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Abstract: This paper presents a new passivity-preserving order reduction method for linear time-
invariant passive systems, which are also called positive real (PR) systems, with the aid of the
balanced truncation (BT) method. The proposed method stems from the conic positive real balanced
truncation (CPRBT) method, which is a modification of the BT method for PR systems. CPRBT
presents an algorithm in which the reduced models are obtained from some Riccati equations in
which the phase angle of the transfer function has been taken into consideration. Although CPRBT
is a powerful algorithm for obtaining accurate PR reduced-order models, it cannot guarantee that
the phase diagram of the reduced model remains inside the same interval as that of the original
full-order system. We aim to address such a problem by modifying CPRBT in the way that the phase
angle of the reduced transfer function always remains inside the conic and homolographic phase
interval of the original system. This is proven through some matrix manipulations, which has added
mathematical value to the paper. Finally, in order to assess the efficacy of the proposed method, two
numerical examples are simulated.

Keywords: model order reduction; balanced truncation; positive real systems; passivity; Riccati
equations

1. Introduction

Model order reduction (MOR) plays a fundamental role in the analysis, control, and
simulation of real-world systems. As most of these systems are naturally high order, a lot
of computational effort is needed to analyze them. MOR tries to address this problem by
simplifying the formulation of such high-order systems, creating reduced-order models
with the desired accuracy. The input–output behavior of these reduced-order models is
expected to be as close as possible to that of the original high-order systems. More impor-
tantly, MOR algorithms should guarantee that basic features of the original system, such as
stability and passivity, remain unchanged in the reduced model.

Order reduction has been an interesting research topic since the 1980s. Therefore, a lot
of order reduction methods were published during this period, some of which are bal-
anced truncation (BT) [1], proper orthogonal decomposition (POD) [2], Hankel–Norm
reduction [3], H∞ model reduction [4], Padé Via Lanczos (PVL) [5], asymptotic waveform
evaluation (AWE) [6,7], and PRIMA [8]. While these methods are designed to reduce
the order of systems in all frequencies, some other methods are specifically developed
to reduce the order of systems over a special frequency interval, such as Enns’ [9] and
Gawronski’s [10] frequency-weighted methods. Several other model reduction procedures
have been developed based on this concept including [11–13]. In addition, instead of
reducing the order of systems in an infinite time horizon, some works consider reducing
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the order of systems over limited time intervals [14]. In order to find more publications in
the area of model reduction, readers are referred to [15–18].

Among order reduction schemes, BT is so popular for reducing the order of linear
time-invariant (LTI) systems, and it has a great reputation for preserving stability and
offering an error bound. This method, however, cannot preserve some other features of the
system such as passivity, bounded realness, and the negative imaginary property. In order
to meet these requirements, some modifications to the BT method have been developed
over the years such as bounded real balanced truncation (BRBT) [19], negative imaginary
balanced truncation (NIBT) [20], positive real balanced truncation (PRBT) [21], mixed
positive-bounded balanced truncation (MPBBT) [22], and conic positive real balanced
truncation (CPRBT) [23].

Passive systems are a well-known class of dynamical systems that have wide applica-
tions in circuits, systems, and control theory [24–26]. The main feature of these systems is
that they cannot produce energy, and they just store or dissipate energy [27]. Therefore, it is
very important to maintain this property in the reduced models. In the case of LTI systems,
passivity is also known as positive realness, and such systems are called positive real (PR)
systems [27]. As mentioned before, the BT method cannot preserve passivity, and this is
why some other modifications to this method have been developed which can preserve
passivity, such as PRBT [21], mixed Gramian balanced truncation with error bounds [28],
and CPRBT [23]. Some other passivity preserving order reduction methods are [22,29,30].

In this paper, we focus on the order reduction of PR systems whose transfer function
lies inside a conic sector with an inner angle 2θ, as indicated in Figure 1, based on balancing
methods. The phase angle of the transfer function gives us valuable information about the
capacitive and inductive properties of that system. Using such information contributes to
achieving more accurate reduced models. The CPRBT method is a passivity-preserving
balancing-based method which has used the phase angle of the transfer function in order
reduction for the first time [23]. This method, however, cannot guarantee that the transfer
function of the reduced model remains in the conic sector with the inner angle 2θ displayed
in Figure 1. In order to overcome this issue, this paper presents a novel order reduction
scheme for PR systems that not only preserves passivity but also guarantees that the
reduced model’s phase angle lies inside (−θ, θ) as shown in Figure 1. The proposed
method, named “Phase Preserving Balanced Truncation”, is inspired by the so-called
CPRBT method and uses the same Riccati equations as CPRBT, but the choice of Gramians
for balancing and order reduction is different. With the aid of these Gramians, a new
realization is defined for PR systems, in which by selecting the states corresponding to the
largest singular values, two parallel reduced models can be obtained. Separating these
two parallel reduced models, we reach the final reduced model. Subsequently, it is proved
via a theorem that not only the transfer function of the reduced model is passive, but it
also remains in the conic sector with the inner angle 2θ. In order to assess the efficacy
of the proposed method, two numerical examples are also provided, which confirm the
mathematical results.

