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Abstract: This article presents the study of the stability of single-input and multiple-input systems
with point or distributed state delay and input delay and input saturation. By a linear transformation
applied to the initial system with delay, a system is obtained without delay, but which is equivalent
from the point of view of stability. Next, using sufficient conditions for the global asymptotic stability
of linear systems with bounded control, new sufficient conditions are obtained for global asymptotic
stability of the initial system with state delay and input delay and input saturation. In addition,
the article presents the results on the instability and estimation of the stability region of the delay
and input saturation system. The numerical simulations confirming the results obtained on stability
were performed in the MATLAB/Simulink environment. A method is also presented for solving a
transcendental matrix equation that results from the process of equating the stability of the systems
with and without delay, a method which is based on the computational intelligence, namely, the
Particle Swarm Optimization (PSO) method.

Keywords: input delay and state delay; distributed delay; stabilization; input saturation; Art-
stein transform

1. Introduction

The time-delay systems are challenging since they involve delay differential equations
that are infinite-dimensional functional differential equations, which are more difficult to
handle than finite-dimensional ordinary differential equations [1,2].

In any physical and engineering system, the time-delay system is inherent and is
frequently a source of instability. In addition, in the last decades, considerable attention has
been devoted to the problem of stability analysis and controller design for time-delay sys-
tems. In a general perspective of control, which is presented in [3], the time-delay systems
have a particular place. Some of the useful tools in the robust stability analysis for time-
delay systems are based on Lyapunov’s second method, the Lyapunov–Krasovskii theorem,
and the Lyapunov–Razumikhin theorem together with associated Ricatti equations [4–8].

An approach based on the concept of Lambert function is presented in [9]. The gen-
eral problems of stability for mono- or multiple-input time delay systems and simple or
distributed delays are presented in [10–16]. Similarly to delay-free systems, many identi-
fication algorithms were developed for continuous-time-delay systems under unknown
initial conditions and disturbances for a wide range of input signals [17,18].

The nonlinear systems with delay-bounded nonlinearity and the Lurie problem are
presented in [19,20]. A modern approach to the delay systems, such as predictive control
and stochastic control, are presented in [21,22].

A networked control system is a control system whose sensors, actuators, and con-
trollers are interconnected over a shared communication network and the influence of
delay on the stability is presented in [23–25]. A special class of delay systems is represented
by the neutral type, which includes delays both in its states and in the derivatives of its
states [26,27].
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The study of linear systems subject to input saturation has been attracting the attention
in view of the relevance of this issue from the practical viewpoint. Though frequently
ignored, a common nonlinearity is the phenomenon of amplitude saturation in actuators,
which is due to inherent physical limitations of devices, which cannot be avoided [28–31].

The saturation may lead to severe deterioration of closed-loop system performance,
even to instability. In [32,33], some methods are presented for the stabilization of saturating
controls and time-delay systems.

A special approach to delayed systems is the linear transformation proposed by
Artstein, Fiagbedzi, and Pearson [2,34–39]. This transformation is used to transform the
original problem into an equivalent one, which is easier to solve.

The results on the influence of saturation on the stability of systems without delay are
presented in [40–43]. The control-systems applications for some plants highlighting the
presence of saturation or delay are presented in [44–50].

Among the heterogeneous approaches regarding the stability of delayed systems, we
mention: Port–Hamiltonian delayed systems [51,52], a stochastic predictor for delay [53–56],
the Schrödinger equation with distributed delay [57], a neural network with delay [58–60],
fuzzy systems with delay [61,62], incorporating delay in an extended Kalman filter [63],
a distributed plant with delay [64,65], a rejection of delayed system disturbances [66–70],
delayed systems with Lipschitz nonlinearity [71,72], observers and estimators for de-
layed systems [73–75], stability conditions for mono- and multi-variable systems with
delays [76–93], stability of systems with propagation [94], and fractional systems with
delay [95].

Studies [96–107] present the stability and robustness of systems with delay, the stability
of neutral systems, H∞ control design for systems with delay, and the stability of nonlinear
and stochastic systems with delay. Basically, the homogeneous approach in obtaining
these results is based on the development of Lyapunov–Krasovskii-type functionals and
on Razumikin’s stability theorem in the case of delayed systems. By applying these
functionals, developed specifically for the types of systems mentioned above, stability
conditions are obtained in the form of matrix inequalities, which in the simplest form, are
[ PA0 + A0

T P + Q PA1; ∗ −Q ] < 0, where the notations are the usual ones, and for
the more complex forms, the inequality is completed with information about the structure
of the delayed system analyzed.

This article presents a general method for transformation of systems with point or
distributed input delay and state delay [34–39] and demonstrates how problems like
stabilization and controllability can be dealt with by addressing the reduced systems
without delay. The reduction provides, therefore, a strong tool for manipulating systems
with state delays and input delays. Starting from these, although in practice control bounds
and delays are usually ignored in the initial design, the aim of this study was to find under
what conditions the equilibrium of a system with state delay and input delay and input
saturation remains globally asymptotically stable. In this study, we considered systems
with point or distributed state delay and input delay and input saturation in single-input or
multiple-input cases. We give sufficient conditions for global asymptotic stability for single-
input and multiple-input systems. Next, using sufficient conditions for global asymptotic
stability of linear systems with bounded control in [40,41], we obtain sufficient conditions
for global asymptotic stability of the initial system with delay and input saturation.

While in the approaches where the stability of the delayed systems is based on fulfilling
a matrix inequality like the one presented above, in this article, by using an Arstein type
transformation (or generalized to systems with both state and input delay), the difficulty of
the numerical computation is reduced to solving a transcendental matrix equation such as
A = A0 + e−Ah A1. In this respect, the article presents methods based on the calculation
of their own values but also methods based on a computational-intelligence algorithm,
namely, the PSO.

The study focused on the stabilization and control of systems displaying delays (both
lumped and distributed) in state and input, aiming to obtain stabilization under saturated
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control. The article starts from a rather old idea of finite-spectrum assignment for systems
with input delays. The article considers an analysis of the already-known results in the field,
aiming to obtain instruments for further development. This further development refers
to the incorporation of the systems with state delays in the finite spectrum-assignment
procedure. The article presents in this respect procedures, algorithms, and mathematical
development theorems with complete proofs.

The main contributions presented in this article are:

• Equating the stability of a system with state delay and input delay (point or distributed)
with the stability of a system without delay by using the Arstein transform (and its
generalization in case of delay in the state);

• Obtaining the command (input) of the initial system with delay by applying the
inverse transform to the equivalent system without delay, in case of input saturation;

• Obtaining theorems on the stability of mono- and multiple-input systems, theorems
on instability and the estimation of the stability region for systems with state delay
and input delay (point or distributed) and input saturation. The main results are
synthesized in twelve new theorems;

• A numerical solution to the transcendental matrix equation A = A0 + e−Ah A1 using
the computational-intelligence PSO algorithm.

The article is organized as follows. Section 2 presents some results on the stability
of systems with input saturation. Section 3 deals with systems with input saturation and
input delay and state delay and presents the steps for obtaining a control law using a
general linear transformation. Section 4 presents our main results concerning the sufficient
conditions for the global asymptotic stability of systems with input saturation and delay.
Numerical examples are provided in Section 5, to illustrate the design procedure for the
theoretical results. The conclusions are presented in Section 6.

2. Systems with Saturation in Command

Throughout this article, the described systems are included in the input-state descrip-
tion formalism. In this case, the input of the system is represented by the command applied
to it. We considered the single input system:

.
x(t) = Ax(t) + Bus(t) (1)

where: x ∈ <n is the state, us ∈ <1 is the input (command of the system), and A ∈ <nxn

and B ∈ <nx1 are matrices of appropriate dimensions.
The command of this system contains saturation and is expressed in the following form:

us(t) = −sat(Kx) = −µ(x(t))Kx(t) (2)

where:

µ(x) =

{
1 i f |Kx| < ulim

ulim
|Kx| i f |Kx| ≥ ulim

(3)

where: ulim is the maxim value of command, |us| ≤ ulim, and K is a feedback matrix.
We present in this section a set of results from control with a saturation framework [40,41].

Definition 1. Consider Ai ∈ <nxn. A set {A1, . . . , Ak} is simultaneously P Lyapunov stable, if
there is a P ∈ <nxn positive definite, whereby AT

i P + PAi < 0, i = 1, . . . , k.

Theorem 1. The null solution of closed-loop system (1), (2), and (3) is globally asymptotically
stable if there is K and P ∈ <nxn positive definite, whereby the set {A, A− BK} is simultaneously
P Lyapunov stable, namely: AT P + PA < 0 and (A− BK)T P + P(A− BK) < 0 [40,41].

Proof of Theorem 1. Consider the Lyapunov function: V(x) = xT Px and the matrix P > 0
that fulfills the hypothesis. This results in the following:
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xT(AT P + PA)x = −xTQx < 0 and xT((A− BK)T P + P(A − BK))x = −xTQx +
xT Mx < 0,

where Q > 0 and M = −(PBK + KT BT P).
Then, we obtain xT Mx < xTQx. As µ(x) ∈ (0, 1], consequently:
.

V(x) = −xTQx + µ(x)xT Mx < −xTQx + µ(x)xTQx ≤ −xTQx + xTQx = 0, and the
proof of Theorem 1 is finished [40,41]. �

Definition 2. Two diagonalizable matrices A, B ∈ <nxn are considered to be simultaneously
diagonalizable if there is a single non-singular matrix N whereby N−1 AN and N−1BN are both
diagonal.

Lema 1. Let A and B be diagonalizable from<n×n. Then, A and B are simultaneously diagonalizable
if and only if A and B commute under multiplication, namely, AB = BA [42].

Theorem 2. The null solution of closed-loop systems (1), (2), and (3) is globally asymptotically
stable if the following are true [40,41]:

1. The open-loop system A is exponentially stable and diagonalizable;
2. The matrix A− BK is exponentially stable and diagonalizable;
3. The matrices A and BK commute under multiplication.

Proof of Theorem 2. Since A and BK commute, then A and A− BK commute. By assump-
tion, A and A− BK are also diagonalizable.

