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Abstract: The closed-loop optimal control systems using the receding horizon control (RHC) struc-
ture make predictions based on a process model (PM) to calculate the current control output. In
many applications, the optimal prediction over the current prediction horizon is calculated using a
metaheuristic algorithm, such as an evolutionary algorithm (EA). The EAs, as other population-based
metaheuristics, have large computational complexity. When integrated into the controller, the EA is
carried out at each sampling moment and subjected to a time constraint: the execution time should
be smaller than the sampling period. This paper proposes a software module integrated into the
controller, called at each sampling moment. The module estimates using the PM integration the
future process states, over a short time horizon, for different control input values covering the given
technological interval. Only a narrower interval is selected for a ‘good’ evolution of the process,
based on the so-called ‘state quality criterion’. The controller will consider only a shrunk control
output range for the current sampling period. EA will search for its best prediction inside a smaller
domain that does not cause the convergence to be affected. Simulations prove that the computational
complexity of the controller will decrease.

Keywords: optimal control; metaheuristic algorithms; evolutionary algorithms; simulation

1. Introduction

Dynamic system optimization subjected to a performance index is a common task
in process engineering. Theoretical control laws can be applied when the process has
sufficient mathematical properties and generates controllers with moderate computational
complexity. Sometimes the process has profound nonlinearities or imprecise, uncertain,
incomplete knowledge. In these cases, a metaheuristic algorithm, integrated within an
adequate control structure, can be a realistic solution.

Metaheuristic algorithms (see [1–3]) have been employed intensively in control en-
gineering (see [4–8]) due to their robustness and capacity to deal with high complexity
problems. However, in these cases, the computational effort is very large and can be crucial
for the controller to meet time constraints.

The RHC is a closed-loop control structure used in many works. The key factor is a
process model, allowing the prediction of the process evolution. The controller organizes
the moving of the prediction horizon in a specific way (see, for example, [9–11]). The
model predictive control is a well-known particular case of the RHC, which makes at each
sampling period a specific action: the prediction error’s minimization.

Many papers have considered metaheuristics (genetic algorithm, simulated annealing,
particle swarm optimization etc.) in conjunction with the RHC to implement closed-loop
structures, which have been used successfully in real-time control. Reference [6] has a
section that surveys this kind of work. Reference [12] introduced evolutionary predictive
control, a technique for designing predictive controllers. This technique generates and
evaluates a family of optimum predictive controllers using evolutionary algorithms. They
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have design parameters that are adapted at every sampling period. Finally, the best
performer is selected using this adaptive process.

A systematic design procedure using the RHC (theoretic approach in [13]) to generate
a closed-loop structure has been proposed in [14]. The optimal control structure integrates
a metaheuristic algorithm slightly modified to play the role of controller. Obviously, an EA
may be used with that end in view.

This work addresses the Park–Ramirez problem (PRP) (see for example [15,16]) that
deals with the optimal production of secreted protein in a fed-batch reactor and is a kind of
benchmark optimal control problem (OCP).

In a previous work [17], the authors have proposed a closed-loop solution for this
problem using the RHC (see [18,19]). This structure implements the closed-loop control
that makes optimal predictions based on a PM at each sampling period. The controller
presented in [17] used an EA to make predictions and calculate the quasi-optimal control
output. However, that paper’s objective was to develop an analysis method for the optimal
character degradation when the process is different from the PM.

The EAs, as other population-based metaheuristics, have high computational com-
plexity. When integrated into the controller, the EA is carried out at each sampling moment
and subjected to a time constraint: the execution time should be smaller than the sampling
period. That is why computational complexity decrease of the EA in control applications
is an important topic. For this purpose, the paper [20] proposes a method to encode the
predicted sequences, which reduces the computational complexity.

The present work has the same context: the same problem, control structure and a
similar EA within the controller. Still, it is devoted to another desideratum: to propose
another method that improves the computational complexity.

Our objective has not been to implement a more effective control algorithm than others
reported in previous papers, which would give better solutions for this particular problem.

The contribution of this paper is a software module (called ‘ESTIMATOR’) integrated
into the controller, which could reduce the control output range of the controller at each
sampling period. The process control input is, at the same time, the control output of
the controller (it is the direct connection between the controller and the process). The
ESTIMATOR will set the shrunk range by numerical integration of the PM for a short
while (a sampling period at most). In this way, the EA will search for its best prediction
inside a smaller domain that does not cause the convergence to be affected. Therefore, the
computational complexity of the controller will decrease. From the design perspective, the
time constraints have more chances to be met.

Section 2 describes the scientific framework of this paper and introduces the notations
to the lecturer. The objectives of this section are:

• To recall the OCP’s elements that are exemplified with the help of PRP.
• To recall the RHC structure and optimal predictions.
• To introduce the EA as the core of the predictor.

The paper’s contribution is presented in Section 3: the proposed method to reduce
the control input range by an ESTIMATOR, the new structure of the controller and its
algorithm and the repercussions of this method to the EA.

Sections 4 and 5 describe the results of the two closed-loop simulations: without and
with shrunk control output ranges. Section 6 compares the results and shows that the
computational complexity decreases by reducing the control input range.