θ

Im{H(jω)}

Re{H(jω)}

Figure 1. Conic sector with the inner angle 2θ.
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The rest of this paper is arranged in the following sequence. The two order reduction
methods, BT and CPRBT, are studied in Section 2. Then, a new order reduction method
named “Phase Preserving Balanced Truncation” is introduced in Section 3. Subsequently,
two numerical examples are included to assess the efficacy of the proposed method in
Section 4. Finally, this paper ends with the conclusion in Section 5.

Notations: The fields of real and complex numbers are shown by symbols R and C,
respectively. The set of all n×m real matrices is represented by Rn×m. Furthermore, In
denotes n× n identity matrices. The transpose of matrix A is shown by AT . Moreover, the
inverse of A is represented by A−1, and the inverse of AT is indicated by A−T . Moreover,
A > 0 (A ≥ 0) means that matrix A is positive (semi) definite.

2. Preliminaries

This section describes two balancing-based order reduction methods: the BT method
and the CPRBT method. In the first place, we assume that an asymptotically stable, minimal,
and LTI system is represented by{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (1)

where A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is the output
matrix, and D ∈ Rp×m is the feed-forward matrix. In addition, x(t) ∈ Rn is the state vector,
u(t) ∈ Rm is the input vector, and y(t) ∈ Rp is the output vector of the system. The transfer
function of this system is described by

H(s) = C(sI−A)−1B + D. (2)

2.1. Balanced Truncation (BT)

The main focus of the BT method is on finding a realization in which the controllability
Gramian P and the observability Gramian Q are diagonal and equal in value [1]. For
asymptotically stable and minimal systems, these two positive definite (PD) Gramians are
the unique solutions of

AP + PAT + BBT = 0, (3)

ATQ + QA + CTC = 0. (4)

The BT method finds a specific similarity transformation T ∈ Rn×n such that

TTQT = T−1PT−T = diag(λ1, λ2, . . . , λn),

where λ1 > λ2 > . . . > λn > 0. λi is known as the Hankel singular value of the system for
i = 1, . . . , n. Transforming the original system into the new coordination obtains

H(s) ∼
[

Â B̂
Ĉ D

]
=

 Â11 Â12 B̂1
Â21 Â22 B̂2
Ĉ1 Ĉ2 D

. (5)

To reach the rth order reduced model Hr(s), BT selects the first r states which are
associated with the r largest Hankel singular values; that is,

Hr(s) ∼
[

Â11 B̂1
Ĉ1 D

]
.

The reduced model Hr(s), obtained by the BT method, is asymptotically stable and
minimal [1,31]. Although this method preserves asymptotic stability, it is incapable of
preserving passivity.
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2.2. Conic Positive Real Balanced Truncation (CPRBT)

CPRBT is a balancing-based order reduction method for PR systems which preserve
passivity. This method is the first one ever which has used the phase angle of the transfer
function in order reduction to reach more accurate reduced models.

Definition 1 ([32]). The transfer function H(s) in (2) is called positive real if

m = p, DT + D ≥ 0 and HT(−jω) + H(jω) ≥ 0, for ∀ω ∈ R. (6)

Lemma 1 ([23]). The transfer function of the positive real single-input single-output (SISO)
system H(s) lies in the conic sector (−θ, θ), as shown in Figure 1, if and only if there exists
Fa = FT

a > 0 ∈ R2n×2n such that

AT
a Fa + FaAa +

(
FaBa − CT

a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])
×N−1

a

(
FaBa − CT

a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])T

= 0,

(7)

where [
Aa Ba
Ca Da

]
:=


A 0 B 0
0 A 0 B
C 0 D 0
0 C 0 D

,

Na := DT
a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

]
+

[
sin(θ) cos(θ)
− cos(θ) sin(θ)

]
Da,

(8)

and Aa ∈ R2n×2n, Ba ∈ R2n×2, Ca ∈ R2×2n, and Da ∈ R2×2.