Thus, according to Lema 1, A and A− BK are simultaneously diagonalizable.
Thus, there is a coordinate transformation T whereby A and A− BK are both diagonal

with respect to a new coordinate z = Tx.
Let A = A− BK and let ΛA, ΛA be diagonal matrices where:

ΛA = TAT−1, ΛA = T(A− BK)T−1.

Then, we prove that P = TTT satisfies the conditions of Theorem 1.
2ΛA = TAT−1 +

(
TAT−1)T , and by multiplying the left side by TT and the right side

by T, we obtain:
2TTΛAT = TT

(
TAT−1 + (TAT−1)

T
)

T = TTTA + ATTTT = PA + AT P, where

P = TTT > 0 and TTΛAT < 0 since T is non-singular.
Similarly: 2TTΛAT = TTTA + ATTTT. Thus, P simultaneously satisfies AT P + PA < 0

and AT P+ PA < 0. The stability is invariant under change of coordinates, and, by Theorem
1, the proof of Theorem 2 is finished [40,41]. �

Theorem 3. The null solution of closed-loop systems (1), (2), and (3) is globally asymptotically
stable if the following are true [40,41]:

1. A and A− BK are exponentially stable;
2. A− BK is diagonalizable;

3.
_
A commutes with P, where

_
A is the diagonal form of A− BK and P > 0 solve: AT P + PA < 0.

Proof of Theorem 3. Consider
_
A = T(A− BK)T−1 where T diagonalizes A− BK and

_
A is

diagonal in the new coordinate z = Tx .
Consider also A = TAT−1. Since A is exponentially stable, there is P > 0 that fulfills

the hypothesis 3 whereby AT P + PA < 0.

Since
_
A < 0 and P > 0, all eigenvalues of

_
AP are less than zero.

Additionally, the assumption 3
_
AP = P

_
A and

_
A

T
=

_
A implies that

_
A

T
P + P

_
A < 0.

The stability is invariant under change of coordinate, and, by Theorem 1, the proof of
Theorem 3 is finished [40,41]. �



Automation 2022, 3 51

Theorem 4. We consider the multiple-input system in the following form [40,41]:

.
x = Ax + Bus = Ax +

m

∑
i=1

Biusi (4)

where: x ∈ <n, us ∈ <m, A ∈ <nxn is asymptotically stable, B ∈ <nxm, Bi is the i-th column of B.
The command contains saturation and is expressed in the following form: us =

[
us1, . . . , usm

]T ,
where umax i is the maxim value of the component i-th of command, namely: |usi| < umaxi, i =
1, . . . , m.

The components of the command vector us = −sat(BT Py) are expressed in the following
form:

usi =

{
−BT

i Px i f
∣∣BT

i Px
∣∣ < umax i

−µiBT
i Px i f

∣∣BT
i Px

∣∣ ≥ umax i
(5)

where:
µi =

umaxi∣∣BT
i Px

∣∣ i = 1, . . . , m (6)

If P > 0 solves AT P + PA < 0, then the null solution of closed-loop systems (4), (5), and (6) is
globally asymptotically stable.

Proof of Theorem 4. We can rewrite the command vector: us = −MBT Px,

where: M = diag(βi), M ∈ <mxm, βi ∈ (0, 1] and βi =

{
1 i f

∣∣BT
i Px

∣∣ < umaxi
µi i f

∣∣BT
i Px

∣∣ ≥ umaxi
.

Consider the Lyapunov function: V(x) = xT Px and by computing
.

V(x), we obtain:
.

V(x) = xT [(A− BMBT P)T P + P(A − BMBT P)]x = xT(AT P + PA − 2PBMBT P)x < 0,
since PBMBT P ≥ 0 and AT P + PA < 0. Thus, the proof of Theorem 4 is finished [40,41]. �

Theorem 5. We consider system (1) and suppose A is invertible and has a single unstable eigenvalue λ.
Let xeq = ±A−1Bulim denote the equilibrium points of the saturated system when the input

saturates at us = −ulim and us = ulim, respectively.
Then, no feedback matrix K, where

∣∣Kxeq
∣∣ ≥ ulim, can globally stabilize the null solution of

closed-loop systems (1), (2), and (3) [40,41].

Proof of Theorem 5. To show that the origin is not globally asymptotically stable, it is
sufficient to find some initial conditions x0 ∈ <n that cannot be driven to the origin with the
feedback control law: us(t) = −sat(Kx) = −µ(x(t))Kx(t) where K fulfills:

∣∣Kxeq
∣∣ ≥ ulim.

Let Eλ(xeq) be the eigenspace corresponding to the unstable eigenvalue λ of the
open-loop system A, where Eλ(xeq) =

{
x ∈ <n : A(x− xeq) = λ(x− xeq)

}
.

We show that some initial conditions on the eigenspace Eλ cannot be driven to the
origin with the feedback us(t) = −sat(Kx).

Note that |Kx| = ulim depicts the saturation boundaries. Now consider the case when
saturation occurs with us = −ulim.

Then, the dynamics of the saturated system are given by:
.
x(t) = Ax(t)− Bulim and

the equilibrium point under saturation by xeq = A−1Bulim.
Consider D = {x : |Kx| ≥ ulim}. The assumption

∣∣Kxeq
∣∣ ≥ ulim implies xeq ∈ D.

Then, the trajectory x(t) for the saturated system when x0 ∈ Eλ(xeq) is given by x(t) =
eλt(x0 − xeq) + xeq.

Moreover, since Eλ(xeq) is the eigenspace, x(t) ∈ Eλ(xeq) ∩ D provided the system
remains saturated at us = −ulim.

We show that some initial conditions x0 ∈ Eλ ∩ D exist where x(t) never leaves the
saturated region D so that |x(t)| becomes unbounded.

Now Eλ is either parallel to or intersects Kx = ulim. Because Kx = ulim forms an
n− 1 dimensional surface and Ex(xeq) a line, the intersection is a point. Suppose Eλ(xeq)
and Kx = ulim are parallel. Since xeq ∈ D, Eλ(xeq) is entirely situated in the saturated
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region, this means that: ∀x0 ∈ Eλ(xeq), x(t) ∈ Eλ(xeq), ∀t ≥ 0. Since Eλ(xeq) is an
unstable eigenspace, |x(t)| will become unbounded. Now suppose Eλ(xeq) and Kx = ulim
intersect. Let v∗ denote the point of intersection. Then, ∀x0 ∈ Eλ(xeq) ∩ D whereby
|x0| ≥ max

(
|v∗| ,

∣∣xeq
∣∣), x(t) ∈ Eλ(xeq) ∩ D, t ≥ 0, and |x(t)| will become unbounded.

The same argument can be repeated for saturation occurring at us = ulim.
Thus, there exist initial conditions on the eigenspace corresponding to the unstable

eigenvalue λ, which make the states unbounded.
Hence, the origin is not globally asymptotically stable under any linear time-invariant

state feedback, and the proof of Theorem 5 is finished [40,41]. �

Theorem 6. We consider system (1) and assume the following as true [40,41]:

1. Matrix A is unstable;
2. Matrix A− BK is exponentially stable.

Consider Bd =
{

x : xT Px ≤ d
}

, d ∈ <+, and H = {x : |Kx| ≤ ulim}, where P > 0 is a
solution to (A− BK)T P + P(A− BK) < 0.

Then, Bd∗ is an exponentially stable region for the closed-loop systems (1), (2), and (3), where
d∗ is the largest number whereby Bd∗ ⊂ H.

Proof of Theorem 6. Since A − BK is exponentially stable, there is the matrix P > 0,
whereby: (A− BK)T P + P(A− BK) < 0.

For ∀x ∈ H, us(t) = −sat(Kx) = −Kx(t) and consider the Lyapunov function:
V(x) = xT Px, and by computing

.
V(x) we obtain:

.
V(x) = xT [(A− BK)T P + P(A− BK)]x < 0.

In addition, Bd∗ is the largest set that is situated within the unsaturated region H. Thus,
∀x ∈ Bd∗ , xT Px decreases and hence |x| → 0 exponentially. Thus, the proof of Theorem 6
is finished [40,41]. �

3. Systems with Command Saturation, Saturation Delay, and State Delay
3.1. Systems with Point Delays

In first part of this section, we consider the system with point delay (Sd) in the following
form:

.
x(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) (7)

where: x ∈ <n is the state, us ∈ <m, h is the input delay and state delay (we con-
sider the same state delay and input delay and a single delay just for easy writing), and
A0, A1, B0, B1 are matrices of appropriate dimensions.

The initial command conditions are given by a function us0(·) defined for the interval
[−h, 0], and the initial state condition is given by a function x0(·) defined for the interval
[−h, 0].

The command us contains saturation and |us| ≤ ulim where ulim is the maxim value of
command in the single-input case.

In the multiple-input case, the command contains saturation and is expressed in the
following form: us =

[
us1, . . . , usm

]T , umax i is the maxim value of the component i-th
of the command, namely: |usi| < umaxi, i = 1, . . . , m.