2. Closed-Loop Optimal Control Using an Evolutionary Algorithm
2.1. Optimal Control Problem

In this subsection, we recall the PRP, a kind of benchmark problem describing an OCP.
It is about a nonlinear process concerning the secreted protein production in a fed-batch
reactor. Many papers reported quasi-optimal solutions obtained with different numerical
integration techniques, among those we recall here [11]. We present hereafter the three
parts defining the PRP as an OCP.
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2.1.1. Process Model

The protein production process is modeled by algebraic and ordinary differential
equations like in many papers (see [4,5]). PRP has the following dynamic model:

.
x1 = g1 · (x2 − x1)− u

x5
· x1

.
x2 = g2 · x3 − u

x5
· x2;

.
x3 = g3 · x3 − u

x5
· x3

.
x4 = −7.3 · g3 · x3 +

u
x5
· (20− x4)

.
x5 = u
g1 = 4.75·g3

0.12+g3
;

g2 = x4
0.1+x4

· e−5.0·x4

g3 = 21.87·x4
(x4+0.4)(x4+62.5)

(1)

The five state variables have the following meanings:

• x1(t)—secreted protein’s concentration.
• x2(t)—total protein’s concentration.
• x3(t)—culture cell density.
• x4(t)—substrate concentration.
• x5(t)—the holdup volume.

The process has a single control input variable:

• u(t): the nutrient feed rate.

2.1.2. Constraints

The ordinary differential equations are accompanied by a set of constraints to precise
the process evolution. In the case of the PRP, there is a minimum set of constraints that
have to be met:

controlhorizon : t ∈ [t0, t f ]; t0 = 0; t f = 15; 0 ≤ t ≤ 15 [hours]; (2)

where tf denotes the final moment of the control horizon

initialstate : x(0) = x0 = [0, 0, 1, 5, 1]T (3)

boundconstraints : 0 ≤ u(t) ≤ 2, 0 ≤ t ≤ t f ; u(t) ∈ U = [0, 2]. (4)

To solve the PRP using an AE, we can discretize the control input and try to find
the optimal ‘command profile’ (see [4]) that will be a chromosome. Hence, we consider a
supplementary constraint: the control input is constant during each sampling period. The
control horizon and the variable u are discretized as follows:

t = (t1, t2, · · · , tn); ti = i; tn = t f .

We consider a new constraint (5) that replaces (4)

u(t) = ui for ti − 1 ≤ t < ti; and 0 ≤ ui ≤ 2. (5)

Finally, the control profile with n = 15 constant values is

u = (u1, u2, . . . , un)

2.1.3. Performance Index

The solution of PRP is the control profile that maximizes the objective function (6)

J
(

x
(

t f

))
= x1

(
t f

)
· x5

(
t f

)
. (6)
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The performance index determined by this solution is

J0 = max
u(t)

J
(

x
(

t f

))
(7)

Taking into account that constraint (4) can be replaced by (5), the PRP’s optimal solu-
tion is the control profile u = (u1, u2, . . . , un) that meets all the constraints and maximizes
the objective function (6).

2.2. Controller Using Predictions and An Evolutionary Algorithm

Generally speaking, PRP is one of the problems that can be solved through the RHC
structure.

NB: To keep the presentation self-contained, we recall in Appendix A (Supplementary
Materials) only the elements that define the well-known RHC structure. The controller
corresponding to this control structure has the pseudocode description given below through
Algorithm 1. The latter is rather a generic way to describe the receding horizon controller
in real-time applications.

Algorithm 1 calls a generic function (called “Predictor_EA”) that calculates the optimal
prediction for the current sampling period, in line #2. The prediction can be calculated
using any sound method, including metaheuristics, adapted to the PM and its constraints.
In this work, we used a metaheuristic algorithm, namely the EA. The “Predictor_EA”
function has two parts (detailed in Section 3.2):

• The first part sets the bounds of the control inputs according to the control input range
estimation, which is the contribution of this work.

• The second part is an EA, whose details are given in Section 2.3, calculating the optimal
prediction.

We denote by [0, H] the control horizon from our problem (t f = H · T). A prediction
is an optimal command profile u(k) over the prediction horizon [k, H], k = 0, 1, · · · , H − 1].
A candidate prediction has the structure

u(k) =< u(k|k), · · · , u(k + i|k), · · · , u(H − 1|k) >, (8)

where, u(k + i|k), i = 0, . . . , H − k− 1 is the predicted value for the control input u(k + i)
based on knowledge up to the moment k. Using Equations (1) and (8), the PM returns the
predicted state sequence x(k) as

x(k) =< x(k|k), . . . , x(k + i|k), . . . , x(H |k) >, (9)

where x(k + i|k ), i = 0, . . . , H − k is the predicted value of the state x(k + i) based on
knowledge up to moment k.

The EA computes the objective function value over the prediction horizon for each
chosen sequence (individual of the population). After convergence, the EA returns the
optimal control sequence (denoted u∗)

u ∗ (k) =< u∗(k|k), . . . , u∗(H − 1|k) > . (10)

Note that this optimal prediction is made at the beginning of the sampling period
[k, k + 1]. The controller will send the value of the first element to the process as a real
control input value, namely

u∗(k) = u∗(k|k).

Algorithm 1 outlines the controller’s algorithm carried out for every sampling pe-
riod. The prediction is achieved using the function “Predictor_EA” in Line #2. Its input
parameters are the current sampling period and the process state vector, and it returns
the value u ∗ (k) according to Equation (10). Line #3 sets the optimal control output u∗(k)
at the value u∗(k|k) .
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Algorithm 1 Receding Horizon Controller’s algorithm using predictions based on EA.