The dual of (7) is given by

AaEa + EaAT
a +

(
EaCT

a − Ba

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])
×N−1

b

(
EaCT

a − Ba

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])T

= 0,

(9)

where Ea = ET
a > 0 ∈ R2n×2n and

Nb := Da

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

]
+

[
sin(θ) cos(θ)
− cos(θ) sin(θ)

]
DT

a . (10)

We assume that Na and Nb in (8) and (10) are nonsingular matrices. Equations (7)
and (9) have two extremal solutions, which means any solutions Fa and Ea of (7) and (9),
respectively, satisfy 0 < Famin ≤ Fa ≤ Famax and 0 < Eamin ≤ Ea ≤ Eamax [23]. For the rest of
this paper by Fa and Ea, we mean Famin and Eamin , respectively.

CPRBT partitions Fa and Ea into four blocks as

Fa =

[
F W

WT F̄

]
, Ea =

[
E V

VT Ē

]
, (11)

where F, F̄, W ∈ Rn×n and E, Ē, V ∈ Rn×n. Following this, CPRBT balances the two
Gramians F and E, which are in the upper-left corner of Fa and Ea, respectively, by finding
a similarity transformation T ∈ Rn×n such that

TTFT = T−1ET−T = ∆ = diag(∆1, ∆2),
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where ∆1 = diag(δ1, . . . , δr), ∆2 = diag(δr+1, . . . , δn), and δ1 > δ2 > . . . > δn > 0. Apply-
ing the similarity transformation T to the original system, one obtains

H(s) ∼
[

Â B̂
Ĉ D

]
=

 Â11 Â12 B̂1
Â21 Â22 B̂2
Ĉ1 Ĉ2 D

. (12)

Finally, CPRBT offers the reduced model Hr(s) by choosing

Hr(s) ∼
[

Â11 B̂1
Ĉ1 D

]
. (13)

It is proved that the reduced model Hr(s) obtained from CPRBT is positive real
(passive) [23]. However, this method cannot guarantee that the phase angle of the reduced
model remains inside (−θ, θ).

Remark 1 ([23]). CPRBT obtains the same results for positive real multiple-input multiple-output
(MIMO) systems. For more information please refer to Remark 4 in [23].

3. Phase Preserving Balanced Truncation

In this section, a new order reduction algorithm is presented for PR systems which
not only preserves passivity but also guarantees that the phase angle of the reduced model
remains inside (−θ, θ), as shown in Figure 1. This means that the upper bound of the
absolute value of the reduced model’s phase angle would not be bigger than that of the
original system’s phase angle.

For the purpose of simplification, we consider SISO systems; however, the results
are applicable to MIMO systems as well. Consider Riccati Equations (7) and (9). Unlike
CPRBT which looks for a similarity transformation T ∈ Rn×n which balances F ∈ Rn×n

and E ∈ Rn×n of (11), the proposed method searches for a similarity transformation
Ta ∈ R2n×2n which balances Fa ∈ R2n×2n and Ea ∈ R2n×2n of (7) and (9) such that

TT
a FaTa = T−1

a EaT−T
a = Ψ = diag(Ψ1, Ψ2),

where Ψ1 = diag(ψ1, . . . , ψ2r), Ψ2 = diag(ψ2r+1, . . . , ψ2n), and ψ1 > ψ2 > . . . > ψ2n > 0.
We call ψi as the phase preserving singular value of the system for i = 1, . . . , 2n.

Remark 2. Note that the above statement is valid because when we apply the similarity trans-
formation Ta to the system (Aa, Ba, Ca, Da), the Gramians Fa and Ea change based on the rules
Fa → TT

a FaTa and Ea → T−1
a EaT−T

a [23]. Therefore, EaFa → T−1
a EaFaTa, which means that the

eigenvalues of EaFa remain invariant under similarity transformation [23]. As a consequence, there
exists a similarity transformation Ta which balances Fa and Ea. It is clear that such a similarity
transformation can be obtained in the same way as the BT method.

Applying the similarity transformation Ta ∈ R2n×2n to the parallel system H(s)I2,
one obtains

H(s)I2 =

[
H(s) 0

0 H(s)

]
∼
[

T−1
a AaTa T−1

a Ba
CaTa Da

]
=

[
Âa B̂a
Ĉa Da

]
. (14)

Then, partitioning Âa, B̂a, Ĉa based on the 2r largest ψi obtains

H(s)I2 ∼
[

Âa B̂a
Ĉa Da

]
=

 Âa11 Âa12 B̂a1

Âa21 Âa22 B̂a2

Ĉa1 Ĉa2 Da

. (15)
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Now, we select the parallel reduced model Hr(s)I2 of order 2r by selecting the states
corresponding to the 2r largest ψi as[

Hr(s) 0
0 Hr(s)

]
∼
[

Âa11 B̂a1

Ĉa1 Da

]
. (16)

Since Hr(s)I2 represents two isolated parallel systems, it is so straightforward to
extract the reduced model Hr(s). For the sake of clarification, the algorithmic steps of the
proposed method are summarized in Algorithm 1.