Consider system (4), using the state transformation:

ỹ(t) = x(t) +
t∫

t−h

e(t−s−h)A A1x(s)ds +
t∫

t−h

e(t−s−h)AB1us(s)ds (8)
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where: A is a solution of the transcendental matrix equation:

A = A0 + e−Ah A1 (9)

We note s = t + θ, and, by computing
.
ỹ, we obtain:

.
ỹ(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) +

0∫
−h

e−A(θ+h)A1
.
x(t + θ)dθ+

0∫
−h

e−A(θ+h)B1
.
us(t + θ)dθ

0∫
−h

e−A(θ+h)A1
.
x(t + θ)dθ = e−A(θ+h)A1x(t + θ)|0−h+

0∫
−h

Ae−A(θ+h)A1x(t + θ)dθ

= e−Ah A1x(t)− A1x(t− h) +
0∫
−h

Ae−A(θ+h)A1x(t + θ)dθ

0∫
−h

e−A(θ+h)B1
.
us(t + θ)dθ = e−A(θ+h)B1us(t + θ)|0−h+

0∫
−h

Ae−A(θ+h)B1us(t + θ)dθ

= e−AhB1us(t)− B1us(t− h) +
0∫
−h

Ae−A(θ+h)B1us(t + θ)dθ

Noting that the sum formed by the last integral of each term above is equal to A(ỹ(t)−
x(t)), using (9) and making the replacement above, we obtain the associated system:

.
ỹ(t) = Aỹ(t) + (B0 + e−hAB1)us(t) (10)

We make the following notation:

B = B0 + e−hAB1 (11)

System (7), with (6) and (8), is called the associate system of (4) and becomes:

.
ỹ(t) = Aỹ(t) + Bus(t) (12)

where: ỹ ∈ <n is the state, and A and B represent the matrices of appropriate dimensions.
The command of this system contains saturation, and in the single input case it is

expressed in the following form:

us(t) = −sat(Kỹ) = −µ(ỹ(t))Kỹ(t) (13)

where:

µ(ỹ) =

{
1 i f |Kỹ| < ulim

ulim
|Kỹ| i f |Kỹ| ≥ ulim

(14)

where: ulim is the maxim value of command, and |us| ≤ ulim, K is a feedback matrix.
The unstable poles for system (7) are given by

Λc =
{

s : det
(

sI − A0 − e−hs A1

)
= 0, Re(s) ≥ −υ0

}
, where υ0 ≥ 0 is the desired margin of

stability. System (7) is υ0, and is stabilizable if and only if: rank[sI−A0− e−hs A1

∣∣∣B0 + e−hsB1] =

n, for all s ∈ C+
−υ0

= {s ∈ C : Re(s) ≥ −υ0}.
We note Γ =

{
A ∈ Cnxn : A = A0 + e−Ah A1

}
. Then, ∀A ∈ Γ, σ(A) ⊂ σ(Sd) =

Λc [37–39].
With these, the stabilizability of (Sd) implies complete controllability of the associated

system without delay (12). Equation (9) plays a key role for obtaining system (12) without
delay. In the general case, the unstable poles of system (7) are given by Λc, which comprise



Automation 2022, 3 54

nN elements (augmented as necessary with the stable poles); N is a positive integer and
thereby allows the following representation:

Λc = Λ1 ∪Λ2 ∪ . . . ∪ΛN (15)

where: Λi, i = 1, N is a symmetric set of cardinality n.
For every set Λi = {s1, s2, . . . , sn}, we consider the eigenvalues—even the unstable

poles in the Jordan matrix: J = diag[s1, s2, . . . , sn].
If Λi has complex conjugate elements sk = σ0 ± jω0, then the corresponding Jordan

cell is expressed in the following form: Jk =

[
σ0 −ω0
ω0 σ0

]
.

Additionally, we consider the corresponding set {w1, w2, . . . , wn} of right eigenvectors
arranged as a modal matrix P = [w1, w2, . . . , wn], where each pair (sk, wk) fulfills the
equation: (

sk I − A0 − e−hsk A1

)
wk = 0, sk ∈ Λc (16)

The matrix Aci = PJP−1 fulfills Equation (9).
In a similar way, for a set of n left eigenvectors {v1, v2, . . . , vn} fulfilling the equation:(

sk I − A0 − e−hsk A1

)
wk = 0, sk ∈ Λc (17)

Consider the matrix Q = col[v1, v2, . . . , vn]; then, the matrix Aci = Q−1 JQ fulfills
Equation (9).

When N ≥ 2, the solution of (9) is:(
sk I − A0 − e−hsk A1

)
wk = 0, sk ∈ Λc (18)

The matrix Bc = B fulfills (11), but the matrices B0 and B1 are now B0 = col[B0, . . . , B0] ∈
RnNx1 and B1 = col[B1, . . . , B1] ∈ RnNx1, respectively.

The stabilizing feedback matrix K is now:
Kc = row[K1, . . . , KN ] whereby the matrix (Ac − BcKc) is Hurwitzian with the desired

υ0 ≥ 0 degree of stability.
From the systems with delay, the next result is well known [37–39].

Proposition 1. If u(t) = F(·)ỹ(t) is a stabilizing control law for the associated system (12), then
the next control law:

u(t) = F(·)

x(t) +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +

0∫
−h

e−A(θ+h)B1us(t + θ)dθ

 (19)

is stabilizing for system (7), under the condition that all unstable eigenvalues of system (7) are
contained in the spectrum of the matrix A given by (9).

In our case, for F(·) = −µ(ỹ)K, the command of (7) contains saturation, and it is expressed
in the following form:

us(t) = −µ(x(t) +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)K[x(t)

+
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ]

(20)
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where the matrix A is given by (9) and:

µ(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ) = 1

i f∣∣∣∣∣K(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

∣∣∣∣∣ < ulim

µ(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ) =

= ulim∣∣∣∣∣K(x+
0∫
−h

e−A(θ+h)A1x(t+θ)dθ+
0∫
−h

e−A(θ+h)B1us(t+θ)dθ)

∣∣∣∣∣
i f∣∣∣∣∣K(x +

0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

∣∣∣∣∣ ≥ ulim

(21)

ulim is the maxim value of the command, |us| ≤ ulim, and K is a feedback matrix.
When N ≥ 2, the control law (19) becomes:

u(t) = −
[

N

∑
i=1

Ki

]
x(t)−

0∫
−h

[
N

∑
i=1

Kie−Aci(θ+h)

]
A1x(t + θ)dθ −

0∫
−h

[
N

∑
i=1

Kie−Aci(θ+h)

]
B1u(t + θ)dθ (22)

Remark 1. The general form of the systems with multiple point delays is treated in a similar way.
Consider (Sd) in the following form:

.
x(t) = A0x(t) +

R

∑
i=1

Aix(t− ri) + B0us(t) +
H

∑
i=1

Bius(t− hi) (23)

where x ∈ <n is the state; us ∈ <m, hi, i = 1, . . . , H are the input delays; ri, i = 1, . . . , R are the
state delays; and A0, Ai, B0, Bi are matrices of appropriate dimensions.

The initial command conditions are given by a function us0(·) defined for the interval [−h, 0],
and the initial state condition is given by a function x0(·) defined for the interval [−r, 0], where:
h = max{h1, . . . , hH} and r = max{r1, . . . , rR}.

The command contains saturation, and using the state transformation:

ỹ(t) = x(t) +
R

∑
i=1

t∫
t−ri

e(t−s−ri)A Aix(s)ds +
H

∑
i=1

t∫
t−hi

e(t−s−hi)ABius(s)ds, (24)

we obtain the associated system without delay expressed in the form (12), where:

A = A0 +
R
∑

i=1
e−ri A Ai and B = B0 +

H
∑

i=1
e−hi ABi. If R = 0, the state transformation (24) is

called an Artstein transform [2,37–39].
When N ≥ 2, the control law (22) becomes:

u(t) = −
[

N

∑
i=1

Ki

]
x(t)−

0∫
−h

R

∑
j=1

[
N

∑
i=1

Kie
−Aci(θ+rj)

]
Ajx(t + θ)dθ −

0∫
−h

H

∑
j=1

[
N

∑
i=1

Kie
−Aci(θ+hj)

]
Bju(t + θ)dθ (25)

where: A, B, Ac, Bc, Kc are calculated as in the case of (Sd) expressed by (7).

Remark 2. If the state vector x ∈ <n is not fully measured, we can use a combined con-
troller/observer. For example, consider system (23) with R = 1, H = 0; then, the observer
is [37]:
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.
x̂(t) = A0 x̂(t) + A1 x̂(t− r) + B0us(t) + L(z(t)− C x̂(t)) +

0∫
−r

e−A(θ+r)A1L(z(t + θ)− C x̂(t + θ))dθ (26)

where z(t) = Cx(t) is the output and L is the matrix of the observer.

3.2. Systems with Distributed Delay

In the last part of this section, we consider the system with distributed delay (Sdd) in
the following form:

.
x(t) =

0∫
−h

dα(θ)x(t + θ) +

0∫
−h

dβ(θ)us(t + θ) (27)

where: x ∈ <n is the state, us ∈ <m .
α ∈ BV( [−h , 0] , <nxn ) , β ∈ BV( [−h , 0] , <nxm) , h > 0 is the input delay and

state delay. BV( [−h , 0] , <n1xn2) denotes the class of integrable n1 × n2 matrix-valued
functions of bounded variations. The initial conditions are given by:x(θ) = x0(θ) ; us(θ) =
us0(θ) f or θ ∈ [−h, 0]; x0 ∈ C ( [−h , 0] , <n) , us0 ∈ C ( [−h , 0] , <m).

In the single-input case m = 1, the command us contains saturation and |us| ≤ ulim
where ulim is the maxim value of the command.

In the multiple-input case, the command contains saturation and is expressed in the
form: us =

[
us1, . . . , usm

]T , and umax i is the maxim value of the component i-th of
command, namely: |usi| < umaxi, i = 1, . . . , m.

Consider system (27), and using the state transformation:

ỹ(t) = x(t) +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +

0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ (28)

where: A is a solution of the transcendental matrix equation:

A =

0∫
−h

eAθdα(θ) (29)

The associated system for (27) is:

.
ỹ(t) = Aỹ(t) + Bus(t) (30)

where:

B =

0∫
−h

eAθdβ(θ) (31)

We obtain the associated system (30) if we note: s = t + θ, and by computing
.
ỹ:

.
ỹ(t) =

0∫
−h

dα(θ)x(t + θ) +

(
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ

)′
+

0∫
−h

dβ(θ)us(t + θ) +

(
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ

)′
.
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Using (26) and (28), we can write:(
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ

)′
= A

{
t∫

t+θ

eA(t−τ)x(τ)dτ

}′
=

Ax(t)− Ae−Aθ x(t + θ) + A
t∫

t+θ

AeA(t−τ)x(τ)dτand(
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ

)′
= B

{
t∫

t+θ

eA(t−τ)us(τ)dτ

}′
=

Bus(t)− Be−Aθus(t + θ) + B
t∫

t+θ

AeA(t−τ)us(τ)dτ.