1 Get the current value of the state vector, x(k); /* Initialize k and x(k)*/
2 u ∗ (k)← Predictor_EA(k, x(k))
3 u∗(k)← u∗(k|k)
4 Send u ∗ (k) towards the dynamic system
5 Update the prediction horizon and wait for the next sampling period

Line #5 makes preparations for the next prediction horizon.
Owing to performance index (7), which is a terminal penalty, the right limit of the

prediction horizon must be H even if the integral term is missing. The prediction horizon
‘recedes’ at each sampling period but keeps the final extremity. Its length decreases by one
unit at each sampling period.

The prediction is essentially made by the EA included in the “Predictor_EA” function.
The prediction horizon is [k, H] for the current sampling period, and its length is H − k.
Therefore, the EA’ computational complexity is variable and depends on the k value. We
have chosen the discretization step for encoding the sequence u(k) to be equal to the
sampling period T. Therefore, the length of the sequence u(k) is variable along the control
horizon and decreases at each sampling period.

The execution time must be smaller than the sampling period; this is the more re-
strictive time constraint for the algorithm presented in Algorithm 1. The length of the
prediction horizon could be very large, especially in the first sampling period; this is why
we consider the decreasing of the computational complexity of EA to sometimes be crucial.
The control system designer must verify through simulation this constraint to be met.
The receding horizon controller, which uses an EA, is suitable for relatively large time
constants processes.

2.3. Description of the Evolutionary Algorithm

Our objective has not been to implement a more effective control algorithm than others
reported in previous papers, which would give better solutions for this particular problem.

The EA ([3,15,16]) uses direct encoding, as mentioned previously. A chromosome
having H − k genes represents the predicted control sequence over the interval [k, H],
which comprises the control input’s values that are supposed constant during each
sampling period.

NB: The implemented EA has part of characteristics similar to those the authors
proposed in the paper [14], except the crossover operator and the stop criteria. These
characteristics are listed below:

• Each population has µ individuals (predictions);
• The number of children generated in each generation: λ (λ < µ);
• The selection strategy: stochastic universal sampling; the individuals are ranked using

the selection pressure (s) (see [3]);
• A single point crossover operator;
• The mutation step size is adapted; its global variance is modified according to the

“1/5 success rule”; see [1] (pp. 245–274).
• The replacement strategy causes the λ worst generation individuals to be replaced by

the children.
• The first stop criterion is that the population would evolve during NGen generations.
• The second stop criterion is that the best individual has its objective function’s value

greater than or equal to J0. The value of J0 is preestablished (see Section 6).

Other details concerning the implementation of the EA used in this work are given
in Appendix C.
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3. Estimation of the Control Input Range
3.1. Potential Reduction of the Control Input Range

To keep the presentation simple, we consider the control input has only one dimension
(like in our example), but the following considerations are also valid for the multidimen-
sional case. Therefore, the set of control input values U is a real interval (like in (4)).

For each k, we denote by Uk the control input domain, namely the set of all values that
can be taken by u(k). The set Uk generally corresponds to the technological limits. Hence,
the control input value meets the constraint

u(k) ∈ Uk ≡ U.

In real applications, the control input value is subjected to the constraint

u(k) ∈ U , [umin, umax]. (11)

The minimum and maximum bounds umin and umax are mainly technological limits.
The controller output can take values between these limits. The process control input
u(k) is, at the same time, the control output given by the controller because it is the direct
connection between the controller and the process.

In our example, the minimum and maximum limits of the controller output imposed
by constraint (4) are

umin = 0; umax = 2 (12)

The EA, which searches the ocs, generates an initial population consisting of control
input values sequences. For fault of other information, these values fulfil the constraint (11)
for all k. Hence, we have

u ∗ (k) ∈ UH−k = [umin, umax]
H−k. (13)

Despite the stochastic character of the EA, this choice will cause an important computa-
tional effort to find out the best control sequence. Therefore, the algorithm’s computational
complexity making the predictions will be very big.

The main contribution of our work is to propose an approach to obtain additional
information that allows the control input range at moment k (denoted by Rk) to be reduced.
We expect to have

Rk , [um, uM] ⊂ Uk. (14)

Remark 1: The following points briefly show how to reduce the control input range.

1. A software module called ESTIMATOR will evaluate the process states x̂(k + ∆t) in
the following conditions:

- the initial state x(k) is the current state of the process that is known
- the evaluation is made by integration over the interval I = [k, k + ∆t], where ∆t

is lesser than or equal to the sampling period

2. The integrations consider a representative list of control inputs u(k) covering the set
Uk. For example, in this work, we have considered the list

L = {u0, u0 + ∆u, u0 + 2∆u, · · · , umax}; u0 = ∆u = 0.05 (15)

3. The set Rk is defined as the interval covering the values belonging to L that transfers
the process to a final state fulfilling a certain quality criterion.

4. The quality criterion expresses that the final state x̂(k + ∆t) has a property, which is
mandatory for the desired system behavior.

5. The ESTIMATOR returns the two values defining the interval Rk = [um, uM].
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These aspects are illustrated in the sequel for Process (1). The approach described
before can be applied if we have identified a quality criterion for the final state x(k + ∆t).
Analyzing the PRP’s good solutions, we have noted that the culture cell density x3(t) is
monotonically increasing as a function of t. Therefore, we have considered the following
quality criterion

x3(k + ∆t)− x3(k) ≥ 0 (16)

After process integration for all the values belonging to L, the ESTIMATOR must
select only the control input values u(k) that produce final states x(k + ∆t) meeting the
quality criterion (16). Finally, the ESTIMATOR returns the narrower interval that covers all
these values u(k).

