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Abstract: The integration of new airspace entrants into terminal operations requires design and
evaluation of Detect and Avoid systems that prevent loss of well clear from and collision with other
aircraft. Prior to standardization or deployment, an analysis of the safety performance of those
systems is required. This type of analysis has typically been conducted by Monte Carlo simulation
with synthetic, statistically representative encounters between aircraft drawn from an appropriate
encounter model. While existing encounter models include terminal airspace classes, none explicitly
represents the structure expected while engaged in terminal operations, e.g., aircraft in a traffic
pattern. The work described herein is an initial model of such operations where an aircraft landing or
taking off via a straight trajectory encounters another aircraft landing or taking off, or transiting by
any means. The model shares the Bayesian network foundation of other Massachusetts Institute of
Technology Lincoln Laboratory encounter models but tailors those networks to address structured
terminal operations, i.e., correlations between trajectories and the airfield and each other. This initial
model release is intended to elicit feedback from the standards-writing community.
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1. Introduction

The National Airspace System (NAS) is a complex and evolving system that enables
safe and efficient aviation. New airspace entrants are leveraging the NAS in new, novel,
and different ways than traditional aviation with a pilot onboard. To enable growth in
the industry, expansion of applications, and new economic opportunities, new entrants
must integrate into the NAS without degrading overall safety or efficiency of the existing
operations. To help achieve this, standards developing organizations, such as ASTM
International and RTCA, have established and continue to update performance-based
standards for Detect and Avoid (DAA) systems.

DAA systems are designed as an electronic means of compliance to the primarily
visual-based separation responsibilities of a pilot and to comply with applicable operating
rules of Title 14 of the Code of Federal Regulations (14 CFR). Some of these rules include
14 CFR §91.3, 91.111, 91.113(b), 91.115, 91.123, and 91.181(b) [1], which prescribe that aircraft
must not operate carelessly or recklessly; not operate so close to another aircraft so as to
create a collision hazard, see and avoid other aircraft, and give way to other aircraft that
have the right of way.

DAA is part of a multi-layered airspace conflict management architecture and DAA is
often not employed until prior strategic mitigations have failed [2]. While there is a singular
standard for crewed aircraft collision avoidance, there are a variety of DAA standards that
are primarily organized by size of the aircraft; expected operations by airspace class or
altitude; and how prescriptive the standard is written.

A foundational element to these standards is modeling and simulation activities to
design and evaluate the safety and suitability of a DAA system. Monte Carlo simulations
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in particular enable surveillance systems and algorithms to be tested under an exhaustive
set of circumstances not possible through live flight testing. The simulations are often
validated through human-in-the-loop experiments and flight testing. For example, an
update to the standard prescribing a collision avoidance system for crewed aircraft was
validated in part using this approach [3].

1.1. Motivation

As part of the modeling and simulation activities, the Massachusetts Institute of
Technology Lincoln Laboratory (MIT LL) statistical encounter models have been used to
model aircraft behavior. These are trained on real-world observations of individual aircraft
or observations of encounters between two aircraft. The majority of these models are
uncorrelated [4–7], which assume that the aircraft are not participating in the air traffic
control system and their behavior is independent of other aircraft. Conversely, a correlated
model assumes that aircraft behavior and the relatively geometry between aircraft was
dependent upon an air traffic service. For example, air traffic control will separate aircraft
to minimize the possible effects of wake turbulence. While wake turbulence is not explicitly
modeled, a correlated model will be trained using aircraft tracks that have been separated by
air traffic control to minimize the wake turbulence risk. Currently [8], sampling a correlated
model generates track information for two aircraft while sampling an uncorrelated model
generates independent track information for one aircraft.

While MIT LL previously developed [9] and updated [10] an en route correlated
model, it was designed to model encounters that occur away from airports in terminal
airspaces, or while one or both aircraft are merely passing through the terminal airspace.
This en route model does not represent the standardized approach and departure routes
that describe the permissible flight paths for large airports, or smaller airports employing
a standardized flight pattern to regulates flow into and out of the airport. The lack of a
model tailored to terminal operation is a capability gap identified by the aviation standards
developing organization, RTCA, Special Committee (SC)-228 developing a variety of
aviation performance standards, including DAA standards being developed in multiple
phases [11]. Other standards efforts by RTCA SC-147 and ASTM F38 have also expressed
interested in a terminal airspace model, particularly for metropolitan areas.

Specifically, RTCA SC-228 and the FAA have requested the model development to sup-
port modeling and simulation related to DAA Minimum Operating Performance Standards
(MOPS), DO-365. Revision A of DO-365 was previously validated primarily in simula-
tion [12]; and published as revision A [1]. Revision B was published in 2021, addressing
some terminal operations that were out of scope for revision A.