Noting that the sum formed by the last integral of each term above is equal to A(ỹ(t)−
x(t)), using (28), (29), and (31), making the replacement above, we obtain the associated
system (30). The command of this system contains saturation, and in the single-input case
it is expressed in the following form:

us(t) = −sat(Kỹ) = −µ(ỹ(t))Kỹ(t) (32)

where:

µ(ỹ) =

{
1 i f |Kỹ| < ulim

ulim
|Kỹ| i f |Kỹ| ≥ ulim

(33)

where: ulim is the maxim value of the command, and |us| ≤ ulim, K is a feedback matrix.
The unstable poles for system (27) are given by:

Λc =

{
s : det

(
sI −

0∫
−h

esθdα(θ)

)
= 0, Re(s) ≥ −υ0

}
, where υ0 ≥ 0 is the desired

margin of stability.
System (24) is υ0—stabilizable if and only if:

rank

[
sI −

0∫
−h

esθdα(θ)

∣∣∣∣∣ 0∫
−h

esθdβ(θ)

]
= n, for all s ∈ C+

−υ0
= {s ∈ C : Re(s) ≥ −υ0}.

We note Γ =

{
A ∈ Cnxn : A =

0∫
−h

eAθdα(θ)

}
. Then, ∀A ∈ Γ, σ(A) ⊂ σ(Sd) = Λc—

see [34,35].
With these, the stabilizability of (Sdd) implies complete controllability of the associated

system without delay (30).
Equation (29) plays a key role for obtaining system (30) with no delay.
Similarly to the case of the point-delay system, an algorithm was developed in [34,35]

for solving Equation (29). The spectrum of (Sdd) is Λc, which allows the following represen-
tation:

Λc = Λ1 ∪Λ2 ∪ . . . ∪ΛN (34)

where: Λi, i = 1, N is a symmetric set of cardinality n.
For every set Λi = {s1, s2, . . . , sn}, we consider the matrix J = diag[s1, s2, . . . , sn] of

eigenvalues sk of the matrix:

Ask =

0∫
−h

eskθdα(θ) (35)
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Additionally, we consider the corresponding set {v1, v2, . . . , vn} of left eigenvectors
(or, in a similar way, the right eigenvectors) arranged as a matrix Q = col[v1, v2, . . . , vn],
where each pair (sk, vk) fulfills the equation:

vk

sk I −
0∫
−h

eskθdα(θ)

 = 0, sk ∈ Λi (36)

then, the matrix Aci = Q−1 JQ, fulfills the Equation (29), and the general solution is:Ac =
diag[Ac1, Ac2, . . . , AcN ].

From the systems with distributed delay, the next result is well known [34,35].

Proposition 2. If u(t) = F(·)ỹ(t) is a stabilizing law for associated system (30), then the next
control law:

u(t) = F(·)

x(t) +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +

0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ

 (37)

is stabilizing for the system (27), under the condition that all unstable eigenvalues of the system
(24) are contained in the spectrum of the matrix A given by (29).

In our case, for F(·) = −µ(ỹ)K, the command of (27) contains saturation and is expressed in
the following form:

us(t) = −µ(x(t) +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)K·[
x(t) +

0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ

] (38)

where: the matrix A is given by (29) and:

µ(x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ) = 1

i f∣∣∣∣∣K(x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣ < ulim

µ(x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

= ulim∣∣∣∣∣K(x+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣
i f∣∣∣∣∣K(x +

0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣ ≥ ulim

(39)

where: ulim is the maxim value of the command, |us| ≤ ulim, and K is a feedback matrix.

Remark 3. If system (27) has the simplified form of kernel:

0∫
−h

dα(θ)x(t + θ) =A0x(t) +
H

∑
i=1

Aix(t− hi) +
K

∑
i=1

0∫
−hi

Li(θ)x(t + θ)dθ (40)
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where: Li(θ) has a bounded variations on [−max(hi), 0], then the characteristic function of (27) is:

∆(λ) = det

λI − A0 −
H

∑
i=1

e−hiλ Ai −
K

∑
i=1

0∫
−hi

eλθ Li(θ)dθ

 (41)

An algorithm was developed in [21] for searching the zeros of (41). The main idea is to consider
a truncated Taylor series to N terms for the exponential terms of (41) around a certain point λ0:

e−hiλ ≈ e−hiλ0
N−1

∑
j=0

(−hi)
j(λ− λ0)

j

j!
(42)

eλθ ≈ eλ0θ
N−1

∑
j=0

θ j(λ− λ0)
j

j!
(43)

4. Main Results

In this section, we consider the single-input and multiple input-systems with input
saturation and state delay and input delay, and we obtain new sufficient conditions for
stability.

We follow the results from the previous section for both type of delay: point and
distributed.

4.1. Systems with Point Delays and Command Saturation

Theorem 7. The null solution of the closed-loop single-input system with point delay (Sd) in the
form (7) with input saturation given by (20) and (21) is globally asymptotically stable if there is K
and P ∈ <nxn positive definite, whereby the set

{
A, A− (B0 + e−AhB1)K

}
is simultaneously P

Lyapunov stable, namely:
AT P + PA < 0 and (A− (B0 + e−AhB1)K)

T P + P(A− (B0 + e−AhB1)K) < 0, under the
condition that all the unstable eigenvalues of the system (7) are contained in the spectrum of the
matrix A given by (9).

Proof of Theorem 7. Consider system (7), and using state transformation (8), we obtain the
associate system of (7) in the form (12) where the matrix A is given by (9), B = B0 + e−hAB1;
the command contains saturation and is given by (13) and (14).

If all the unstable eigenvalues of system (7) are contained in the spectrum of the matrix
A given by (9), we use Proposition 1, where F(·) = −µ(ỹ)K, ỹ is given by (8), and we obtain
the equivalence of stability between system (7) and system (12).

By applying Theorem 1 on system (12), we note that if the set
{

A, A− (B0 + e−AhB1)K
}

is simultaneously P Lyapunov stable, then the null solution of the closed-loop system with
point delay (Sd) in the form (7) with input saturation given by (20) and (21) is globally
asymptotically stable, and the proof of Theorem 7 is finished. �

Theorem 8. The null solution of the closed-loop system with point delay (Sd) in the form (7) with
input saturation given by (20) and (21) is globally asymptotically stable under the condition that all
unstable eigenvalues of system (7) are contained in the spectrum of the matrix A given by (9) and if
the following are true:

1. The matrix A is exponentially stable and diagonalizable;
2. The matrix A− (B0 + e−AhB1)K is exponentially stable and diagonalizable;
3. The matrices A and (B0 + e−AhB1)K commute under multiplication.
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Proof of Theorem 8. Consider system (7), and using state transformation (8), we obtain the
associate system of (7) in the form (12) where matrix A is given by (9), B = B0 + e−hAB1;
the command contains saturation and is given by (13) and (14).

If all the unstable eigenvalues of system (7) are contained in the spectrum of matrix A
given by (9), we use the Proposition 1, where F(·) = −µ(ỹ)K, and ỹ is given by (8), and we
obtain the equivalence of stability between system (7) and system (12).

By applying Theorem 2 on system (12), we note that if the matrix A and A− (B0 +
e−AhB1)K are exponentially stable and diagonalizable and the matrices A and (B0 +
e−AhB1)K commute under multiplication, then the null solution of the closed-loop system
with point delay (Sd) in the form (7) with input saturation given by (20) and (21) is globally
asymptotically stable, and the proof of Theorem 8 is finished. �

Theorem 9. The null solution of the closed-loop system with point delay (Sd) in the form (7) with
input saturation given by (20) and (21) is globally asymptotically stable under the condition that all
the unstable eigenvalues of system (7) are contained in the spectrum of matrix A given by (9) and if
the following are true:

1. A and A− (B0 + e−AhB1)K are exponentially stable;
2. A− (B0 + e−AhB1)K is diagonalizable;

3.
_
A commutes with P, where

_
A is the diagonal form of A− (B0 + e−AhB1)K, and P > 0 solves:

AT P + PA < 0.

Proof of Theorem 9. Consider system (7), and using state transformation (8), we obtain the
associate system of (7) in the form (12), where the matrix A is given by (9), B = B0 + e−hAB1,
and the command contains saturation and is given by (13) and (14).

If all the unstable eigenvalues of system (5) are contained in the spectrum of matrix A
given by (9), we use Proposition 1, where F(·) = −µ(ỹ)K, ỹ is given by (8), and we obtain
the equivalence of stability between system (7) and system (12).

By applying Theorem 3 on system (12), we note that if A and A− (B0 + e−AhB1)K are

exponentially stable, A− (B0 + e−AhB1)K is diagonalizable;
_
A commutes with P, where

_
A

is the diagonal form of A− (B0 + e−AhB1)K; and P > 0 solves: AT P + PA < 0; then, there
is a matrix T that diagonalizes A− (B0 + e−AhB1)K, and, in the new coordinate z = Tx, we
note that the set

{
TAT−1, T

(
A− (B0 + e−AhB1)K

)
T−1

}
is simultaneously P Lyapunov

stable or equivalent, and the set
{

A, A− (B0 + e−AhB1)K
}

is simultaneously P Lyapunov
stable. The stability is invariant under change of coordinates, and, by Theorem 7, the null
solution of the closed-loop system with point delay (Sd) in form (7) with input saturation
given by (20) and (21) is globally asymptotically stable, and the proof of Theorem 9 is
finished. �

Theorem 10. We consider the system with point delay and the multiple input in the form:

.
x(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) (44)

where x ∈ <n is the state, h is the state delay and input delay, and A0, A1, B0, B1 are matrices
of appropriate dimensions, us ∈ <m, under the condition that all the unstable eigenvalues of the
system (41) are contained in the spectrum of the matrix A given by (6).

We denote B∗i the i-th column of B0 + e−AhB1, and we assume that A is asymptotically stable.
The inputs are us =

[
us1, . . . , usm

]T , and umax i is the maxim value of the component
i-th of the command, namely, |usi| < umaxi, i = 1, . . . , m.

