+j

∑
k=0

(
m + j

k

)
xk, (155)
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we see that the binomial coefficient in the summation in Equations (150) and (154) is the
coefficient of the xj term, so that

m

∑
j=0

(
m + j

j

)
zj =

1
2πi

∮ m

∑
j=0

(1 + x)m+j

xj zj dx
x

, (156)

where the contour for the integral encircles the origin and lies within a circle whose radius
is smaller than z/(1− z). Summing the series gives

m

∑
j=0

(
m + j

j

)
zj =

1
2πi

∮
(1 + x)m

1−
(
(1+x)z

x

)m+1

x(1− z)− z
dx. (157)

The only pole comes from x = 0 (which is an order m + 1 pole) and we find

m

∑
j=0

(
m + j

j

)
zj = − zm+1

m!
dm

dxm

(
(1 + x)2m+1

x(1− z)− z

)∣∣∣∣
x=0

. (158)

Some simple algebra with the operators zd/dz applied to the summation yields

m

∑
j=0

(
m + j

j

)
(m + 1− j)zj =

zm+2

m!
dm

dxm

(
(1 + x)2m+2

[(x(1− z)− z]2

)∣∣∣∣
x=0

. (159)

Using this result, we find Equation (153) becomes

〈px, py, pz|θm

(
r̂

na0

)
|φλ=n〉 = Im

{
(1 + ξ2

n)
2

2m+1ξn

dm

dxm

(
(1 + x)2m+2

[x(1 + iξn)− 1 + iξn]2

)∣∣∣∣
x=0

}
× 〈px, py, pz|φλ=n〉. (160)

Taking the imaginary part of the term in the curly brackets yields

〈px, py, pz|θm

(
r̂

na0

)
|φλ=n〉 =

1
2m

dm

dxm

 (1 + x)2m−1(1− x)[
1− 2xv

(1+x)2

]2


∣∣∣∣∣∣∣
x=0

〈px, py, pz|φλ=n〉, (161)

with v = 2/(1 + ξ2
n). Clearly, only the coefficient of the xm term in the parenthesis will

contribute. To isolate this term, we first note that for |2vx/(1 + x)2| < 1, which will hold
for all v as x → 0, we have

1[
1− 2vx

(1+x)2

]2 =
∞

∑
n=0

(n + 1)
(

2vx
(1 + x)2

)n
. (162)

Combining this with the binomial theorem, which says

(1 + x)2m−2n−1 =
2m−2n−1

∑
j=0

(
2m− 2n− 1

j

)
xj, (163)

for 2m− 2n− 1 ≥ 0, we find the following: (i) when n < m, the coefficient of xm is

(2v)n

2m (n + 1)
[(

2m− 2n− 1
m− n

)
−
(

2m− 2n− 1
m− n− 1

)]
= 0; (164)
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(ii) when n = m, the coefficient of xm is the coefficient of xm in

∞

∑
k=0

(−1)kxk(1− x)(m + 1)
(2vx)m

2m , (165)

which implies k = 0 with the coefficient being (m + 1)vm; and (iii) when n > m, there are
no terms proportional to xm since the minimal power of x that appears is xm+1. Hence,
we learn that Equation (161) is equal to (m + 1)!vm. This simplification then allows us to
conclude that

〈px, py, pz|θm

(
r̂

na0

)
|φλ=n〉 =

(m + 1)!2m

(1 + ξ2
n)

m 〈px, py, pz|φλ=n〉, (166)

(recall that v = 2/(1 + ξ2
n)). It is remarkable that one finds such a simple result for this

complex expression!
We are now ready to work on the general case. We begin with the definition of the

momentum-space wavefunction in Equation (108). The first step is to recognize that the
term Pl

h(r̂x, r̂y, r̂z)/r̂l can be moved to the left, because it commutes with r̂ and p̂r. Then,
the work in Sections 2 and 3 showed that