1.2. Scope

The model development scope was directly informed by the terms of reference of
RTCA SC-228 [11], specifically those associated with DO-365 revision B. Considered were
geographically limited operations and operations within a terminal environment, which
include Class D airspace, towered airfields within Class E airspace, non-towered airfields
within Class E airspace, non-towered airfields within Class G airspace, takeoff and landing
operations in Class C, D, E, and G airspace, and off-airfield launch and recovery sites within
Class G airspace. Notably, operations in Class B airspace, which generally are the most
complex and busiest, and 14 CFR Part 135 cargo operations were out of scope per the RTCA
SC-228 terms of reference.

RTCA SC-228 defined the terminal environment as within 8 nautical miles laterally
and 3000 feet vertically of a runway. We adopted a slightly larger definition of 8 nautical
miles laterally and 5000 vertically of a runway. We defined an encounter as when two
aircraft are within 4 nautical miles laterally and 2000 feet vertically of each other for at least
one second. Aircraft must overlap in time for at least thirty seconds too. To manage model
complexity, we only considered encounters with exactly two aircraft and assumed at least
one aircraft lands via a straight-in approach or an analogous departure route.
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1.3. Objectives and Contributions

The primary objective is to develop a statistical model that represents aircraft behavior
in the terminal environment and then sample this model to create an encounter set to
support safety analyses. Since terminal airspaces can be traffic dense, the developed model
needs to be cognizant of the airspace structure that provides implicit coordination and
communicates intent amongst all the airspace users. Although every airport is different and
traffic patterns likewise vary, assessing encounters specific to the traffic at one airport is not
sufficient to deem a DAA system safe for terminal operations at all airports. Traffic patterns
may be tailored to account for various configurations of runways as well as external factors
like surrounding terrain or other natural or human-made features

Accordingly, the primary contribution was a set of Dynamic Bayesian models rep-
resentative of single-runway airports in Class C, D, or E/G airspace and potentially rep-
resentative of Class B. These models characterized the interaction between two aircraft.
One aircraft must be either on a straight-in approach or straight-out departure while the
other can approach or depart without restrictions, along with simply transiting through
the airspace. Similar to other recently developed models [13], this terminal model con-
sidered the type of aircraft (e.g., fixed-wing and rotorcraft). Discussion of our materials
and methods is described in sufficient detail to allow others to replicate and build on the
contributions.

The primary contribution was preceded by an initial prototype model (version 1.0)
narrowly scoped to aircraft on straight-in approach to a Class D single-runway airport
encountering a second aircraft either landing or taking off; and a subsequent prototype
(version 2.0) that added Class E/G single-runway airports, straight-out departures, and
transiting aircraft. A dataset of sampled encounters using the version 1.0 was publicly
released, but the Bayesian models for the two prototypes were not made publicly available.
Only version 3.0 was released as open source software in July 2021 [14], with software to
sample the models first released in October 2021 [8].

As of January 2021, the primary objective has not been fully and model development
of the terminal or metropolitan environments are ongoing.

2. Materials and Methods

This section briefly overviews the training datasets, assumptions, prior art, and method
to train a statistical model based on classified aircraft tracks.

2.1. Materials and Datasets

Two sets of data were used to train two separate encounter models: (1) FAA collected
terminal radar track data over the period January through September 2015 at select airports
throughout the NAS and (2) 190+ days of data over the period January 2019 through
February 2020 from the OpenSky Network, a database consisting of ADS-B and Mode
S reports [15]. The first is referred to as the “terminal area radar” dataset while the
ADS-B dataset is referred to as the “aerodromes” dataset because the dataset is based on
observations of aircraft in near airports in Class B, C, and D airspaces across the United
States. Notably, the aerodromes dataset differed from the Mondays dataset, another curated
from the OpenSky Network to train the recent uncorrelated encounter models [16].

These two sources of data have different assumptions and surveilled different types
of aircraft. Training multiple models enabled us to assess the sensitivity of the models to
different biases, while mitigating some weakness for a given dataset. Biases include the
type of aircraft observed, the metadata associated with each surveilled track, or surveillance
error. Data near fixed-runway airports in Class C, D, E, and G airspaces were in scope for
version 3.0 of the model.

The terminal area radars data provided to MIT LL included standard aviation transpon-
ders with Mode A, C, and S capabilities. The OpenSky Network surveils aircraft only
equipped with ADS-B, where ADS-B aircraft also generally support Mode C while not
all Mode C aircraft are also equipped with ADS-B. However, the terminal area radars
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have a more limited spatial and temporal scope, whereas the OpenSky Network has better
theoretical surveillance coverage. Additionally, the OpenSky Network was freely and easily
available whereas the terminal area radar data were not.

Table 1 reports that each dataset had billions of interpolated observations of aircraft
at altitudes below 5000 feet AGL, based on barometric altitude reports, and prior to any
spatial filtering performed as part of model training. Appendix A discusses the datasets in
more detail.

Table 1. Data points below 5000 feet AGL for each dataset, organized by airspace class.