The initial conditions of the commands are given by a set of functions us0i(·) defined for on the
interval [−h, 0] and bounded by umax i.
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The initial state conditions are given by a function x0(·) defined for the interval [−h, 0]. The
components of the command are expressed in the following form:

usi = −B∗Ti P(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

i f∣∣∣∣∣B∗Ti P(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

∣∣∣∣∣ < umaxi

usi = −µiB∗Ti P(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

i f∣∣∣∣∣B∗Ti P(x +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

∣∣∣∣∣ ≥ umaxi

(45)

where:

µi =
umax i∣∣∣∣∣B∗Ti P(x +

0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

∣∣∣∣∣
, i = 1, . . . , m (46)

If P > 0 solves AT P + PA < 0, then the null solution of the closed-loop systems (44), (45),
and (46) is globally asymptotically stable.

Proof of Theorem 10. Considering system (44), and using state transformation (8), we
obtain the associate system of (44) in multiple-input form (12), where the matrix A is given
by (9), and B = B0 + e−hAB1.

Let M = diag(βi), M ∈ <mxm, βi ∈ (0, 1] and βi =

{
1 i f

∣∣BT
i Pỹ

∣∣ < umaxi
µi i f

∣∣BT
i Pỹ

∣∣ ≥ umaxi
,

where µi, i = 1, . . . , m are given by (46).
The command of the associate system contains saturation and can be rewritten in the

form: us = −MBT Pỹ.
If all the unstable eigenvalues of system (44) are contained in the spectrum of the

matrix A given by (9), we use Proposition 1, where F(·) = −MBT P, ỹ is given by (8), and
we obtain the equivalence of stability between system (44) and system (12).

By applying Theorem 4 on system (12) considered now as multiple input, we note that
the null solution of the multiple-input closed-loop system (44) with input saturation given
by (45) and (46) is globally asymptotically stable, and the proof of Theorem 10 is finished. �

Theorem 11. We consider the system with point delay (Sd) in form (7) with input saturation and
with a single, unstable eigenvalue λ. Let A be given by (9), and suppose that A is invertible and has
a single unstable eigenvalue λ.

Let xeq = ±A−1(B0 + e−AhB1)ulim denote the equilibrium points of the saturated system
when the input saturates at us = −ulim and us = ulim, respectively.

Then, no feedback matrix K, where
∣∣Kxeq

∣∣ ≥ ulim, can globally stabilize the null solution of
the closed-loop system (7), with input saturation given by (20) and (21).

Proof of Theorem 11. Considering system (7), and using state transformation (8), we
obtain the associated system of (7) in the form (12), where the matrix A is given by (9),
B = B0 + e−hAB1, and the command contains saturation and is given by (13) and (14).

To show that the origin of system (7) is not globally asymptotically stable, it is sufficient
to find some initial conditions x0 ∈ <n on the eigenspace corresponding to the unstable
eigenvalue λ, which cannot be driven to the origin with the command given by (20) and
(21), where the feedback matrix K fulfills

∣∣Kxeq
∣∣ ≥ ulim.
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If all the unstable eigenvalues of system (7) are contained in the spectrum of the matrix
A given by (9), in our case a single unstable eigenvalue λ, we use Proposition 1, where
F(·) = −µ(ỹ)K, ỹ is given by (8), and we obtain the equivalence of stability between system
(7) and system (12).

By applying Theorem 5 on system (12), we note that there are some initial conditions
ỹ0 ∈ <n corresponding to the unstable eigenvalue λ, which cannot be driven to the
origin with the command given by (13) and (14) and K whereby

∣∣Kỹeq
∣∣ ≥ ulim, where

ỹeq = ±A−1Bulim. From these, there is x0 ∈ <n given by ỹ0 ∈ <n and (5) with us = −ulim
and us = ulim, respectively, which cannot be driven to the origin with the command given
by (20) and (21), where the feedback matrix K fulfills

∣∣Kxeq
∣∣ ≥ ulim, and then the origin of

system (7) is not globally asymptotically stable, and the proof of Theorem 11 is finished. �

Theorem 12. We consider the system with point delay (Sd) in the form (7) and consider A given by
(9). We assume that the following are true:

1. Matrix A is unstable, and all unstable eigenvalues of system (7) are contained in the spectrum
of the matrix A;

2. Matrix A− (B0 + e−AhB1)K is exponentially stable.

Consider the set:

B∗d =

{
x :

(
x(t) +

0∫
−h

e−A(θ+h)A1x(t + θ)dθ+
0∫
−h

e−A(θ+h)B1us(t + θ)dθ

)T

· P

·
(

x(t) +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ +
0∫
−h

e−A(θ+h)B1us(t + θ)dθ

)
≤ d

}
d ∈ <+ and

H∗ =

{
x :

∣∣∣∣∣K(x(t) +
0∫
−h

e−A(θ+h)A1x(t + θ)dθ+
0∫
−h

e−A(θ+h)B1us(t + θ)dθ)

∣∣∣∣∣ ≤ ulim

}

where P > 0 is a solution to:

(A− (B0 + e−AhB1)K)
T

P + P(A− (B0 + e−AhB1)K) < 0.

Then, B∗d∗ is an exponentially stable region for the closed-loop system (7), with saturation in
command given by (20) and (21), where d∗ is the largest number whereby B∗d∗ ⊂ H∗.

Proof of Theorem 12. Considering system (7), and using state transformation (8), we obtain
the associate system of (7) in form (12), where the matrix A is given by (9), B = B0 + e−hAB1,
and the command contains saturation and is given by (13) and (14).

From condition 1, all the unstable eigenvalues of system (7) are contained in the
spectrum of the matrix A given by (9), and we can use Proposition 1, where F(·) = −µ(ỹ)K,
ỹ is given by (8), and we obtain the equivalence of stability between system (7) and
system (12).

By applying Theorem 6 on system (12), we note that if the matrix A− (B0 + e−AhB1)K
is exponentially stable, then Bd∗ is the largest set that is situated within the unsaturated
region H, and B∗d∗ is an exponentially stable region for closed-loop system (7), with input
saturation given by (20) and (21), where d∗ is the largest number whereby B∗d∗ ⊂ H∗ , and
the proof of Theorem 12 is finished. �

Remark 4. The form of Theorems 7, 8, and 9 is similar to the one above, even in the case of the general
form of systems with multiple point delays given by (23). In this case, the state transformation is

given by (24), A = A0 +
R
∑

i=1
e−ri A Ai, and B = B0 +

H
∑

i=1
e−hi ABi.

When N ≥ 2, the order of matrices becomes similar to the one in the previous section, and
the control law becomes us(t) = sat(u) where u is given by (22) or (25) if the system with point
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delay (Sd) is in the form (7) or (23). For the multiple-input case, we consider these control laws:
Ki = BT

i P with the same significance as above.

4.2. Systems with Distributed Delays and Command Saturation

Theorem 13. The null solution of the closed-loop single-input system with distributed delay (Sdd)
in the form (27) with input saturation given by (38) and (39) is globally asymptotically stable if there

is K and P ∈ <nxn positive definite, whereby the set

{
A, A− (

0∫
−h

eAθdβ(θ))K

}
is simultaneously

P Lyapunov stable, namely:

AT P + PA < 0 and (A− (
0∫
−h

eAθdβ(θ))K)
T

P + P(A− (
0∫
−h

eAθdβ(θ))K) < 0, under the

condition that all the unstable eigenvalues of the system (27) are contained in the spectrum of the
matrix given by (29).

Proof of Theorem 13. Considering system (27), and using state transformation (28), we
obtain associate system of (27) in the form (30) where the matrix A is given by (29),

B =
0∫
−h

eAθdβ(θ), the command contains saturation and is given by (32) and (33).

If all the unstable eigenvalues of system (27) are contained in the spectrum of the
matrix A given by (27), we the Proposition 2, where F(·) = −µ(ỹ)K, ỹ is given by (28), and
we obtain the equivalence of stability between system (27) and system (30).

By applying Theorem 1 on system (30), we note that if the set

{
A, A− (

0∫
−h

eAθdβ(θ))K

}
is simultaneously P Lyapunov stable, then the null solution of the closed-loop system with
distributed delay (Sdd) in the form (27) with input saturation given by (38) and (39) is
globally asymptotically stable, and the proof of Theorem 13 is finished. �

Theorem 14. The null solution of the closed-loop system with distributed delay (Sdd) in the
form (27) with input saturation given by (38) and (39) is globally asymptotically stable under the
condition that all the unstable eigenvalues of the system (27) are contained in the spectrum of the
matrix A given by (29) and if the following are true:

1. The matrix A is exponentially stable and diagonalizable;

2. The matrix A− (
0∫
−h

eAθdβ(θ))K is exponentially stable and diagonalizable;

3. The matrices A and (
0∫
−h

eAθdβ(θ))K commute under multiplication.

Proof of Theorem 14. Considering system (27), and using state transformation (28), we
obtain the associate system of (27) in the form (30), where the matrix A is given by (29),

B =
0∫
−h

eAθdβ(θ), and the command contains saturation and is given by (32) and (33).

If all the unstable eigenvalues of system (27) are contained in the spectrum of the
matrix A given by (29), we use Proposition 2, where F(·) = −µ(ỹ)K, ỹ is given by (28), and
we obtain the equivalence of stability between system (27) and system (30).

By applying Theorem 2 on system (30), we note that if the matrix A and A− (
0∫
−h

eAθdβ(θ))K

are exponentially stable and diagonalizable and the matrices A and (
0∫
−h

eAθdβ(θ))K com-

mute under multiplication, then the null solution of the closed-loop system with distributed
delay (Sdd) in the form (27) with input saturation given by (38) and (39) is globally asymp-
totically stable, and the proof of Theorem 14 is finished. �
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Theorem 15. The null solution of the closed-loop system with distributed delay (Sdd) in the
form (27) with input saturation given by (38) and (39) is globally asymptotically stable under the
condition that all the unstable eigenvalues of the system (27) are contained in the spectrum of the
matrix A given by (29) and if the following are true:

1. A and A− (
0∫
−h

eAθdβ(θ))K are exponentially stable;

2. A− (
0∫
−h

eAθdβ(θ))K is diagonalizable;

3.
_
A commutes with P, where

_
A is the diagonal form of A− (

0∫
−h

eAθdβ(θ))K, and P > 0 solves:

AT P + PA < 0.