Remark 2: Constraint (16) is insufficient to assure the monotony, but the value u(k) at hand
can be eliminated if not met.

The value x3(k) is the initial state for the current sampling period, and it is known at
the moment k. Because it is the initial state for all integrations, we denote this value x30:

x30 = x3(k) = constant.

The value x3(k + ∆t) could be considered as a function of control input u(k). Figure 1
shows the dependence of the estimated state quality

x3(u)− x30 (17)
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Upon the value u. Constraint (16) is fulfilled only by the values u for which it holds

0.05 ≤ u ≤ uM = 0.75
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In our analysis, the minimum bound is always 0.05, which is not useful for having a
shrunk control input range. That is why, for um-the minimum value of Rk-we have adopted
the rule

um = α · uM; α ∈ (0, 1) (18)

Remark 3: A small value for alfa α will cause the efficiency of the new control range to be
very small. The range Rk is too large, and the method’s advantage disappears. On the other
hand, a big value for alfa α could involve the EA not to converge to the optimal solution.
The range Rk is too narrow, and the EA does not find the optimal control input values.

Simulations of the controller functioning for the PRP have proven an appropriate
value α = 0.2. Hence the ESTIMATOR returns

Rk = [α · uM, uM]

Appendix B describes how Figure 1 is obtained using the ESTIMATOR and other
programs, which the lecturer can use. Process (1) has an optimal evolution according to
performance index (7), and the current state is x(k) with k = 5. The ESTIMATOR evaluates
the future state x(6) (∆t equals the sampling period) for the control input values belonging
to L. Because the state quality (17) has to be positive, the maximum control input value is
uM = 0.75.

The blue segment corresponds to the shrunk control input range, that is

Rk = [0.15, 0.75]; Rk ⊂ [0, 2]

The new range length is 30% of the initial one and entails a smaller computational
complexity that will be analyzed in Section 6.

If a quality criterion can be stated, then the current state of the Process entails, for
certain physical reasons, a narrower interval Rk = [um, uM] such that u(k) ∈ Rk. This fact
can be used to diminish the computational complexity. The control input values will be
looked for within a smaller interval. Hence, the constraint (11) could be replaced by

u(k) ∈ Rk. (19)

Remark 4: The approach described before can be applied if we have identified a quality
criterion for the final state x̂(k + ∆t). We can identify specific quality criteria considering
certain physical and chemical reasons or good solutions’ properties. Moreover, the quality
criterion has to reduce the control input range significantly. We emphasize that the new
control input range depends on the current process state.

3.2. Controller Structure with ESTIMATOR

A preliminary analysis—based on Remark 4—can conclude whether the method
to reduce the control input range can be applied to improve the EA’s computational
complexity. After the quality criterion is checked through simulation, the controller could
include the ESTIMATOR module. Figure 2 presents the receding horizon controller with the
structure described, for example, in [9,13,14]. The controller gathers mainly the prediction,
optimization, and PM modules. There are certainly auxiliary modules that assure the
process state x(k) to be acquired, the optimal control output to be sent to the process, and
other actions to be achieved.
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In our work, the optimization is accomplished by the EA that is included in the
prediction module.

The ESTIMATOR interacts with the PM and prediction modules and calculates the con-
trol input range Rk = [um, uM]. The EA considers this new shrunk range and determines
the optimal prediction for the current moment.

Algorithm 2 is a version of Algorithm 1 that integrates the ESTIMATOR and can also
be used in applications, which are not in real-time (for example, simulations). It calculates
the optimal control output u ∗ (k) for the current sampling period. We recall that the
predictions are made by the EA integrated into the “Predictor_EA” function (the EA is not
a distinct function).

Algorithm 2 Receding Horizon Controller with EA and ESTIMATOR.

1 function Controller_EA(k, x(k), WithEstimator)
2 /* The Controller uses predictions with EA*/
3 /* If the value “WithEstimator” equals 1, then it calls ESTIMATOR*/
4 /* The EA is implemented by the “Predictor_EA” function */
5 If WithEstimator = 1
6 [um, uM]← ESTIMATOR(k, x(k)) ;
7 u ∗ (k)← Predictor_EA(k, x(k), um, uM) ;
8 else
9 u ∗ (k)← Predictor_EA(k, x(k), umin, umax)
10 end
11 u∗(k)← u∗(k|k)
12 return u ∗ (k);

If the calling program wants to use the shrunk control input range, line #6 calls
the ESTIMATOR function, only one time for each prediction horizon [k, H] to calculate
Rk = [um, uM]. This estimation is based on the state vector x(k) that is known because it is
an input parameter.
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Remark 5: The states’ values x(k + i|k), i = 1, · · · , H − k are unknown because the se-
quence (8) is not yet established, and therefore integration of systems (1)–(4) is impossible.

Line #7 of Algorithm 2 calls the prediction function slightly modified because of the
two new parameters (um, uM). Therefore, for the current predicted sequence, it holds

u(k) ∈ Rk = [um, uM]; u(k + i) ∈ U = [umin, umax]; 1 ≤ i ≤ H − k− 1 (20)

3.3. Predictions Using the EA

This subsection gives some details concerning the “Predictor_EA” function, whose
main part is an EA. The latter one returns the optimal control sequence that maximizes the
performance index over the prediction horizon ([k, H]) given the initial state x(k)

u ∗ (k) = arg max
u(k)

J(k, x(k), u(k)).