Airspace Mondays Aerodromes Terminal Area Radars

Class B 251,671,725 505,322,452 1,026,076,842
Class C 79,874,269 108,969,262 126,863,443
Class D 57,887,219 81,304,346 214,349,345
Other 667,255,320 696,368,992 2,282,086,215
Total 1,056,688,533 1,391,965,052 3,649,375,845

2.2. Assumptions

Encounters consist of two aircraft, with the first aircraft referred to as the ownship and
the other aircraft referred to as the intruder. Many, not all, of our assumptions were derived
from DO-365B. Important assumptions for developing and training the model included:

• An encounter is when ownship and intruder are within 4 nautical miles laterally
and 2000 feet vertically of each other for at least one second over at least a thirty
second duration;

• Ownship is on a straight-in takeoff or approach;
• Intruder aircraft may be landing, taking off, or transiting the area;
• Intruder aircraft may not be landing or taking off from a nearby airport;
• Sampled trajectories are constrained to within 8 NM of the airfield and 5000 ft above

airfield elevation (minimum altitude is 200 ft above airport elevation); and
• Sampled trajectories are a maximum of 300 s in length.

2.3. Prior Art

The trained models align with the Bayesian network framework of other MIT LL
encounter models [5] but are reformulated to account for the structured behavior aircraft
employ when landing or taking off. Like the existing radar-based en route correlated
encounter model [10], this terminal encounter model represents the relative geometry of
two aircraft. While the other correlated model defined relative geometry based on the
horizontal and vertical separation between aircraft, the geometry of this terminal encounter
model was based on the relative geometry between each aircraft and the runway.

Notably, our approach also does not identify and model turning points, a concept
popularized by Gariel et al. [17]. Mahboubi and Kochenderfer [18] demonstrated that
a turning point model performs well on simulated data; due to its reliance on noisy
heading rates, it has difficulty with real-world data. Our approach also differs from
Barrett [19] et al. who used an unsupervised cluster algorithm to identify departure and
approach procedures and fit the clusters to a generative model based on intra-cluster
covariance matrices. Barrett [19] et al. was inspired by the clustering approach previous
proposed by Li et al. [20,21]. Similar to these other efforts, we also do not leverage filed
or amended flight plans like Krozel [22] or Georgiou et al. [23]. Additionally, we did not
consider aircraft trajectories on the surface, such as Churchill and Bloem [24].

2.4. Methods Overview

Our approach clustered and classified tracks based on assumptions of airport design,
approach and departure routes, and aviation heuristics, such as the 1 in 60 rule (one degree
offset angle equates to one nautical mile displacement at 60 nautical miles from a origin).
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Additionally, we did not employ unsupervised learning techniques as we wanted to take
advantage of known physical states during takeoff or landing operations. Namely, aircraft
taking off or landing should have a low AGL altitude when close to the runway and that
aircraft transiting over the airport would do so at higher altitudes. Consequently, our
approach was computationally efficient, enabling us to train a model based on billions
of observations. Furthermore, RTCA and ASTM committee members, the immediate
users of the trained model, preferred for our newly trained model to be consistent with
previous encounter models. Consequently, the model was trained using a similar Bayesian
framework, and we did not explore training other types of models, such as a random forest
model. Our approach consists of the following:

1. Download and pre-process (i.e., interpolate, outlier detection, etc.) training data;
2. Coarsely spatially filter training data to terminal airspace;
3. Classify track intent (e.g., landing, taking off, transiting) for training data within

terminal airspace;
4. Given classified tracks, identify encounters between aircraft;
5. Train model using identified encounters;
6. Sample model to create representative encounters.

3. Track Filtering and Encounter Identification

This section discusses the filtering of tracks based on spatial and temporal conditions
and how encounters between two aircraft were classified.

3.1. Initial Spatial Filtering

Initial spatial filtering was primarily executed to reduce the computational complexity
and requirements subsequent processing steps. All track segments at least 30 s in duration
(assuming one second updates), within a 10 NM radius of an airport of interest, and up to
4000 ft altitude relative to the airport surface were identified as within the vicinity of an
airport. The FAA airport open dataset (https://ais-faa.opendata.arcgis.com/datasets/e7
47ab91a11045e8b3f8a3efd093d3b5_0, accessed on 5 November 2020) was used to define
the latitude and longitude coordinates of the airports. Additionally, observations with
transponders squawking specific special use transponder codes, such as those reserved for
law enforcement aircraft, were also filtered out. Refer to Appendix C for a complete list of
these codes. Tracks that did meet all these conditions were filtered out and not considered
in the subsequent processing. Parallelized across 1008 xeon-e5 processes on the LLSC
TX-Green with a block task distribution, 782 s was required to identify 19,293,916 OpenSky
ADS-B tracks and 10,045 s for 36,701,193 terminal radar Mode C tracks.