(−i)n−l−1B̂†
r (l) · · · B̂†

r (n− 2)r̂n−1|φλ=n〉 ∝

√
(n− l − 1)!√
n[(n + l)!]3

(
2

na0

)l
r̂l L2l+1

n−l−1

(
2r̂

na0

)
|φλ=n〉, (167)

where the left-hand side is not normalized, but the right-hand side is. We need to re-express
this polynomial in r̂ in terms of an expansion with respect to reverse Bessel polynomials.
Following [31], we can expand a polynomial of the form f (z) = ∑n

k=0 fkzk in terms of
reverse Bessel polynomials via

f (z) =
n

∑
k=0

ckθk(z), (168)

where ck satisfies

ck =
k

∑
j=0

(−1)j

2j
(k + j)!

j!(k− j)!

[
fk+j − (k + j + 1) fk+j+1

]
, (169)

with fk = 0 for k > n. We need to expand the polynomial f (r̂/na0) = L2l+1
n−l−1(2r̂/na0), so

that we have

fk = (−1)k (n + l)!
k!

(
n + l

2l + k + 1

)
2k, (170)

for k ≤ n− l − 1. We next compute

fk+j − (k + j + 1) fk+j+1 = (−1)k+j2k+j (n + l)!
(k + j)!

×
[(

n + l
2l + k + j + 1

)
+ 2
(

n + l
2l + k + j + 2

)]
(171)

= (−1)k+j2k+j (n + l)!
(k + j)!

(n + l)!(2n− k− j)
(2l + k + j + 2)!(n− l − k− j− 1)!

.

Using this result, we find that ck satisfies

ck = (−1)k2k[(n + l)!]2
min(k,n−l−k−1)

∑
j=0

(2n− k− j)
j!(k− j)!(2l + k + j + 2)!(n− l − k− j− 1)!

. (172)
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The sum can be performed by employing the well-known Van Der Monde convolution
of binomial coefficients,

n

∑
j=0

(
n
j

)(
m

k− j

)
=

(
n + m

k

)
; (173)

we break up the summation into two terms—one corresponding to 2n− k and the other to
−j. After summing the terms, we end up with

ck = (−1)k2k 2n(n + l)!(n + l + k)!
k!(n− l − k− 1)!(2l + 2k + 2)!

. (174)

Putting this all together, we have

(−i)n−l−1〈px, py, pz|B̂†
r (l) · · · B̂†

r (n− 2)r̂n−l−1Pl
h(r̂x, r̂y, r̂z)|φλ=n〉 =

√
(n− l − 1)!√
n[(n + l)!]3

(
2

na0

)l

× 〈px, py, pz|
n−l−1

∑
k=0

(−1)k2k 2n(n + l)!(n + l + k)!
k!(n− l − k− 1)!(2l + 2k + 2)!

θk

(
r̂

na0

)
Pl

h(r̂x, r̂y, r̂z)|φλ=n〉

=

√
(n− l − 1)!√
n[(n + l)!]3

(na0)
l Pl

h(px, py, pz)

(ih̄)l

n−l−1

∑
k=0

(−1)k2k+l (175)

× 2n(n + l)!(n + l + k)!
k!(n− l − k− 1)!(2l + 2k + 2)!

〈px, py, pz|θk+l

(
r̂

na0

)
|φλ=n〉

=

√
(n− l − 1)!n√

(n + l)!
(na0)

l Pl
h(px, py, pz)

(ih̄)l

n−l−1

∑
k=0

(−1)k22k+2l+1

× (n + l + k)!(k + l + 1)!
k!(n− l − k− 1)!(2l + 2k + 2)!

1
(1 + ξ2)k+l 〈px, py, pz|φλ=n〉.

It turns out that this involves the properly normalized Gegenbauer polynomial, but it
requires some additional work to show this.