Figure 3 shows the distribution of the control input values and ranges related to the
sampling moments corresponding to the prediction horizon [k, H].
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The predictor sets the bounds (20) for each component of the predicted sequence and
then uses the EA (we recall that the EA is a part of the “Predictor_EA” function). The EA
generates the initial chromosome population, i.e., the control sequences (u(k)). Each one
meets the constraint (20). After the random selection of the predicted sequence components
inside the admissible domains, it holds

u(k) ∈ Rk ×U × . . .×U︸ ︷︷ ︸
H−k−1

,

The EA can now calculate all predicted state sequences (9) and evaluate their objective
function values to determine the optimum.

Remark 5 states why the method that reduces the control input range can be applied
only to the first component of the control input sequence. Hence, the improvement of the
computational complexity is limited but quite important, as the next sections will prove.

The general structure of the Predictor_EA function is given in Algorithm 3. The main
task of this function is to pave the way for the EA that will treat the bounds of the control
input ranges differently. The range corresponding to the first sampling period ([k, k + 1])
will be defined by the two parameters xm and xM received from the ESTIMATOR. The
generation of the initial population is achieved by lines #6–11.

The remaining part of this function is a general description of a usual EA, which
implementation is not a key factor of our work. Nevertheless, the lecturer will find in
Appendix C some details concerning a simple implementation, including the function
“eval_PR.m” that calculates the objective function J (Equation (6)).



Automation 2022, 3 105

Algorithm 3 Predictor_EA(k, x0, xm, xM)

1 /* The function calculates the sequence u ∗ (k)-see (10) */
2 Initialization of the EA’s and Global parameters and constants
3 N←35; /*Chromozomes number*/
4 NGen←70; /*Generations number*/
5 ngene←H-k; /*Genes number*/
6 for i = 1, . . . , N /* The population pop has N chromozomes*/
7 pop(i,1)←random(xm, xM) /* First range*/
8 for j = 2, . . . , ngene;
9 pop(i,j)←random([umin, umax]);/*The following ranges/
10 end
11 end
12 #Compute the objective function for each chromosome;
13 g←1; /*g is the current generation number*/
14 Ncalls←0; /* Initialize Ncalls*/
15 found←0;
16 while (g ≤ gen) and (found = 0)
17 #Selection of chromozomes;
18 #Crossover;
19 #Mutation;
20 #Replacement;
21 #Update found; /*Convergence test*/
22 g = g + 1;
23 end/*while*/
24 return pop(1) /* The best control sequenceu ∗ (k)*/

The implementation of the Predictor_EA function and the simulations were carried
out using the MATLAB language and system. We have employed special functions devoted
to integrating the differential equations to determine the process evolution. The value of H
is a global constant, defined in Section 2.2 (see also Figure 3).

In our implementation, the EA also counts the objective function’s calls number
(Ncalls) to measure the calculation effort in generating the current optimal prediction. This
variable is updated inside the function “eval_PR.m”.

4. Simulation of the Closed-Loop Control Structure
4.1. Objectives and Simulation’s Hypothesis

In the context of using RHC to achieve closed-loop optimal control of a given pro-
cess, the optimal predictions can be implemented through a metaheuristic algorithm.
The solution is realistic but has a major inconvenience: the computational complexity of
the controller.

In the previous sections, we proposed the ESTIMATOR subsystem integrated into the
controller as a tool that can decrease the latter’s computational complexity. Therefore, the
major objective of our simulation study is to validate this hypothesis.

We have chosen for a case study the PRP, which is a well-known control problem
reported in many papers to be solved in open loop and closed loop as well. As we are
interested in control implementation aspects—not only computational intelligence and
numerical aspects—we have treated the closed-loop problem, which is more complex. The
fact that the PRP is already solved and analyzed presents a great advantage. Now, we can
compare its known solution with the new one obtained using the RHC control structure,
EA (for the predictions), and the proposed ESTIMATOR.

The simulation study presented in the sequel had a few objectives listed below:

1. To implement and simulate the predictor function specific to the PRP, which uses the
EA and considers the shrunk control input range.

2. To implement and simulate a closed-loop based on RHC to solve the PRP problem.
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3. To compare the quasi-optimal closed-loop solutions produced by the controller with-
out and with the ESTIMATOR module.

4. To evaluate the computational complexity of the closed loop over the control horizon
without and with the ESTIMATOR module.

The simulation study will be made by an application that emulates the closed-
loop functioning.

• The controller, by definition, includes the PM (Equations (1)–(4)).
• The real process is also simulated using the same PM. The red lines in Figure 2 show

the simulated connections that create the closed loop.
• The sequence of sampling moments is simulated.

4.2. Closed-Loop Simulation

The algorithm RHC_EA, which simulates the closed-loop solution of the PRP and will
allow us to analyze the solutions and proposed ESTIMATOR, is described in Algorithm 4.
This one mainly calls the controller function for each sampling period represented by k.