Algorithm 1 Phase preserving balanced truncation

1: Consider the positive real and SISO system H(s) whose phase angle is inside (−θ, θ).
2: Compute Fa ∈ R2n×2n and Ea ∈ R2n×2n by solving (7) and (9), respectively.
3: Obtain the balancing similarity transformation Ta ∈ R2n×2n such that

TT
a FaTa = T−1

a EaT−T
a = Ψ = diag(Ψ1, Ψ2),

where Ψ1 = diag(ψ1, . . . , ψ2r), Ψ2 = diag(ψ2r+1, . . . , ψ2n), and ψ1 > ψ2 > . . . > ψ2n >
0.

4: Find the state space form of H(s)I2 in the new coordination as

H(s)I2 =

[
H(s) 0

0 H(s)

]
∼
[

T−1
a AaTa T−1

a Ba
CaTa Da

]
=

[
Âa B̂a
Ĉa Da

]
. (17)

5: Partition Âa, B̂a, Ĉa based on the 2r largest ψi as

H(s)I2 ∼
[

Âa B̂a
Ĉa Da

]
=

 Âa11 Âa12 B̂a1

Âa21 Âa22 B̂a2

Ĉa1 Ĉa2 Da

. (18)

6: Select Hr(s)I2 as [
Hr(s) 0

0 Hr(s)

]
∼
[

Âa11 B̂a1

Ĉa1 Da

]
. (19)

7: As Hr(s)I2 represents two separate systems, extract the rth order Hr(s) from (19) by
eliminating the redundant states.

Theorem 1. The phase diagram of the reduced model Hr(s) obtained from the proposed algorithm
always remains inside (−θ, θ).

Proof. Assume that the system H(s)I2 is in the balanced realization (17). The Riccati
equation (7) in the new coordination would be

ÂT
a Ψ + ΨÂa +

(
ΨB̂a − ĈT

a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])
×N−1

a

(
ΨB̂a − ĈT

a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])T

= 0.

(20)

Considering Ψ = diag(Ψ1, Ψ2), we can extract the (1, 1) block of (20) as

ÂT
a11

Ψ1 + Ψ1Âa11 +

(
Ψ1B̂a1 − ĈT

a1

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])
×N−1

a

(
Ψ1B̂a1 − ĈT

a1

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])T

= 0.

(21)
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Since (Âa11 , B̂a1 , Ĉa1 , Da) represents two separate parallel systems, there exists a simi-
larity transformation T̄a ∈ R2r×2r which can extract these two systems as

[
Āa B̄a
C̄a Da

]
:=
[

T̄−1
a Âa11 T̄a T̄−1

a B̂a1

Ĉa1 T̄a Da

]
=


Ar 0 Br 0
0 Ar 0 Br

Cr 0 D 0
0 Cr 0 D

. (22)

Applying T̄a to the system (Âa11 , B̂a1 , Ĉa1 , Da) also yields

ĀT
a Ψ̄ + Ψ̄Āa +

(
Ψ̄B̄a − C̄T

a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])
×N−1

a

(
Ψ̄B̄a − C̄T

a

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

])T

= 0,

(23)

where Ψ̄ = T̄T
a Ψ1T̄a. In the meantime, because of the fact that Ψ1 > 0, we yield Ψ̄ > 0.

As a consequence, based on the Riccati equation (23), we can say Lemma 1 holds for the
reduced-order model Hr(s) with the state-space form

Hr(s) ∼
[

Ar Br
Cr D

]
. (24)

This completes the proof.

Corollary 1. The reduced model Hr(s) obtained from the proposed algorithm preserves passivity.

Remark 3. The same results can be held for positive real MIMO systems although we have only
studied SISO systems for simplification. To this end, we have to use the associated Riccati equations
for MIMO systems which are defined in [23] instead of (7) and (9) and then use the same procedure
as the proposed algorithm to obtain the reduced model.

4. Illustrative Examples

This section provides two illustrative examples to investigate the efficacy of the
proposed method.

4.1. Example 1

In this example, a 10th order PR system is examined whose state-space form is

A = block diag
k=1,...,5

(
0 1
−π2

k −2µπk

)
, πk = k2, k = 1, . . . , 5, µ = 0.01,

C = BT = [ 0 0.9877 0 −0.309 0 −0.891 0 0.5878 0 0.7071 ],

D = 0.2.