To assess the potential local geospatial biases of the different datasets and visualize
the surveillance coverage, we calculated the joint distributions of the relative distance and
altitude between the airport and all the nearby data. The joint distributions are visualized as
contours. While the initial filtering includes altitudes up to 4000 feet relative to the airport,
the contours in Figures 1–6 are illustrated with relative altitude up to 2500 feet for readability
and to promote discussion about the lower altitudes, which are of greater interest. Across
the figures, discussion focuses on airspace near Renton Municipal (RNT), Seattle-Tacoma
International (SEA), Nantucket (ACK), Martha’s Vineyards (MVY), Laurence G. Hanscom
Field (BED), and Boston-Logan (BOS).

https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0
https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0
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Figure 1 illustrates distributions for RNT, a single-runway Class D airport approxi-
mately 4 nautical miles northeast of SEA. It supports colloquial statements such as “5%
of the identified traffic based on the OpenSky Network near RNT was within 2 nautical
miles and 1000 feet or less of the airport,” or “50% of the identified traffic based on the
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terminal area radar dataset was at least 6 nautical miles and 500 feet above RNT.” RNT
exemplifies the effect of nearby airports on identified tracks. Because the OpenSky Network
is a distributed network of sensors, there was potentially less of an observation bias towards
one specific location. This bias was exemplified by the gradual gradient approximately
4 nautical miles from the OpenSky Network-based tracks and the steep gradient from the
terminal area radars dataset. The terminal radar located at SEA was expectantly observing
nearby very low altitude.

However, not all low-altitude traffic can be attributed to nearby airports. Of the
more than 21 million points from the OpenSky Network dataset near RNT, 921,958 or
approximately 4%, were associated with rotorcraft. Similarly, approximately 4% and 6%
of OpenSky Network-based data were rotorcraft for Fort Lauderdale-Hollywood (FLL)
and Addison (ADS), yet 12% and 15% were rotorcraft for BED and Sacramento (SMF). The
tendency to observe rotorcraft operating at lower altitudes has also been observed when
training the uncorrelated encounter models [7].

Next, we illustrate some the advantages and disadvantages of crowdsourced data
by analyzing the Class D airports for ACK and MVY, islands off the southern coast of
Massachusetts. The islands are more than 50 nautical miles from the nearest terminal area
radar and approximately 26 nautical miles apart from each other.

Due to the distance away from the terminal radars, it was expected that neither airport
would have any processed tracks from that dataset. Foremost, particularly with MVY, the
OpenSky Network provided hundreds of flight hours for ADS-B equipped aircraft for a
location where the other dataset had no coverage. However, these crowdsourced sensors
often have limited range, which is exemplified by comparing the distance contours for
ACK and MVY. These contours suggested that a sensor was located on Martha’s Vineyard,
as MVY had relatively good low-altitude coverage but that all observations near ACK were
also from this MVY-based sensor. See Appendix B for other examples of how surveillance
coverage for a location differs between the datasets.

All of the discussed biases can be observed when comparing BED to BOS. BOS is
located approximately one nautical mile from the densely populated downtown of Boston
while BED is located in the less populated suburbs approximately 13 nautical miles away
from BOS. This region is unique in that the terminal area radar, MOD, is located at BED,
a Class D airport, and not BOS, the nearest Class B airport. The proceeding discussion
suggests that BOS should benefit from a greater nearby population density for the OpenSky
Network-based data and that BED should have a greater percentage of tracks below 500 feet
for the terminal radar data due to the location of the radar. This hypothesis was supported
by percent differences between BOS and BED, with BOS having 119.5% more observations
for the Open Sky Network-based data and 72.3% more using terminal radar dataset. The
percent difference indicates that a greater percentage of data was gained from switching the
target airport of BED in the suburbs to BOS in the city. Additionally, note that for distances
greater than 2.5 nautical miles with the terminal area radars, the 5% contour relative to BED
is below 500 feet in Figure 5 but above 500 feet in Figure 6 relative to BOS. This indicates
a greater percentage of low-altitude traffic below 500 feet observed by the terminal area
radars were observed closer to the radar’s location at BED than away from the radar at BOS.

Figures 1–6 all indicate that aircraft are rarely observed within 2 nautical miles and no
more than 500 feet above airports. While the contours are dependent upon the surveillance
performance, the general shape and conclusions drawn from the different airports are
similar. The surveillance performance differs for each of the airports Figures 1–3 also
indicated that aircraft operate largely above 500 feet AGL. Assuming the contours are
representative, the associated aircraft behavior aligns with many FAA regulations, such
as 14 CFR § 91.119—Minimum safe altitudes or 14 CFR § 91.129—Operations in Class D
airspace. Namely, aircraft rarely should operate low and close to airports and that the
majority of the time aircraft are not operating in the terminal environment.
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3.2. Track Intent and Runway Identification

After the initial filtering, we identified the intent for the tracks and which runway a
track was interacting with when taking off or landing. Tracks are considered independently.
For this processing step, there were six different intents identified. A transiting intent
was indicative of a track not interacting with any runways and assumed to be transiting
through the airspace. General aviation cross country flights or en route aircraft are example
behaviors we sought to identify as transiting. There were two landing intents, straight and
other, where straight corresponds to a straight-in landing and other is any other type of
landing. Similarly, there were two takeoff intents, one for straight-out and another for all
other types.