Algorithm 4. Closed-loop simulation–description of RHC_EA algorithm

1 /* Simulation of the closed loop over the control horizon */

2
Initializations: PM’s parameters and constants- see Appendix C
Global parameters and constants

3 WithEstimator = 1; /* WithEstimator = 1, or = 0*/
4 x0 = [0, 0, 1, 5, 1]T ; /*Initial state vector*/
5 state(0)←x0;
6 H ← t f /T /* t f -the final moment, T-the sampling period*/
7 Ncalls_C←0;
8 k← 0 ; /* Sampling moment counter */
9 while k ≤ −1
10 Controller_EA(k, x(k), WithEstimator);/*It returnsu ∗ (k)*/
11 uRHC(k) = u ∗ (k)
12 Ncalls_C← Ncalls_C + Ncalls;
13 xnext ← RealProcessStep(u ∗ (k), x0, k) ; /*get the next process’s state*/
14 x0 ← xnext /* the new initial state */
15 state(k + 1)←x0
16 k← k + 1 ; /*next sampling period */
17 end/*while*/
18 /* Generate and display simulation results*/

The vector state having (H + 1) elements memorizes the optimal sequence x ∗ (0) (lines
#5 and #15). The vector uRHC with H elements stores the quasi-optimal sequence really
achieved by the closed loop (line #11).

The objective function’s calls number (Ncalls) for each sampling period is cumulated
with the help of variable Ncalls_C (line #7 and line #12). The Ncalls_C’s value will be
necessary to measure the computational complexity for the entire control horizon (all the
sampling periods).

Function “RealProcessStep” calculates by numerical integration the process state at
the next sampling moment (k + 1), using its arguments: the optimal control input and the
initial state at the moment k. The next state becomes the initial one for the moment (k + 1).
Despite its prefix, “RealProcess”, this function will integrate the PM because actually, we
are not interested in simulating the closed loop with a process different from its model. Still,
we want to analyze the behavior of the closed loop both with and without ESTIMATOR.

5. Results
5.1. Simulation of the Closed Loop without Control Input Range Estimation

This section presents the simulation results of the RHC structure solving the PRP. Here,
we present the input data for the problem we have solved.

• Control horizon: 15 h; H = 15;
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• Sampling period: 1 h; T = 1;
• Control input bounds: umin = 0; umax = 2;
• Initial state: x0 = [0, 0, 1, 5, 1]T

• Performance index: max
u(0)

J(x(H)), J(x(H)) = x1(H) · x5(H)

The EA has the parameters presented in Appendix C and tuned for this application.
Because the prediction is based on a stochastic algorithm, the “RHC_EA_new.m”

program—that implements the RHC_EA algorithm—was carried out 30 times to analyze
the results statistically. Practical details about this operation are given in Appendix D.1.

The objective function’s calls number over the control horizon is a realistic measure of
the computational complexity. The calls number is relevant, especially when the objective
function involves numerical integrations, which have significant complexity and are time-
consuming. This measure is also adequate for comparison among versions of applications.
The RHC_EA algorithm totalizes the calls’ number for each sampling period, and the script
“STATISTIC_DRAW30_0” calculates the average value for a sampling period, denoted
Ncalls, in Table 1. The main results of this simulation series without range estimation are
given in Table 1.

Table 1. Results of the simulation series for RHC_EA without control input range estimation.

Run # J x1(H) x5(H) Ncalls Run # J x1(H) x5(H) Ncalls

1 31.87 2.35 13.55 8059 16 31.82 2.35 13.56 6456
2 32.06 2.36 13.56 6121 17 32.00 2.30 13.89 6063
3 31.80 2.47 12.86 10,718 18 32.00 2.40 13.35 8065
4 31.90 2.34 13.66 6080 19 31.81 2.45 12.99 6183
5 32.00 2.39 13.36 6075 20 32.05 2.39 13.44 9966
6 31.92 2.38 13.40 7240 21 31.90 2.49 12.82 6465
7 31.82 2.33 13.64 7063 22 31.84 2.30 13.85 6957
8 31.98 2.34 13.67 9063 23 31.85 2.45 13.02 8123
9 31.84 2.28 13.97 8497 24 31.92 2.37 13.46 9138

10 31.89 2.35 13.55 6481 25 32.02 2.36 13.59 6589
11 31.89 2.32 13.76 7461 26 32.02 2.35 13.62 6347
12 31.99 2.36 13.55 6828 27 31.80 2.31 13.75 12,484
13 32.00 2.37 13.47 8633 28 31.82 2.73 11.66 9160
14 31.83 2.38 13.36 10,788 29 31.85 2.34 13.59 7932
15 31.83 2.42 13.18 7415 30 31.90 2.50 12.74 6429

For each execution, four values are displayed: the optimum criterion’s value (J), the
final value of x1, the final value of x5, and the average number of calls (Ncalls). The
latter equals the number of calls divided by the sampling periods’ number (H = 15). The
sampling periods have very different calls’ numbers: the greater the value of k, the smaller
the number of calls. However, it is easier to compare the values of Ncalls. Thus, the total
number of calls over the control horizon is 15*Ncalls.

A statistic of this simulation series; the minimum, average, and maximum values; and
standard deviation of the objective function (J), is given in Table 2.

Table 2. Statistic regarding the optimum criterion.

Jmin Javg Jmax Sdev Jtypical

31.800 31.908 32.058 0.142 31.900

We consider a simulation as typical execution if it produces the closest value to the
average optimum criterion. Using the optimum criterion’s value, we have determined the
typical run among the 30 simulations.
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In our simulation series, a specific execution yields Jtypical = 31.900. The other results
associated with this run (line 30 in Table 1) are presented hereafter

Jtypical = 31.900; x1(H) = 2.50; x5(H) = 12.74; Ncalls = 6429

The controller calculates the best control output value as the first element of its
predicted sequence. These 15 values of the quasi-optimal control output are recorded by
the RHC_EA algorithm within the uRHC vector, tracing the controller’s activity over the
control horizon. Hence, this vector is not the result of a prediction made at the moment
k = 0; in other words, it is not the sequence u ∗ (0). This vector allows a final simulation of
the closed loop.