Proof of Theorem 15. Consider system (27), and using the state transformation (28), we
obtain the associate system of (27) in the form (30) where the matrix A is given by (29),

B =
0∫
−h

eAθdβ(θ), and the command contains saturation and is given by (32) and (33).

If all the unstable eigenvalues of system (27) are contained in the spectrum of matrix
A given by (29), we use Proposition 2, where F(·) = −µ(ỹ)K, ỹ is given by (28), and we
obtain the equivalence of stability between system (27) and system (30).

By applying Theorem 3 on system (12), we note that if A and A− (
0∫
−h

eAθdβ(θ))K are

exponentially stable, A− (
0∫
−h

eAθdβ(θ))K is diagonalizable,
_
A commutes with P, where

_
A is

the diagonal form of A− (
0∫
−h

eAθdβ(θ))K, and P > 0 solves: AT P + PA < 0; then, there is a

matrix T that diagonalizes A− (
0∫
−h

eAθdβ(θ))K, and in the new coordinate z = Tx, we note

that the set

{
TAT−1, T

(
A− (

0∫
−h

eAθdβ(θ))K

)
T−1

}
is simultaneously P Lyapunov stable

or equivalent, and the set

{
A,

(
A− (

0∫
−h

eAθdβ(θ))K

)}
is simultaneously P Lyapunov

stable. The stability is invariant under change of coordinates, and by Theorem 5, the null
solution of the closed-loop system with distributed delay (Sdd) in form (27) with input
saturation given by (38) and (39) is globally asymptotically stable, and the proof of Theorem
15 is finished. �

Theorem 16. We consider the system with distributed delay and multiple input in the form:

.
x(t) =

0∫
−h

dα(θ)x(t + θ) +

0∫
−h

dβ(θ)us(t + θ) (47)

where: x ∈ <n is the state, and us ∈ <m , α ∈ BV( [−h , 0] , <nxn ) , β ∈ BV( [−h , 0] , <nxm) ,
h > 0 is the input delay and state delay. BV( [−h , 0] , <n1xn2) denotes the class of integrable
n1 × n2 matrix-valued functions of bounded variations. The initial conditions are given by
x(θ) = x0(θ) ; us(θ) = us0(θ) f or θ ∈ [−h, 0]. We assume that all the unstable eigenval-
ues of system (47) are contained in the spectrum of the matrix A given by (29). We denote B∗i as

the i-th column of
0∫
−h

eAθdβ(θ), and we assume that A is asymptotically stable. The inputs are

us =
[

us1, . . . , usm
]T , and umax i is the maxim value of the component i-th of the command,
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namely, |usi| < umaxi, i = 1, . . . , m. The initial conditions of the commands are given by a set of
functions us0i(·) defined for the interval [−h, 0] and bounded by umax i. The initial state conditions
are given by a function x0(·) defined for the interval [−h, 0]. The components of the command are
expressed in the following form:

usi = −B∗Ti P (x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

i f∣∣∣∣∣B∗Ti P (x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣ < umaxi

usi = −µiB∗Ti P (x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

i f∣∣∣∣∣B∗Ti P (x +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣ ≥ umaxi

(48)

where:

µi =
umax i∣∣∣∣∣B∗Ti P (x +

0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣
, i = 1, . . . , m (49)

If P > 0 solves AT P + PA < 0, then the null solution of the closed-loop systems (47), (48),
and (49) is globally asymptotically stable.

Proof of Theorem 16. Considering system (47), and using the state transformation (28), we
obtain the associate system of (47) in multiple input form (30), where the matrix A is given

by (29) and B =
0∫
−h

eAθdβ(θ).

Consider M = diag(βi), M ∈ <mxm, βi ∈ (0, 1] and βi =

{
1 i f

∣∣BT
i Pỹ

∣∣ < umaxi
µi i f

∣∣BT
i Pỹ

∣∣ ≥ umaxi
,

where: µi, i = 1, . . . , m are given by (49).
The command of the associate system contains saturation and can be rewritten in the

form: us = −MBT Pỹ.
If all the unstable eigenvalues of system (47) are contained in the spectrum of the

matrix A given by (29), we use Proposition 2, where F(·) = −MBT P, ỹ is given by (28), and
we obtain the equivalence of stability between system (47) and system (30).

By applying Theorem 4 on system (30), considered now as multiple input, we note
that the null solution of the multiple-input closed-loop system (47) with input saturation
given by (48) and (49) is globally asymptotically stable, and the proof of Theorem 16 is
finished. �

Theorem 17. We consider the system with distributed delay (Sdd) in the form (27) with input
saturation, which has a single unstable eigenvalue λ. Consider A given by (29) and assume that A
is invertible and has a single unstable eigenvalue λ.

Let xeq = ±A−1(
0∫
−h

eAθdβ(θ))ulim denote the equilibrium points of the saturated system

when the input saturates to us = −ulim and us = ulim, respectively. Then, no feedback matrix K,
where

∣∣Kxeq
∣∣ ≥ ulim, can globally stabilize the null solution of the closed-loop system (27), with

input saturation given by (38) and (39).
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Proof of Theorem 17. Considering system (27), and using state transformation (28), we
obtain the associate system of (27) in the form (30), where the matrix A is given by (29),

B =
0∫
−h

eAθdβ(θ), and the command contains saturation and is given by (32) and (33).

To show that the origin of the system (27) is not globally asymptotically stable, it is
sufficient to find some initial conditions x0 ∈ <n on the eigenspace corresponding to the
unstable eigenvalue λ, which cannot be driven to the origin with the command given by
(36) and (37), where the feedback matrix K fulfills

∣∣Kxeq
∣∣ ≥ ulim.

If all the unstable eigenvalues of the system (27) are contained in the spectrum of the
matrix A given by (29), in our case a single unstable eigenvalue λ, we use Proposition
2, where F(·) = −µ(ỹ)K, ỹ is given by (28), and we obtain the equivalence of stability
between system (27) and system (30).

By applying the Theorem 5 on system (30), we note that there are some initial con-
ditions ỹ0 ∈ <n corresponding to the unstable eigenvalue λ, which cannot be driven to
the origin with the command given by (32) and (33) and K whereby

∣∣Kỹeq
∣∣ ≥ ulim, where

ỹeq = ±A−1Bulim. From these, there is x0 ∈ <n given by ỹ0 ∈ <n and (28) with us = −ulim
and us = ulim, respectively, which cannot be driven to the origin with the command given
by (38) and (39), where the feedback matrix K fulfills

∣∣Kxeq
∣∣ ≥ ulim, and then the origin

of the system (27) is not globally asymptotically stable, and the proof of Theorem 17 is
finished. �

Theorem 18. We consider the system with distributed delay (Sdd) in the form (27) and consider A
given by (29). We assume the following are true:

1. Matrix A is unstable, and all the unstable eigenvalues of the system (27) are contained in the
spectrum of the matrix A;

2. Matrix A− (
0∫
−h

eAθdβ(θ))K is exponentially stable.

Consider the set:

B∗d =

x :

(
x(t) +

0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ

)T

P

·
(

x(t) +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ

)
≤ d

}
d ∈ <+ and

H∗ =

x :

∣∣∣∣∣∣K(x(t) +
0∫
−h

t∫
t+θ

eA(t+θ−τ)dα(θ)x(τ)dτ+

0∫
−h

t∫
t+θ

eA(t+θ−τ)dβ(θ)us(τ)dτ)

∣∣∣∣∣∣ ≤ ulim

,

where P > 0 is a solution to: (A− (
0∫
−h

eAθdβ(θ))K)
T

P + P(A− (
0∫
−h

eAθdβ(θ))K) < 0.

Then, B∗d∗ is an exponentially stable region for the closed-loop system (27), with input satura-
tion given by (38) and (39), where d∗ is the largest number whereby B∗d∗ ⊂ H∗.

Proof of Theorem 18. Considering system (27), and using state transformation (28), we
obtain the associate system of (27) in the form (30), where the matrix A is given by (29),

B =
0∫
−h

eAθdβ(θ), and the command contains saturation and is given by (32) and (33).

From condition 1, all the unstable eigenvalues of system (27) are contained in the
spectrum of the matrix A given by (29), and we can use Proposition 2, where F(·) = −µ(ỹ)K,
ỹ is given by (28), and we obtain the equivalence of stability between system (27) and
system (30).
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By applying Theorem 6 on the system (30), we note that if the matrix A− (
0∫
−h

eAθdβ(θ))K

is exponentially stable, then Bd∗ is the largest set that is situated within the unsaturated
region H, and B∗d∗ is an exponentially stable region for the closed-loop system (27), with
input saturation given by (38) and (39), where d∗ is the largest number whereby B∗d∗ ⊂ H∗,
and the proof of Theorem 18 is finished. �

5. Examples and Discussions

Four examples of input saturation and state-delay and input-delay systems are pre-
sented next to exemplify the way in which the global asymptotic stability of the closed-
circuit system can be determined under the conditions where the command applied to the
system can be randomly limited. Regarding the maximum allowable value of the delay,
although intuitively it must have a finite value, there are results regarding the stability
of the “independent delay” system, which ensures the stability of the system under the
conditions where the delay can have a randomly high value. Similarly, although intuitively
the system cannot be stabilized with a zero-amplitude command, the results obtained in
the previous sections and the following examples show that there are situations where
the command can be chosen to be randomly small, and the system remains stable, but the
response time increases accordingly. Following the algorithm presented in Section 3 for
solving transcendental matrix equation A = A0 + e−Ah A1, which is a key element, to find
the closed-circuit matrix, the equivalence of the system without delay but with saturation
is obtained, and, by applying the results obtained in the previous sections, it can be deter-
mined whether the initial system remains stable under the conditions of random command
limitation. Appendix A presents a method to solve the above-mentioned equation.

5.1. Example 1

Consider the system (Sd) with input saturation and state delay and input delay:

.
x(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) (50)

where: A0 =

[
−2.33 −1

0 −0.1

]
, A1 =

[
1 0
0 0

]
, B0 = B1 =

[
0
1

]
, h = 1.