3.2.1. Clustering Using Airport Boundaries

First, we identified if a track was operating near the airport of interest or near any
airports within 10 nautical miles of the airport of interest. For each airport, an airport
bounding polygon was created based on assumed airport design and traffic pattern. As-
sumptions based on airport design and runway approach and departure standards were
based on the FAA Advisory Circular (AC) 150/5300-13A, Airport Design, which could
differ than the approach surfaces defined in 14 CFR § 77. For each runway, an approach
and departure corridor was generated as trapezoids (isosceles trapezium) (Trapezoid shape
based on dimensions B, C, D from Figure 3-2 and Table 3-2 from AC 150/5300-13A), extend-
ing 2.5 nautical miles out from the runway, and 800 and 3800 feet along the narrowest and
widest parallel sides. The traffic pattern was estimated by a circle centered on the airport
with a radius of 1.2 nautical miles, which is greater than the two miles, prescribed by the
FAA airplane flying handbook [25], that aircraft should be to remain well clear from the
pattern. To generate the airport boundary, a boundary was created around all the estimated
approach surfaces and traffic pattern.

Figure 7 illustrates the boundaries for Newark Liberty (EWR), Downtown Manhat-
tan/Wall Street (JRB), and Linden (LDJ) and shows that airport boundaries can overlap.
Since the model assumes intruder aircraft are not taking off or landing from nearby airports,
the proximity and overlap of airport boundaries was important. If a track flew through
the airport boundary for any nearby airport, at any altitude, it could not be classified as
taking off or landing from the airport of interest. Although this criterion was stringent, it
was intended to minimize the risk of including undesired tracks landing and taking off
from other airports when training the model.

Additionally, note that JRB is the Downtown Manhattan heliport without a fixed
runway. Without runway information, no trapezoids were calculated and the airport
boundary was just the traffic circle. LDJ has a single runway, so an airport boundary for
LDJ based only on the trapezoids would be narrow and just as wide as the trapezoid which
would insufficiently cover the traffic pattern. However, for larger airports, like EWR, the
traffic circle may barely extend past the runways.

3.2.2. Clustering Using Runway Corridors

Next, if a track was within the airport boundary for only the airport of interest,
we determined if the track was also within the runway two-dimensional approach and
departure corridor. These corridors were similar to the airport boundary trapezoids but
also extended 8 nautical miles from each runway (Shape based on dimensions B, C, D,
E from Figure 3-2 and Table 3-2 from AC 150/5300-13A). A track must be in a runway’s
corridor for at least 30 s. Each runway corridor was assessed independently and a track
could be assigned multiple runways.
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Figure 7. Airport boundaries for EWR, JRB, and LDJ. Runways are colored in black and the approach
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Figure 8 illustrate these corridors for Lehigh Valley International (ABE). The Allentown
Queen City Municipal (XLL) airport boundary intersects with one of the ABE runway
corridors. Given the requirement that a track can only intersect the airport boundary for
the airport of interest, the majority of the tracks in the overlapping could not considered as
taking off or landing from ABE.
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3.2.3. Vertical Rate, Altitude, and Relative Heading

If a track segment satisfied the spatial and temporal requirements based on the runway
corridor, it was furthered assessed based on vertical rate, altitude, and the relative distance
from the runway. If these additional criteria were met, the track was classified as either
taking off or landing. The vertical rate of the track when it was in the corridor was assessed
to help determine if a track was taking off or landing. The vertical rate had magnitude and
duration components. When in a corridor, the magnitude of the vertical rate had to be at
least 300 feet per minute for a specific duration. This threshold duration could either be the
time to vertically transit from the minimum and maximum track altitudes or 30% of the
entire duration the track is in a corridor. These criteria also were iterated upon between
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version 3.0 and 2.0 of the models. It was initially 50% and 500 feet per minute but the initial
criteria excluded tracks with many points in the corridors or with slower vertical rates near
a runway. If the vertical rate was negative and the track decreased altitude, it was classified
as landing; and vice versa for takeoffs.

To be classified as taking off or landing, when in a corridor, the track must fly within
2.5 nautical miles and 750 feet from the end of the runway of interest. This lateral and
vertical criterion corresponds to the aviation heuristic 1 in 60 rule and an assumed 3 degree
glide slope. This criterion was notably iterated on during model development. For version
2.0 of the model, the criterion was not based on an assumed 3 degree glide slope and was
instead, 1 nautical mile and 475 feet.

Finally, to determine if the takeoff was straight-out or the landing was straight-in,
we calculated the magnitude heading relative to the runway for all track points in the
corridor. If the 95th percentile of all relative headings was 30 degrees or less, the track was
classified with an intent of either straight landing or take off. Otherwise it was classified as
a non-straight landing or takeoff. For straight takeoff and landings, any points immediately
before or after the track enters or exits the corridor that satisfied a 40 degree relative heading
threshold were also assigned a straight landing or take off intent.

For the other intents, a change in altitude criteria was used to classify points outside
of a corridor. For takeoffs, after exiting the corridor, points until the maximum altitude was
achieved were as labeled as with the takeoff intent. Conversely points descending from the
maximum altitude prior to entering the corridor were labeled with a landing intent. For
example, Figure 9 illustrates classified tracks for an ABE runway.
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Figure 9. Landing at ABE using the OpenSky Network-based aerodromes dataset.