The vector uRHC for the typical execution is depicted in Figure 4.
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The control outputs of uRHC sent to the Process involve the typical state evolution
depicted in Figure 5.

The computational complexity of the first sampling period is the largest because the
prediction horizon has H sampling periods. Despite the sequence u ∗ (0) having an H
length, the controller calculates the control variable in a few tens of seconds (depending on
processor speed). This duration is quite satisfactory for a sampling period of 1 h.
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5.2. Simulation of the Closed Loop with Control Input Range Estimation

In this implementation, ESTIMATOR is called within RHC_EA to reduce the control
input range. The “RHC_EA_new.m” program was carried out 30 times for the same
instance of the PRP as in the previous section. Practical details about how the simulation
results are generated can be found in Appendix D.2.

The results are presented in Table 3, having the same columns as Table 1.

Table 3. Results of the simulation series for RHC_EA with control input range estimation.

Run No. J x1(H) x5(H) Ncalls Run # J x1(H) x5(H) Ncalls

1 31.859 2.318 13.744 5686 16 31.799 2.495 12.745 7121
2 32.067 2.375 13.502 5675 17 31.797 2.390 13.302 7868
3 31.925 2.343 13.628 6739 18 31.854 2.258 14.104 5582
4 31.837 2.312 13.771 5474 19 31.871 2.487 12.814 6057
5 31.840 2.284 13.943 6698 20 32.004 2.375 13.478 7775
6 31.947 2.319 13.778 4350 21 31.888 2.335 13.657 5531
7 31.925 2.375 13.442 5956 22 31.931 2.332 13.695 5979
8 31.818 2.515 12.651 7168 23 31.666 2.236 14.162 10,063
9 31.806 2.434 13.070 6600 24 31.867 2.466 12.921 7246

10 32.026 2.345 13.657 6439 25 31.841 2.526 12.607 6177
11 31.887 2.357 13.528 6030 26 31.812 2.417 13.164 5294
12 31.872 2.352 13.551 5679 27 31.843 2.415 13.185 7216
13 32.047 2.341 13.689 5242 28 31.909 2.372 13.451 5610
14 31.909 2.529 12.619 4862 29 31.812 2.346 13.563 6832
15 31.851 2.486 12.813 5982 30 31.895 2.407 13.252 6962

The new statistic over the 30 runs of the simulation series is given in Table 4.

Table 4. New statistic regarding the optimum criterion over the 30 runs.

Jmin Javg Jmax Sdev Jtypical

31.666 31.880 32.067 0.00687 31.887
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The typical run corresponds to line #11 of Table 3, Jtypical = 31.887. The other simula-
tion results are presented hereafter

Jtypical = 31.887 x1(H) = 2.357; x5(H) = 13.528; Ncalls = 6030

The vector uRHC for the typical execution is depicted in Figure 6. These control output
values generate the state evolution illustrated in Figure 7.
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6. Discussion

We first recall that this work has the same context as that presented in [12]. The
basic version of algorithm RHC_EA was created similarly to the previous algorithm (with
small differences concerning the EA). We proposed the control input range estimation and
compared the closed-loop function in the two algorithm versions, without and with control
input range estimation.

The simulations have proved that the RHC_EA program converges for all executions.
Aiming to obtain good solutions for PRP and a satisfactory computation time, the predictor
stops the iterative process when for the best solution encountered it holds

J ≥ J0 = 31.8 (21)

The stop criterion is either to fulfil constraint (21) or to evolve during Ngen generations.
The reported optimum value of J is 32.6, but for algorithms that solve PRP standing alone,
not in a closed-loop implementation. As EA now works in a closed loop, its stop-criterion
must assure good solutions and adequate execution time for the controller.

Remark 6: The RHC structure solves a new PRP with a shorter control horizon at each
sampling period, starting from the current state vector. Consequently, the values recorded
by the uRHC vector are not produced by a single evolutive process (a single run of the
EA) for the control horizon [0, H]. That is why the performance index for the control
horizon [0, H] is sometimes better than 31.8; the values recorded by the uRHC vector can
generate a favorable trajectory.

The main findings of our simulation series are that Figures 5 and 7 ascertain the
process has the same quasi-optimal behavior. In the two cases (without and with control
input range estimation), the average values of the performance index J are 31.9 and 31.88,
respectively. Hence, the ESTIMATOR does not worsen the closed-loop behavior:

• The optimal behavior is not degraded; the two J values are practically identical.
• The process evolutions are very alike.
• The convergence is not impeded.

On the contrary, the RHC_EA algorithm with control input range estimation has a
beneficial influence on the computational complexity. Table 5 shows this improvement.

Table 5. Objective function’s calls number over 30 runs.

Ncallsmin Ncallsavg Ncallsmax Sdev

without
ESTIMATOR 6063.4 7762.57 12,483.8 1647

with
ESTIMATOR 4349.8 6329.8 10,063. 1099

The ratio between the two total numbers of calls (on the entire control horizon) is
calculated as

decreasing ratio =
6329.8× 15
7762.57× 15

= 0.8154

Hence, the computational complexity was diminished by 18.46% using the control
input range estimation. This result was expected, but the reduction is large enough con-
sidering that range reduction applies only to the first sampling period of the predicted
sequences.