The Gegenbauer polynomial satisfies

Cl+1
n−l−1

(
−1 + ξ2

n
1 + ξ2

n

)
=

(n + l)!
(2l + 1)!(n− l − 1)! 2F1

(
−n + l + 1, n + l + 1, l +

3
2

;
1

1 + ξ2
n

)
=

(n + l)!
(2l + 1)!(n− l − 1)!

n−l−1

∑
k=0

(−1)k (n− l − 1)!
k!(n− l − k− 1)!

(n + l + k)!
(n + l)!

(176)

× 1

∏k
j=1

(
l + 1

2 + j
) 1
(1 + ξ2)k

=
1
l!

n−l−1

∑
k=0

(−1)k 22k+1(n + l + k)!(k + l + 1)!
k!(n− l − k− 1)!(2l + 2k + 2)!

1
(1 + ξ2

n)
k ,

which follows from using its representation in terms of a hypergeometric function
2F1 and simplifying the expression to put it into a form similar to the one we have already
generated. This gives

ψnl(px, py, pz) =

√
(n− l − 1)!n√

(n + l)!
(na0)

l Pl
h(px, py, pz)

(ih̄)l Cl+1
n−l−1

(
−1 + ξ2

n
1 + ξ2

n

)
× 22l l!

(1 + ξ2
n)

l 〈px, py, pz|φλ=n〉. (177)
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The only remaining calculation is to find the normalized auxiliary Hamiltonian ground
state wavefunction in momentum space. To do this, we use a translation operator to
translate the momentum state at the origin to the state at (px, py, pz). Hence,

φλ=n(px, py, pz) = 〈px, py, pz|φλ=n〉 = 〈~0|e−
i
h̄ ∑α pα r̂α |φλ=n〉. (178)

Expanding in a power series, we have

φλ=n(px, py, pz) =
∞

∑
m=0

(−1)m

m!

(
i
h̄

)m
〈~0|
(

∑
α

pα r̂α

)m

|φλ=n〉. (179)

First, we show that the matrix element vanishes when m = 1. To see this, we use the
property that the auxiliary Hamiltonian ground state is annihilated by Âα(λ=n) for all α.
Then, we directly compute

∑
α

pα〈~0|r̂α|φλ=n〉 = ∑
α

pα
na0

ih̄
〈~0|r̂ p̂α|φλ=n〉 = ∑

α

pα
na0

ih̄
〈~0|[r̂, p̂α]|φλ=n〉

= ∑
α

na0 pα〈~0|
r̂α

r̂
|φλ=n〉 = ∑

α

(na0)
2

ih̄
pα〈~0| p̂α|φλ=n〉 = 0. (180)

In general, we will show that all odd powers vanish. To see the general result, we
consider the arbitrary case

∑
α1···αm

pα1 · · · pαm〈~0|r̂α1 · · · r̂αm |φλ=n〉 = ∑
α1···αm

pα1 · · · pαm

na0

ih̄
〈~0|r̂α1 · · · r̂αm−1 r̂ p̂αm |φλ=n〉

= ∑
α1···αm

pα1 · · · pαm

na0

ih̄
〈~0|[r̂α1 · · · r̂αm−1 r̂, p̂αm ]|φλ=n〉

= ∑
α1···αm−2

pα1 · · · pαm−2 p2na0(m− 1)〈~0|r̂α1 · · · r̂αm−2 r̂|φλ=n〉

+ ∑
α1···αm

pα1 · · · pαm na0〈~0|r̂α1 · · · r̂αm−1

r̂αm

r̂
|φλ=n〉

= ∑
α1···αm−1

pα1 · · · pαm−2

(na0 p)2(m− 1)
ih̄

〈~0|r̂α1 · · · r̂αm−1 p̂αm−1 |φλ=n〉 (181)

+ ∑
α1···αm

pα1 · · · pαm

(na0)
2

ih̄
〈~0|r̂α1 · · · r̂αm−1 p̂αm |φλ=n〉

= ∑
α1···αm−1

pα1 · · · pαm−2

(na0 p)2(m− 1)
ih̄

〈~0|[r̂α1 · · · r̂αm−1 , p̂αm−1 ]|φλ=n〉

+ ∑
α1···αm

pα1 · · · pαm

(na0)
2

ih̄
〈~0|[r̂α1 · · · r̂αm−1 , p̂αm ]|φλ=n〉

= (m− 1)(m + 2)(na0 p)2 ∑
α1···αm−2

pα1 · · · pαm−2〈~0|r̂α1 · · · r̂αm−2 |φλ=n〉.