3.2.4. Transiting Aircraft

If the minimum altitude for all points within a corridor was greater than 1500 feet
relative to the runway and the maximum altitude was less than 5000 feet, then the track
would be labeled with an intent of transit. If a track intersected any airport boundary
but none of the corridors, the same altitude criteria was applied to determine if the track
was transiting over the airport. For example, any tracks that intersected solely the XLL
boundary would need a minimum altitude of 1500 feet to be classified as transiting. This
criterion was successful in filtering out low-altitude traffic operating from nearby airports,
while not filtering en route traffic flying above the airport. Figure 10 illustrate transiting
aircraft for ABE and Figure 11 illustrates the notional condition if the altitude criteria were
changed from 1500 to 0 feet relative to ABE. Note the lack of low-altitude tracks colored
blue within the centered ABE boundary in Figure 10 but the presence of low-altitude tracks
in Figure 11. This difference illustrates tracks established in the traffic pattern around ABE
that satisfied the airport boundary but failed to satisfied the runway corridors criteria. Also
evident was the low-altitude traffic operating near XLL that was southwest from ABE and
filtered out in Figure 10.
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and figure is illustrative and not used for model training. Tracks sourced from the OpenSky Network-
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3.3. Encounter Identification

The previous step only identified the intent (e.g., landing, taking off, transiting) of
independent tracks, the next step was to identify encounter between aircraft where the
horizontal and vertical separation was simultaneously was 4 nautical miles laterally or less
and 2000 feet vertically or less. First, for encounters where one aircraft had an intent of a
straight-in landing or straight-out takeoff. we determined if there was at least one second
overlap in UTC time, with potentially hundreds of thousands of encounters satisfying this
temporal criterion. We then filtered to encounters with at least thirty seconds of overlap in
time while satisfying the loss of separation requirement.

3.3.1. Example Training Encounters

Figures 12–14 illustrate example encounters identified at ABE. Figures 12 and 13
illustrates an encounter where ownship is landing and the intruder is either also landing
or taking off. These figures highlight the heading constraints on the ownship. While
both aircraft are landing, the final approach and landing for the intruder can be highly
variable across encounters, whereas ownship must always have a minor relative heading
difference from the runway. Figure 14 demonstrates that ownship may exhibit some minor
turning behavior due to the relative heading threshold of 30 degrees or less and that aircraft,
particularly intruders, can be oriented many nautical miles away from the runway.
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Figure 12. Example OpenSky Network observed encounter at ABE. Both aircraft were landing at the
same runway. The encounter had a duration of 222 s.
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Figure 14. Example OpenSky Network observed encounter at ABE. Ownship was landing and the
intruder was transiting through the airspace. The encounter had a duration of 139 s.

3.3.2. Encounter Quantities

Table 2 summarizes how the data were filtered from the initial spatial filtering to the
final set of identified encounters for three representative airports.

Table 2. Processing summary when using the OpenSky Network aerodromes dataset.

Count ABE ADS LBJ

Points after initial spatial filtering 1,816,670 20,954,315 14,538,290
Takeoffs or landings (any) 877 2913 3

Transiting intruders 4522 38,917 71,881
Potential encounters based on intent and time 28,174 753,067 23,889

Final identified encounters for training 22 402 0

While we had significantly less data for ABE than LBJ, ABE had more potential en-
counters that satisfied the intent criteria for potential encounters and had more encounters
identified. This was attributed to the differences of the airspace and design of airports near
ABE or LBJ. In particular, the immediate proximity of LBJ to the larger EWR (Figure 13)
resulted in the majority of the tracks filtered out for consideration as ownship. Furthermore,
the majority of traffic was likely operating from or to EWR, so the large quantity of data
was more reflective of EWR than the smaller LBJ. Similarly, as discussed in Section 2.2,
we observed significantly more traffic near ADS due the greater population density of
the Dallas Fort Worth metroplex and increased traffic around the Class B airports of DFW
and DAL. While ABE had less than one-tenth of the data as ADS, more potential ownship
tracks were identified per observation points for ABE than ADS. Appendix D illustrates
the identified encounters for ABE when using the aerodromes dataset.

Table 3 reports the number of encounters used to train the current encounter geometry
model given airspace class and data source. While the OpenSky Network-based train-
ing dataset had a greater spatial and temporal scope, it was limited to only identifying
encounters between aircraft that both had ADS-B equipped.

Table 3. Model encounter based on data set and airspace class—version 3.0.