(25)

We want to reach the reduced model of order r = 4 utilizing two methods: CPRBT
and the proposed method (phase preserving balanced truncation). As the phase angle of
the transfer function is inside (−83, 83), we chose θ = 83 in both methods. The state-space
form of the 4th order reduced model obtained by the proposed method is given by

[
Ar Br
Cr D

]
=


−0.0423 2.6976 0.0036 −0.0151 1.0438
−2.6027 −0.0545 −1.3232 0.0217 −1.2909
−0.0399 1.3668 −0.0104 −1.1544 0.2793
0.0389 −0.0508 1.1624 −0.0122 −1.1533
0.5282 −0.6426 0.1335 −0.5749 0.2

. (26)
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The bode diagrams of the reduced-order models, along with the full-order system, are
depicted in Figure 2.

Figure 2. The bode diagrams of the original system, the CPRBT reduced model, and the proposed
reduced model in Example 1.

Comparing the phase angle of the reduced models, we observe that the phase angle of
the proposed reduced model remains inside (−83, 83), while the phase angle of the reduced
model obtained by CPRBT exceeds this bound and comes inside (−83.145, 83.145). This
clearly shows the efficacy of the proposed method. The two reduced models approximately
have the same levels of accuracy in terms of the input–output behavior of the system, and
their magnitude in the bode plot almost matches each other. Figure 2 completely confirms
the results.

4.2. Example 2

Here, we provide an example which illustrates the effectiveness of the proposed
method regarding accuracy in the input–output behavior of the system. Consider the 6th
order PR system with the state-space form

A =



0 0 0 100 −100 0
0 0 0 0 100 0
0 0 −110 0 0 −100
−100 0 0 −10 0 100
100 −100 0 0 −10 0
0 0 100 −100 0 0

,

B =
[

0 0 100 0 0 0
]T , C =

[
0 0 1 0 0 0

]
, D = 1.

(27)

The phase angle of the above system is inside (−18.1, 18.1). Therefore, we choose
θ = 18.1 for the proposed method and CPRBT. We also select r = 4 to reach the 4th order
reduced models. The reduced model obtained by the proposed method is given by

[
Ar Br
Cr D

]
=


−100.34 −108.79 14.35 23.06 −13.22
111.56 −3.42 −59.26 −12.07 0.65
−62.33 64.26 −7.20 −32.65 −3.37
50.91 13.71 48.68 −14.16 4.67
−6.40 −0.18 −1.52 2.50 1

. (28)

The bode diagrams of the reduced models, along with the full-order system, are
illustrated in Figure 3. In addition, the frequency response of the error system H(s)−Hr(s),
obtained from CPRBT and the proposed method, is depicted in Figure 4 which enables us
to compare the results precisely.
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Figure 3. The bode diagrams of the original system, the CPRBT reduced model, and the proposed
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Figure 4. The frequency response of the error system H(s)− Hr(s) obtained from CPRBT and the
proposed method in Example 2.

As shown in Figures 3 and 4, the proposed method creates a more accurate reduced
model than CPRBT, although both methods provide reduced models whose phase angles
remain inside (−18.1, 18.1). The H∞ norm of the error system H(s)− Hr(s) is 0.3714 for
the CPRBT reduced model and 0.3685 for the proposed reduced model, which confirms
that the proposed method has offered a better reduced-model than CPRBT.

5. Conclusions

This paper proposes a new passivity-preserving order reduction method for PR
systems whose phase angle is inside the interval (−θ, θ). The proposed method is a
modification to the CPRBT method. What makes this method different from CPRBT is that
it proves the phase angle of the reduced models remains inside the same interval as that of
the original system, in contrast to CPRBT. In addition, in some cases, the proposed method
can produce more accurate reduced models than CPRBT. In order to assess this method,
two numerical examples are simulated. Example 1 perfectly verifies that the phase angle
of the reduced model obtained by the proposed method remains inside (−θ, θ), while the
reduced model obtained by CPRBT exceeds this interval. In addition, Example 2 shows
that the proposed method can even find reduced models of higher accuracy than CPRBT.
These two points show the effectiveness of the proposed method. Although the provided
examples are simple, the proposed method can be applied to high-dimensional systems
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as well. As future work, it is of interest to find a computational H∞ error bound for the
proposed method. It is also suggested to extend this method to discrete-time, nonlinear,
and descriptor systems. Furthermore, the robustness of the proposed method can be the
topic of future research.
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