The last line follows from the fact that all terms are proportional to (m− 1)(na0 p)2: we
get m− 2 terms when the p̂αm−1 operator commutes with the r̂αj terms with 1 ≤ j ≤ m− 2;
3 more terms when it commutes with the r̂αm−1 operator; and then 1 more term from the
last line. What this identity shows is that we can remove two operators at a time from the
product, generating (na0 p)2 multiplied by numbers. If m is odd, we end with the term that
has m = 1, which we already showed vanished. So, all odd powers give zero. If m is even,
and is given by m = 2m′, then we find that the matrix element becomes

〈~0|
(

∑
α

pα r̂α

)2m′

|φλ=n〉 = (2m′)!(m′ + 1)(na0 p)2m′〈~0|φλ=n〉. (182)
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Substituting into the summation in Equation (179) yields

φλ=n(px, py, pz) =
∞

∑
m′=0

(−1)m′(m′ + 1)
(na0 p

h̄

)2m′
〈~0|φλ=n〉. (183)

The sum is the derivative of the geometric series, so we finally obtain

φλ=n(px, py, pz) =
1

(1 + ξ2
n)

2 〈~0|φλ=n〉. (184)

Because the harmonic polynomial P̂l
h(px, py, pz)/pl is normalized when integrated

over the angular coordinates, we choose the normalization constant to satisfy

1 = |〈~0|φλ=n〉|2
∫ ∞

0
dpp2 1[

1 + (na0 p)2

h̄2

]4 , (185)

or

〈~0|φλ=n〉 =
4
√

2(na0)
3
2

√
πh̄

3
2

. (186)

The final momentum space wavefunction becomes

ψnl(px, py, pz) =

√
2(n− l − 1)!√

π(n + l)!
n2
(na0 p

h̄

)l Pl
h(px, py, pz)

(ip)l Cl+1
n−l−1

(
−1 + ξ2

n
1 + ξ2

n

)
× 22l+2l!

(1 + ξ2
n)

l+2

( a0

h̄

) 3
2 , (187)

which is the conventional result for the momentum-space wavefunction of Hydrogen.
We conclude this quite technical section with some thoughts. It is in many respects

quite amazing that one can derive the momentum wavefunction algebraically, when none of
the operators that appear in the operator expression of the wavefunction can be evaluated
in terms of eigenvalues when they operate on momentum eigenstates. Nevertheless, using
just the commutation relations and the fundamental properties of the auxiliary Hamiltonian
ground states, we can completely construct them. In many respects, the hardest part of the
challenge is rearranging the results to fit into the standard formulas for the polynomial
representations used in the standard treatment of these wavefunctions. Yes, the algebra
is lengthy, but we find it remarkable that all of this information is encoded within the
commutation relations themselves (and the existence of position and momentum-space
eigenfunctions at the origin).

5. The Conventional Confluent Hypergeometric Equation Approach

In this section, we relax the condition of not using calculus, and focus on how one can
derive the conventional differential equation that the wavefunctions satisfy. The approach
will also be based heavily on operator algebra, but it follows closely the differential equation
approach used to solve the Hydrogen atom in a Cartesian coordinate basis [7]. Because
of the additional complications one encounters in formulating a differential equation in
momentum space, we forgo examining that problem here.