Let υ0 = 0. We can verify if system (50) is spectrally controllable, namely:

rank
[
sI − A0 − e−hs A1

∣∣∣B0 + e−hsB1

]
= n = 2 , ∀s ∈ C .

In this case, we can follow the steps from Section 3 to solve the equation: A =
A0 + e−Ah A1.

The solution is: Ac =

[
−0.5670 −1

0 −0.1

]
, and then

Bc = B = B0 + e−hAB1 =
[

1.4086 2.1052
]′.

The associate system for (Sd) is given by:
.
ỹ(t) = Aỹ(t) + Bus(t), where A = Ac and

B = Bc.
The control law for the associated system is expressed in the following form: us(t) =

−Kỹ(t), and we chose the spectrum of the closed system: σ(A− BK) = {−1,−2}. Then,
we obtain K =

[
−0.2246 1.2585

]
.

The control law for (Sd) is obtained based on Proposition 1: us(t) = sat(u(t)), where:

u(t) = −Kx(t)−
0∫
−1

Ke−Ac(θ+1)A1x(t + θ)dθ −
0∫
−1

Ke−Ac(θ+1)B1u(t + θ)dθ (51)
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We find that the matrix P =

[
0.8818 −1.3221
−1.3221 18.2209

]
fulfills the condition that the set{

A, A− (B0 + e−AhB1)K
}

is simultaneously P Lyapunov stable, and, by applying Theorem
3, we note that the null solution of the closed-loop system with point delay (Sd) in form (50)
with input saturation given by (51) is globally asymptotically stable for any small value of
ulim. The simulations sustain this.

For the simulation steps T = 0.01s and Tf = 50s, using MATLAB, the evolution
of the states of system (50) without input saturation and the initial condition x(t) =[

1 −1
]′, t ∈ [−1, 0], is given in Figure 1.
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Figure 1. Evolution of the states without input saturation.

Furthermore, Figure 1 presents the command and the states of the associate sys-
tem, where the initial conditions are obtained using state transformation (8): ỹ(0) =[

1.3243 0
]′.

The evolution of the states of system (50) with |u| ≤ 0.1 is given in Figure 2 and, for
|u| ≤ 0.01, in Figure 3. Even when the value of ulim is decreasing arbitrarily, system (50) in
the closed loop is globally asymptotically stable.
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5.2. Example 2 
Consider system (Sd) with input saturation and state delay and input delay: 

)()()()()( 1010 htuBtuBhtxAtxAtx ss −++−+=  (52) 

where: 1,
1
1

,
00
01

,
00
10

1010 =







==








=








= hBBAA . 

The characteristic equation is: ( ) 0det 10 =−− − AeAsI hs , namely: 0)( =− −sess . 
For 20 =υ , the unstable poles of (Sd) are found to be: 

{ } 213751.45339.1,5671.0,0)( ΛΛσ ∪=±−= jSdu  

where { } { }3751.45339.1001 jj ±−=±= ωσΛ , 
{ } { }5671.0,0, 212 == ssΛ  and 2=N . We can verify if system (52) is spectrally con-

trollable, namely: 

CsnBeBAeAsIrank hshs ∈∀==+−− −− ,2]|[ 1010 . 

In this case, we can follow the steps from Section 3 to solve the equation:

10 AeAA Ah−+= . 

Corresponding to { }001 ωσΛ j±= , the matrix of left eigenvectors is 
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Figure 3. Evolution of the states with |u| ≤ 0.01.

5.2. Example 2

Consider system (Sd) with input saturation and state delay and input delay:

.
x(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) (52)

where: A0 =

[
0 1
0 0

]
, A1 =

[
1 0
0 0

]
, B0 = B1 =

[
1
1

]
, h = 1.

The characteristic equation is: det
(

sI − A0 − e−hs A1

)
= 0, namely: s(s− e−s) = 0.

For υ0 = 2, the unstable poles of (Sd) are found to be:

σu(Sd) = {0, 0.5671,−1.5339± j4.3751} = Λ1 ∪Λ2

where Λ1 = {σ0 ± jω0} = {−1.5339± j4.3751},
Λ2 = {s1, s2} = {0, 0.5671} and N = 2. We can verify if system (52) is spectrally

controllable, namely:

rank[sI − A0 − e−hs A1

∣∣∣B0 + e−hsB1] = n = 2 , ∀s ∈ C .

In this case, we can follow the steps from Section 3 to solve the equation: A =
A0 + e−Ah A1.

Corresponding to Λ1 = {σ0 ± jω0}, the matrix of left eigenvectors is Q =

[
σ0 1
ω0 0

]
,

the matrix of eigenvalues is J =
[

σ0 −ω0
ω0 σ0

]
, and we obtain:

Ac1 = Q−1 JQ =

[
2σ0 1

−(σ2
0 + ω2

0 0

]
=

[
−3.0678 1.0
−21.4951 0.0

]
.

For Λ2 = {0, 0.5671}, the matrix of left eigenvectors is Q =

[
0 1
s2 1

]
, the matrix of

eigenvalues is J =
[

0 0
0 s2

]
, and we obtain:

Ac2Q−1 JQ =

[
s2 1
0 0

]
=

[
0.5674 1.0

0.0 0.0

]
.
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The solution is Ac = diag{Ac1, Ac2},

Ac =


−3.0678 1.0 0.0 0.0
−21.4951 0.0 0.0 0.0

0.0 0.0 0.5674 1.0
0.0 0.0 0.0 0.0

 and then

Bc = B = B0 + e−hAB1 =
[
−1.06 −20.4948 0.8039 2.0

]′
where B0 = B1 =

[
1 1 1 1

]′.
The associate system for (Sd) is given by

.
ỹ(t) = Aỹ(t) + Bus(t), where A = Ac and

B = Bc.
The control law for the associated system is expressed in the following form: us(t) =

−Kỹ(t), and we chose the spectrum of the closed system: σ(A− BK) = {−2,−3,−4,−5}.
Then, we obtain K =

[
−0.9226 −0.1429 4.0252 2.1746

]
.

We note K1 =
[
−0.9226 −0.1429

]
and K2 =

[
4.0252 2.1746

]
.

The control law for (Sd) is obtained based on Proposition 1 and (19): us(t) = sat(u(t)),
where:

u(t) = −
[

2

∑
i=1

Ki

]
x(t)−

0∫
−1

[
2

∑
i=1

Kie−Aci(θ+1)

]
A1x(t + θ)dθ −

0∫
−1

[
2

∑
i=1

Kie−Aci(θ+1)

]
B1u(t + θ)dθ (53)

Using MATLAB, we cannot find a matrix P that fulfills the condition that the set{
A, A− (B0 + e−AhB1)K

}
is simultaneously P Lyapunov stable, and we cannot apply

Theorem 3.
In addition, this Theorem gives just sufficient conditions for stability, but, in our case,

we can consider it a clue that there could be a value ulim under which the system becomes
unstable for |us| < ulim. The simulations sustain this.

For simulation, we chose the step T = 0.01s, final time Tf = 50s, and, using MATLAB,
the evolution of the states of system (52) without saturation in command and initial
condition x(t) =

[
1 1

]′, t ∈ [−1, 0] is given in Figure 4.

Automation 2022, 3, FOR PEER REVIEW 27 
 

 

 
Figure 4. Evolution of the states without input saturation. 

 

Figure 5. Evolution of the states with 5.0≤u . 

 

Figure 6. Evolution of the states with 6271.0≤u . 

5.3. Example 3 
Consider the system (Sd) with input saturation and state delay and input delay: 

Figure 4. Evolution of the states without input saturation.

The evolution of the states of system (52) with |u| ≤ 5 is given in Figure 5 and, for
|u| ≤ 0.6271, in Figure 6. For this value, we note that there are oscillations. For values of
ulim < 0.6271, the system becomes unstable.
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5.3. Example 3 
Consider the system (Sd) with input saturation and state delay and input delay: 

Figure 5. Evolution of the states with |u| ≤ 0.5.
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5.3. Example 3

Consider the system (Sd) with input saturation and state delay and input delay:

.
x(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) (54)

where: A0 =

[
−1.75 0
0.25 −1.75

]
, A1 =

[
0 0.25
0 0

]
, B0 = B1 =

[
0
1

]
, h = 1.

Let υ0 = 0. We can verify if the system (54) is spectrally controllable, namely:

rank[sI − A0 − e−hs A1

∣∣∣B0 + e−hsB1] = n = 2 , ∀s ∈ C .

In this case, we can follow the steps from Section 3 to solve the equation: A =
A0 + e−Ah A1.

The solution is:

Ac =

[
−1.75 1.8514
0.25 −2.2545

]
and then Bc = B = B0 + e−hAB1 =

[
−14.9461 12.4786

]′.
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The associate system for (Sd) is given by:
.
ỹ(t) = Aỹ(t) + Bus(t), where A = Ac and

B = Bc.
The control law for the associate system is expressed in the following form: us(t) =

−Kỹ(t), and we chose the spectrum of closed system: σ(A− BK) = {−0.5,−1}.
Then, we obtain K =

[
0.0587 −0.1304

]
.

The control law for (Sd) is obtained based on Proposition 1: us(t) = sat(u(t)), where:

u(t) = −Kx(t)−
0∫
−1

Ke−Ac(θ+1)A1x(t + θ)dθ −
0∫
−1

Ke−Ac(θ+1)B1u(t + θ)dθ (55)

We find that the matrix P =

[
0.3093 0.1653
0.1653 0.3576

]
fulfills the condition that the set{

A, A− (B0 + e−AhB1)K
}

is simultaneously P Lyapunov stable and, by applying Theorem
3, we note that the null solution of the closed-loop system with point delay (Sd) in form (54)
with input saturation given by (55) is globally asymptotically stable for any small value of
ulim. The simulations sustain this.

For the simulation step T = 0.01s and Tf = 50s, using MATLAB, the evolution
of the states of system (54) without input saturation, and the initial condition x(t) =[

1 −1
]′, t ∈ [−1, 0], is given in Figure 7.
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Figure 7. Evolution of the states without input saturation.