Airspace Class Terminal Radar Aerodromes

B 2,396,048 1,038,390
C 103,566 81,253
D 85,514 45,066

Other (E/G) 1209 432
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3.3.3. Encounter Duration

For all airspace classes when using the aerodromes dataset, the median duration of
identified encounters for model training was at least 87 s and 10% or fewer encounters had
a duration of 39 s or less, as illustrated by Figure 15. The median was at least 100 s when
using the terminal area radars dataset. These two statistics indicate that the requirement for
an encounter to be at least 30 s was not overly burdensome and not a significant factor when
rejecting an encounter for model training. Figure 16 illustrates if the duration requirement
increased to 60 s when using the aerodromes dataset, approximately one-third of the current
Class D and other encounters would be rejected, while only 15% of Class C encounters
would be rejected. Comparably, approximately one-quarter of the current Class D and
Other encounters and a smaller percentage of Class C encounters would be rejected when
using the terminal area radars dataset.
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While the duration of training encounters had a minimal dependence on airspace
class or dataset, the quantity of encounters identified for each airport of interest was biased
towards a small percentage of airports. Table 4 reports the distribution of how many
encounters were identified for an airport. For example, Table 4 reports that no encounters
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were identified for 29 Class C airports and that at least 100 encounters were identified at
24 Class C airports when using the OpenSky Network-based aerodromes dataset.

Table 4. Airport count with quantity of training encounters.

Airspace Class Dataset 0 (0, 10) [10, 100) [100, ∞) Total

C Aerodromes 29 9 12 24 74
C Terminal Radars 5 0 2 9 16
D Aerodromes 139 40 45 44 268
D Terminal Radars 43 6 25 44 118

Other Aerodromes 829 37 13 0 879
Other Terminal Radars 371 24 19 4 418

94% of the Class E or G (Other) airports when using the OpenSky Network-based
aerodromes dataset and 89% of other airports with the terminal area radar dataset had no
encounters identified. For the terminal area radars dataset, 48% of encounters in Other
airspace were identified from 1% of the airports (n = 4) with any data after the initial
spatial filtering.

4. Training the Dynamic Bayesian Network

This section describes the model structure, rejection sampling of the model, and
example sampled encounters from the model.

4.1. Model Training and Structure

With encounters identified, the statistical models could now be trained. The terminal
model consisted of an encounter geometry model and a trajectory propagation model.
The first component, the encounter geometry model, describes the geometrical conditions
of two encounter aircraft at their point of closest approach. The second component, the
trajectory generation model, then describes the flight path for each aircraft leading to and
continuing from their point of closest approach. Like the RADES-based correlated model,
this was a generic model with no dependency on geography or locations.

Relative Local Coordinate System

Encounters are described in a coordinate system where all altitudes are relative to the
mean runway elevation. Angular units are represented on a standard polar grid increasing
in counterclockwise orientation. When training the model, the aircraft trajectories are
rotated using a two-dimensional rotation matrix such that the runway the ownship is using
lays directly on the y-axis, with the runway mean position located at (0,0). The runway is
assumed to be a single point, rather than a vector or polygon. When training the model,
positions and distances are relative to the mean runway position for the airport of interest.
Since we trained a generalized model, this is a potential source of bias and error, as the
mean runway position will vary for different airports.

Additionally, the runway is oriented above ownship on the y-axis: that is, ownship
has a relative angular position (bearing) with a range of [180, 360] degrees. When projected
onto a Cartesian coordinate system, the y-axis is oriented from 270 to 90 degrees, and x-axis
from 180 to 0 degrees.

Figure 17 illustrates the bearing distribution for the ownship forward trajectory model,
with similar distributions within the ownship backwards trajectory model. As bearing is a
relative position, the distribution given a landing or takeoff intent are similar.
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Figure 17. Bearing (angular position) distribution of the ownship forward trajectory model. Bin
widths are 10 degrees.

Bearing is the angular position, whereas heading is the correspondingly angular
vector, that is the direction of flight. Figure 18 illustrates the heading distribution for
the ownship forward trajectory model. Unlike the bearing distribution in Figure 17, the
heading distribution is dependent upon whether ownship is taking off or landing. When
landing, the average heading is 90 degrees, as the ownship is flying along the negative
y-axis towards the mean runway position at (0,0); whereas when taking off, the ownship is
flying away from the runway such that the mean heading is 270 degrees. The heading and
bearing also reflect that ownship takeoffs and landing were constrained to be straight-out
or straight-in; the distribution for the intruder models are different with the distribution
over a wider range of values.
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The differences with the intruder distributions is best illustrated by Figure 19 with
the bearing and heading distributions of the intruder forward trajectory model given
that the intruder is transiting through the airspace. Compared to the more constrained
ownship distributions, the intruder distribution has a wider distribution over bearing and
a significantly more encompassing distribution over the full 360 degrees range of headings.
The intruder bearing distribution is reflective of the encounter separation criteria. Since
ownship predominantly has a bearing in the range of [260, 280] degrees and encounters
occur when aircraft are close to each other, it is not surprising that the intruder has a
similar mean bearing. However, since transiting intruders are not flying to or from the
mean runway position at (0,0), they operate more liberally throughout the airspace, as
represented by the more diverse heading distribution.
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4.2. Encounter Geometry Model

The encounter geometry model describes the position, speed, and direction of two
aircraft at their horizontal closest approach. Some variables were smoothed using a locally
weight temporal smoother with a Gaussian kernel. It uses the following variables:

• Airspace class: Airspace class of the airport.
• Ownship intent: The intent of the ownship of either a straight landing or take off.
• Intruder intent: The intent of the intruder of either landing, taking off, or transiting.