The ansatz for deriving the differential equation is that the wavefunction can be
written in the following factorized form

|ψλl〉 = fλl(r̂)Pl
h(r̂x, r̂y, r̂z)|φλ〉, (188)

where |φλ〉 is the auxiliary Hamiltonian ground state, which satisfies Ĥ(λ)|φλ〉 = E(λ)|φλ〉.
At this stage, we do not yet require the parameter λ to be a positive integer. Our goal is
to find a differential equation for fλl . This turns out to be rather straightforward, given
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the operator identities we have already developed. However, before proceeding too far,
we need to discuss one technical detail. We assume that fλl(r̂) can be expressed as a
power-series expansion. In this case, it is straightforward to note that

[ fλl(r̂), p̂r] = ih̄
d fλl(r̂)

dr̂
, (189)

where the operator derivative notation above simply means that if fλl(r̂) = ∑∞
n=0 an r̂n, then

d fλl(r̂)/dr̂ = ∑∞
n=1 nan r̂n−1.

Now, we simply operate Ĥ(λ=1) onto |ψλl〉 and force the equation to satisfy an
eigenvalue/eigenvector relationship. Hence, writing the Hamiltonian in terms of the
kinetic and potential-energy pieces Ĥ(1) = T̂ + V̂, we find the potential term commutes
with the functions of coordinate operators and we obtain

Ĥ(1)|ψλl〉 = [T̂, fλl(r̂)]Pl
h(r̂x, r̂y, r̂z)|φλ〉+ fλl(r̂)[T̂, Pl

h(r̂x, r̂y, r̂z)]|φλ〉

+ fλl(r̂)Pl
h(r̂x, r̂y, r̂z)

{
Ĥ(λ) +

λ− 1
λ

V̂(r̂)
}
|φλl〉. (190)

We examine each term in turn. First, since T̂⊥ commutes with fλl(r̂), we have

[T̂, fλl(r̂)] =
1

2m
{ p̂r[ p̂r, fλl(r̂)] + [ p̂r, fλl(r̂)] p̂r}

= −i
h̄

2m

{
p̂r

d fλl(r̂)
dr̂

+
d fλl(r̂)

dr̂
p̂r

}
(191)

= − h̄2

2m
d2 fλl(r̂)

dr̂2 − i
h̄
m

d fλl(r̂)
dr̂

p̂r.

This operator acts on P̂l
h(r̂x, r̂y, r̂z)|φλ〉. Using the fact that [ p̂r, Pl

h(r̂x, r̂y, r̂z)] =

−ih̄lPl
h(r̂x, r̂y, r̂z)/r̂ and Equation (33) gives

[T̂, fλl(r̂)]Pl
h(r̂x, r̂y, r̂z)|φλ〉 = −

h̄2

2m
d2 fλl(r̂)

dr̂2 Pl
h(r̂x, r̂y, r̂z)|φλ〉

−
{

h̄2(l + 1)
mr̂

− h̄2

mλa0

}
d fλl(r̂)

dr̂
Pl

h(r̂x, r̂y, r̂z)|φλ〉. (192)

We use Equation (37) to evaluate the second term, which yields

fλl(r̂)[T̂, Pl
h(r̂x, r̂y, r̂z)]|φλ〉 =

e2l
λr̂

fλl(r̂)Pl
h(r̂x, r̂y, r̂z)|φλ〉. (193)

The third term becomes{
E(λ)− e2(λ− 1)

λr̂

}
fλl(r̂)Pl

h(r̂x, r̂y, r̂z)|φλ〉. (194)

Assembling these three terms gives

Ĥ(1)|ψλl〉 = E(λ)|ψλl〉+
{
− h̄2

2m
d2 fλl(r̂)

dr̂2 − h̄2(l + 1)
mr̂

d fλl(r̂)
dr̂

+
e2

λ

d fλl(r̂)
dr̂

− e2(λ− l − 1)
λr̂

fλl(r̂)
}

Pl
h(r̂x, r̂y, r̂z)|φλ〉. (195)