Furthermore, Figure 7 presents the command and the states of the associate sys-
tem, where the initial conditions are obtained using the state transformation (8): ỹ(0) =[
−0.7605 0.1361

]′.
The evolution of the states of system (50) with |u| ≤ 0.06 is given in Figure 8 and, for

|u| ≤ 0.01, in Figure 9. Even when the value of ulim is decreasing arbitrarily, system (54) in
closed loop is globally asymptotically stable.
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Figure 8. Evolution of the states with |u| ≤ 0.06.
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Figure 9. Evolution of the states with |u| ≤ 0.01.

5.4. Example 4

Consider system (Sd) with input saturation and state delay and input delay, which
is presented in many studies, [7,8,27,35,39], but without input saturation. This system
represents the operation of a motor rocket propellant under a simplified and normalized
form.

.
x(t) = A0x(t) + A1x(t− h) + B0us(t) + B1us(t− h) (56)

where: A0 =


0 0 0 0
0 0 0 −1
−1 0 −1 1
0 1 −1 0

, A1 =


−1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , h = 1, B0 =
[

0 1 0 0
]′ ,

B1 =
[

0 1 0 0
]′.

In addition, in [35], a sliding control technique was used for the stabilization of the
associated system and then for the initial system. In [21], the synthesis of the controller
was based on the receding horizon control. In these approaches, the command is supposed
unsaturated.
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The characteristic equation is: det
(

sI − A0 − e−hs A1

)
= 0, and, for υ0 = 1, the unsta-

ble poles of (Sd) are found to be: σu(Sd) = {−0.1862± j0.9179,−0.1125± j1.5201} =Λ1 ∪
Λ2, where Λ1 = {σ1 ± jω1} and Λ2 = {σ2 ± jω2}.

We can verify if the system (56) is spectrally controllable, namely:

rank[sI − A0 − e−hs A1

∣∣∣B0 + e−hsB1] = n = 4 , ∀s ∈ C,

or equivalent: rank


s + e−s 0 −1 0 0

0 s 0 1 1
1 0 s + 1 −1 0
0 −1 1 s 0

 = n = 4 , ∀s ∈ C .

In this case, we can follow the steps from Section 3 to solve the equation: A =
A0 + e−Ah A1.

The matrices J and Q become: J =


σ2 −ω2 0 0
ω2 σ2 0 0
0 0 σ1 −ω1
0 0 ω1 σ1

 and

Q =


1 −0.0055 −0.1578 −0.7335
0 0.4821 −0.6277 0.0459

0.6508 −0.8652 −0.3428 0.6353
−0.3140 −0.5165 0.1967 −0.6981

.

With these, we obtain Ac = Q−1 JQ =


−1.0193 0 1.0193 0
−0.4986 0 0.4986 −1
−2.8718 0 0.8718 1
−0.9215 1 −0.0785 0

 and

Bc = B = B0 + e−hAB1 =
[

0 1 0 0
]′.

The associate system for (Sd) is given by
.
ỹ(t) = Aỹ(t) + Bus(t), where A = Ac and

B = Bc.
The control law for the associated system is expressed in the following form: us(t) =

−Kỹ(t), and we chose the spectrum of the closed system: σ(A− BK) = {−1± j,−1± 0.5j}.
Then, we obtain: K =

[
−7.6801 3.8526 −2.8497 3.5650

]
.

The control law for (Sd) is obtained based on Proposition 1: us(t) = sat(u(t)), where:

u(t) = −Kx(t)−
0∫
−1

Ke−Ac(θ+1)A1x(t + θ)dθ (57)

Using MATLAB, we cannot find a matrix P that fulfills the condition that the set{
A, A− (B0 + e−AhB1)K

}
is simultaneously P Lyapunov stable, and we cannot apply

Theorem 3.
In addition, this theorem gives sufficient conditions for stability, but, in our case, we

can consider it a clue that there could be a value ulim under which the system becomes
unstable |us| < ulim. The simulations sustain this.

For simulation, we chose the step T = 0.01 s and final time Tf = 50 s, and, using
MATLAB, the evolution of the states of system (56) without input saturation and the initial
condition x(t) =

[
1 1

]′, t ∈ [−1, 0], is given in Figure 10.
The evolution of the states of system (56) with |u| ≤ 0.8 is given in Figure 11 and, for

|u| ≤ 0.01, in Figure 12. For this value, we observed oscillations appeared. For the value of
ulim < 0.01, the system becomes unstable.

The results obtained are consistent with the results obtained and presented in the
bibliographic approaches presented, and the system cannot remain stable in the case of a
command with randomly low saturation.
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6. Conclusions

In this article, we presented sufficient conditions for the global asymptotic stability
of the systems with point or distributed state delay and input delay and input saturation
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in the single-input or multiple-input case. Using a linear transformation applied on the
initial system with delay, we obtained an associated system with no delay, but which
was equivalent from the point of view of stability. The investigations continued using
some results from the study of systems with input saturation, and the main results were
synthesized in twelve new theorems. These theorems state that under the condition that
all the unstable eigenvalues of the initial system with delay are contained in the spectrum
of the matrix of the associated system without delay and if some matrix inequalities are
true, the control law of the reduced system can ensure the global asymptotic stability of the
initial system with delay and input saturation.

Theorems were obtained on the stability of mono- and multiple-input systems and on
instability and the estimation of the stability region for systems with state delay and input
delay (point or distributed) and input saturation. A numerical solution to the transcendental
matrix equation A = A0 + e−Ah A1 was proposed using the computational intelligence PSO
algorithm. Some numerical examples were also presented to highlight how to apply the
results obtained regarding the stability of delay and saturation systems.

Funding: The study was developed with funds from the Ministry of Education and Scientific
Research—Romania as part of the NUCLEU Program: PN 19 38 01 03.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Numerical solution to the equation: A = A0 + e−Ah A1
For a dimension of the system equal to 2, we can start from the analytic continuation

of the matrix expm(A), and, by obtaining four nonlinear equations, the solution consists in
using the function fsolve in MATLAB. For a dimension of the system greater than or equal
to 2, a computational intelligence calculation method is presented, i.e., PSO.

Thus, in the general case where A is given by (A1), by expanding as usual according
to the eigenvalues of the matrix A [108], the expression of the exponential expansion can be
obtained as in (A2).

A =

[
a b
c d

]
(A1)

eA =
eλ1 − eλ2

λ1 − λ2
A +

(
eλ1 − λ2

eλ1 − eλ2

λ1 − λ2

)
· I (A2)

By making the notation in (A3), we obtain the system of equations in (A4) and (A5).

µ =

√
(a− d)2 + 4bc (A3)

eA = e
a+d

2

[
cosh

( µ
2
)
+ 1

2 (a− d) sin _ch
( µ

2
)

b · sin _ch
( µ

2
)

c · sin _ch
( µ

2
)

cosh
( µ

2
)
− 1

2 (a− d) sin _ch
( µ

2
) ] (A4)

where:

sin _ch(x) =

{
sinh(x)

x , x 6= 0
1, x = 0

(A5)

The MATLAB implementation of the algorithm for the transcendental matrix equation
with the dimension = 2 based on the fsolve MATLAB function [109] is presented in Figure A1.

If the dimension of the matrix is greater than or equal to 2, a PSO optimization
method [110] will be used to solve the transcendental matrix equation A = A0 + e−Ah A1,
where A0 and A1 are known matrices. The algorithm will provide the matrix A, which
minimizes the error criterion:

error = norm
(

A− A0 + e−Ah A1

)
(A6)
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where: norm is any usual matrix norm implemented in MATLAB (for example, the Frobe-
nius norm) [109].
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Figure A1. MATLAB implementation of the algorithm for the transcendental matrix equation with
dimension = 2.

The PSO has a description similar to the algorithm for obtaining an optimal path in
relation to a reference of a group of particles. We denote the position of the particle i as xi
and the current speed of the particle i as vi. Based on these notations, the personal optimum
i is expressed as follows:

yi(t + 1) =
{

xi(t + 1) i f f (xi(t + 1)) < f (yi(t))
yi(t) else

(A7)

We denote the best position of the neighborhood of a particle i as ŷi; then, the social
optimum of the particle i is expressed as follows:

ŷ(t) = argmin( f (y1(t)), f (y2(t)), . . . , f (yn(t))) (A8)

Recurrent relations between position and speed can be described as follows:{
vi,j(t) = wvi,j(t) + c1r1,j(t)

(
yi,j(t)− xi,j(t)

)
+ c2r2,j(t)

(
ŷi,j(t)− x̂i,j(t)

)
xi(t + 1) = xi(t) + vi(t + 1)

(A9)

where w represents the inertia weight (usual w = 0.9), i = 1, ..., N (N represents the number
of particles); j = 1, ..., D (D represents the dimension of the problem); r1 and r2 are random
numbers; and c1 and c2 are positive constants.

The implementation of the PSO algorithm in MATLAB/Simulink is presented in
Figure A2.

For a system given by A0 =


0 0 0 0
0 0 0 −1
−1 0 −1 1
0 1 −1 0

, A1 =


0 0 1 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , and

h = 1, following the previous PSO procedure, in Figure A3 the difference matrix between
left and right members of the transcendental matrix equation A = A0 + e−Ah A1 is pre-
sented. It can be noted that the each elements of the difference matrix and the norm of
this matrix is almost equal zero. This proves that the presented computational intelligence
method solves with precision the transcendental matrix equation. It can be noted that
similar results could be obtained with other computational intelligence algorithms (genetic
algorithm, Grey Wolf algorithm, Simulated Annealing algorithm, and so on).

Remark A1. It can be noted that, for matrices A0 and A1 above (similar to those presented in
example 4), the difference matrix between left and right members of the transcendental matrix
equation, A = A0 + e−Ah A1, calculated using the matrix norm, in case of applying the PSO
procedure, this norm is about 10−3, and, in case of applying the classical procedure presented in
example 4, the value of this norm is about 10−1, which shows a significant improvement in accurately
solving the respective transcendental matrix equation by the method proposed in this article.
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