The controller meets the time constraint all the more so since the version without
ESTIMATOR already fulfils it. Hence, the control structure could be a solution even for
real-time control.

In our simulations, we decided that the process is identical to the PM, which is
generally not realistic. However, we were interested in seeing the net contribution of
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the range estimation to the decrease of the computational complexity. If we consider
simultaneously perturbative factors (e.g., process 6= PM), the computational complexity
will increase to ensure the controller’s optimal character. On the other hand, the papers [9]
and [12] treated to a large extent this situation, when process 6= PM, and how simulations
can estimate the optimal character degradation.

The ESTIMATOR worked in these simulations having the current state given by the
PM. Therefore, it could be useful, at least in simulation studies. In real-time applications,
the current state would be given by the real process.
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Appendix A

Receding Horizon Control

Because the RHC is already well-known, we recall below only the elements that define
the RHC strategy:

• The next controller’s output is calculated by looking ahead for several steps in terms
of a given cost criterion, but it is only implemented by one step;

• The controller makes predictions for the number of steps taken into account (prediction
horizon), using a dynamic PM;

• The controller’s output is sent to the process, and a new decision is made by taking
updated information into account and looking ahead for a new prediction horizon.

• The prediction horizon ‘recedes’ at the next sampling period but keeps its final ex-
tremity. This is the most difficult situation when the objective function has a terminal
penalty term [17]. Hence, the prediction horizon length decreases by one unit at each
sampling period.

The RHC structure is depicted in Figure A1, where the notations have the usual
meaning. The objective function is denoted in a simplified form by J(u(k), k), where u(k) is
the sequence of control input values over the prediction horizon that begins at the current
moment k. The value u*(k) is the controller’s output sent to the process at the moment k.

The receding horizon controller can use a metaheuristic algorithm to optimize the
objective function at hand. A slightly modified EA is integrated into the closed loop in
our case. Model predictive control is a special case of RHC when the prediction error
is minimized to determine some controller parameters (see [18]). Only the RHC mech-
anism generates a quasi-optimal solution over the control horizon in this paper. Useful
applications concerning the RHC structure are presented in papers [19,20].
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Appendix B

Details concerning the ESTIMATOR

Algorithm A1 presents a specific ESTIMATOR implementation adapted to the PRP
and the quality criterion chosen in Section 3.1.

Algorithm A1 ESTIMATOR(xk, ∆t)

Input parameters: xk-the initial state x(k); ∆t-length of the estimation interval.
Output parameter: uM
1 Initialization of L/* see Equation (15)*/
2 nv← length(L) ;
3 for j = 1, . . . , nv
4 uk← L(j) ;
5 Compute x̂(k + ∆t) by integration of system (1) using uk;
6 Q(j)← x̂(k + ∆t)3 − xk3 ;/*quality criterion Q(j) > 0 */
7 end
8 /* Compute uM s.t. the interval [0, uM] covers all elements of L that meet the

quality criterion*/
9 return uM

When solving another OCP, line #6 will be modified to deal with another quality criterion.
Line #8 depends on the quality criterion as well. A MATLAB implementation specific to

PRP is given by the function “ESTIMATOR_PP.m” inside the folder “ARTICLE_AUTOMATION”.
Figure 1 is generated by the script “drawESTIMATOR.m” that calls the functions

“drawFinal6.m” and “EstimateState.m”. These programs are devoted to the analysis made
in Section 3.1 and included inside the folder “ARTICLE_AUTOMATION” the lecturer
could find in the Supplementary Materials.

Appendix C

Details concerning the EA

Some constant values used by the EA and the mutation function are given below:

• the factor for the left limit of the narrower interval: α = 0.2;
• technological limits of the control input: umin = 0; umax = 2;
• final time: Nt = t f = 15;
• the minimum value of the performance index: J0 = 31.8;
• number of individuals in the population: N = 35;
• number of children: nr_fii = 30;
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• maximum number of generations: NGen = 70;
• selection pressure for the selection operator: s = 1.8;
• the factor that changes the standard deviation: amic = 0.85;

The computation of the objective function (Equation (6)) -specific to PRP-is imple-
mented by the function “eval_PR.m” given inside the folder “ARTICLE_AUTOMATION”.
The input parameters are the control input sequence u(k) (Equation (8)) and the current
state x(k).

Appendix D

Appendix D.1. Simulation Details for RHC_EA without ESTIMATOR

The algorithm RHC_EA is implemented by the script “RHC_EA_new.m”. Line
#28 must be updated to turn off the ESTIMATOR: “WithEstimator = 0”. This program
can be executed standing alone. “RHC_EA_new.m” was executed 30 times using the
script “ciclu30_RHC_EA_new_0.m” and has created the file “WSPmod0.mat”. The script
“STATIC_DRAW30_0.m” has computed the statistical parameters presented in Tables 1 and 2
and generated Figures 4 and 5.

Appendix D.2. Simulation Details for RHC_EA with ESTIMATOR

The algorithm RHC_EA is implemented by the script “RHC_EA_new.m”. Line #28
must be updated to turn on the ESTIMATOR: “WithEstimator = 1”. This program was
executed 30 times using the script “ciclu30_RHC_EA_new_1.m” and created the “WSP-
mod12bis.mat”. The script “STATIC_DRAW30_1.m” has computed the statistical parame-
ters presented in Tables 3 and 4 and generated Figures 6 and 7.
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