For the state |ψλl〉 to be an eigenvector, we need the object in the curly brackets to
vanish. It turns out this is the standard confluent hypergeometric equation for the Hydrogen
atom’s radial wavefunction, but to see this, we need to make the radial coordinate operator
dimensionless. As before, we define ρ̂ = 2r̂/(λa0). Then, one can immediately verify
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that the expression in the curly brackets becomes (after multiplying by ρ̂λ2a0/2e2 and
evaluating against a coordinate eigenstate |rx, ry, rz〉)

ρ
d2 fλl(ρ)

dρ2 + (2l + 2− ρ)
d fλl(ρ)

dρ
+ (λ− l − 1) fλl(ρ) = 0. (196)

This is the confluent hypergeometric equation for the Hydrogen atom. One can then
solve this using the Frobenius method and reproduce the wavefunction we worked out
using other techniques in Section 2.

6. Conclusions

In this work, we have presented the solution of the Hydrogen atom using a Cartesian
operator factorization approach. While the calculation is lengthy, it has a number of
interesting aspects to it. First, it shows how one can solve quantum mechanics problems
in terms of sums of noncommuting factorizations. Second, it illustrates how one can find
the wavefunctions in coordinate space and in momentum space employing the same
methodology (although the algebra for one is more complex). Third, it demonstrates that
one can solve these problems without spherical harmonics and purely algebraically. We
feel it is remarkable that one can achieve all of these goals for both the energy eigenvalues
and the wavefunctions.

This representation-independent formulation of operator mechanics can be applied
more widely than just for Hydrogen. We have already employed it for determining spheri-
cal harmonics [32], for the particle-in-a-box [33], and for the simple-harmonic oscillator [34];
it can also be applied to other problems that can be solved analytically. Furthermore, opera-
tor mechanics provides a framework where one separates the determination of the energy
eigenfunctions from the calculation of the wavefunctions in coordinate or momentum
space; this representation-independent approach places quantum mechanics in a more
elegant mathematical setting and completes the development initiated by Pauli, Dirac, and
Schrödinger at the dawn of quantum mechanics.
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Appendix A. Algebraic Derivation of the Ground-State Wavefunction in the
Coordinate Representation

In principle, we can go through a similar procedure as we did for deriving the mo-
mentum wavefunction that computes the coordinate wavefunction employing operators in
Cartesian space. However, the derivation becomes painful and torturous (and this paper
has already a lot of long algebra in it). If, on the other hand, we derive the formulas
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employing the radial momentum operator to translate the radial coordinate, the calculation
becomes much simpler. We provide a quick sketch of this approach here.

The one ansatz we make is that this ground-state wavefunction is a function of r only.
Then, a straightforward analysis with the radial momentum operator [22] shows that we
can write the radial coordinate eigenstate as

|r〉 = e−
ir
h̄ ( p̂r−i h̄

r̂ )|r=0〉. (A1)

Note that this is a highly nontrivial relation that could not be guessed. It follows from
systematically changing coordinates from a Cartesian system to a spherical system and
applying those coordinate changes to the conventional translation operator. Details are
provided elsewhere [22]. The apparent singularity as r → 0 is needed to cancel a similar
singularity that arises from the radial momentum operator.

Using this result, we have immediately that

ψ10(r) = 〈r|φλ=1〉 = 〈r=0|e
ir
h̄ ( p̂r+i h̄

r̂ )|φλ=1〉. (A2)

Now, we expand in a power series

ψ10(r) =
∞

∑
n=0

1
n!

(
ir
h̄

)n
〈r=0|

(
p̂r + i

h̄
r̂

)n
|φλ=1〉 (A3)

and note that (
p̂r + i

h̄
r̂

)
|φλ=1〉 = ih̄

(
1
a0
− 1

r̂
+

1
r̂

)
|φλ=1〉 =

ih̄
a0
|φλ=1〉. (A4)

This simple result allows us to compute all powers immediately. Next, we perform
the sum and immediately find that

ψ10(r) = e−
r

a0 〈r=0|φλ=1〉, (A5)

which produces the correct wavefunction up to the normalization constant, that we already
discussed in the main text.
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