Unlike the ownship, the intruder’s intent is not assumed to be straight.
• Intruder type: The type of aircraft of the intruder: can either be fixed-wing or rotorcraft.

Note that while the OpenSky Network-based uncorrelated models are individually
organized by aircraft type [7], aircraft type is an explicit model variable here.

• Intruder runway: The runway the intruder was leveraging relative to the ownship.
Designated as “same” if both aircraft were operating from the same runway; parallel”
if the intruder was operating from a runway that did not intersect the ownship’s
runway; as “crossing” if the intruder was operating from a runway that intersected
the ownship’s runway; and “none” if the intruder intent was transiting.

• Ownship distance from runway: The horizontal distance between the ownship posi-
tion at CPA and the runway mean position.

• Ownship bearing from runway: The polar angle of the ownship’s position at CPA.
• Ownship altitude: The altitude of the ownship relative to the runway elevation at CPA.
• Ownship speed: The smoothed speed of the ownship at CPA as estimated by a finite

difference of the trajectory position data.
• Ownship heading: The direction of flight of the ownship at CPA.
• Intruder distance from runway: The horizontal distance between the intruder position

at CPA and the runway mean position.
• Intruder bearing from runway: The polar angle of the intruder’s position at CPA.
• Intruder altitude: The altitude of the intruder relative to the runway elevation at CPA.
• Intruder speed: The smoothed speed of the intruder at CPA as estimated by a finite

difference of the trajectory position data.
• Intruder heading: The direction of flight of the intruder at CPA.

These variables were associated via a graphical model (Figure 20) that indicates
dependency relationships. Those variables in turn are dependent on several other variables.
In this graph, the variables are nodes and the dependencies are directed edges. The model
has conditional probabilities, so the graph can be referred to as a Bayesian network.
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Figure 20. Bayesian network for the encounter geometry model.

Some variables, as identified in Table 5 below, are inherently discrete. Other variables,
identified in Table 6 below, are inherently continuous. For representation in this model, the
continuous values in the observed data must be discretized during training.

Table 5. Encounter geometry model discrete variables.

Variable Node Label Values

Airspace Class class [1—B, 2—C, 3—D, 4—Other]
Ownship Intent Ownship_intent [1—Land, 2—Takeoff]
Intruder Intent int_intent [1—Land, 2—Takeoff, 3—Transit]
Intruder Type int_type [1—Fixed-Wing, 2—Rotorcraft]

Intruder Runway int_runway [1—Same, 2—Parallel, 3—Crossing,
4—None (Transit)]

Table 6. Encounter geometry model continuous variables.

Variable (Units) Node Label Cutpoints

Ownship Altitude (feet) own_alt [200, 500, 1000, . . . , 3000, 5000]

Ownship Bearing (degrees) own_bearing [0, 15, 30, . . . , 165, 175, 185, 195,
210, 225, . . . , 360]

Ownship Distance (nautical miles) own_distance [0, 0.5, 1, 2, 3, 4, 5, 8]

Ownship Speed (feet per second) own_speed [75, 150, 225, 300, 375, 450]

Ownship Track (degrees) own_trk_angle [−180, −175, −165, . . . , 175, 180]

Intruder Altitude (feet) int_alt [200, 500, 1000, . . . , 3000, 5000]

Intruder Bearing (degrees) int_bearing [0, 15, 30, . . . , 165, 175, 185, 195,
210, 225, . . . , 360]

Intruder Distance (nautical miles) int_distance [0, 0.5, 1, 2, 3, 4, 5, 8]

Intruder Speed (feet per second) int_speed [75, 150, 225, 300, 375, 450]

Intruder Track (degrees) int_trk_angle [−180, −175, −165, . . . , 175, 180]

4.3. Trajectory Propagation Model

The trajectory generation models describe how the position of the two encountering
aircraft evolves before and after their closest point of approach (CPA). While the encounter
generation model considered the relatively geometry between aircraft, the trajectory propa-
gation models assumed track independence, with ownship and intruder models trained
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separately. The training data for this model were the independent sets of ownship and
intruder tracks from identified encounters.

The ownship and intruder trajectory propagation models have a similar model struc-
ture with a difference in the temporal variables. The forward propagation models transition
from time (t) to (t + 1) after CPA has occurred, while the backwards propagation model is
for time (t) to (t − 1) prior to CPA. Specifically, they use the following variables:

• Intent: The aircraft’s intent, same as defined for the encounter geometry model;
• Distance from runway: The horizontal distance between the aircraft position and the

runway mean position over time;
• Bearing angle from runway: The polar angle of the aircraft’s position;
• Heading angle: The direction of flight of the aircraft;
• Altitude: The altitude of the aircraft relative to the runway elevation over time;
• Speed: The smoothed speed of the aircraft over time as estimated by a finite difference

of the trajectory position.

Similar to the encounter geometry model, the trajectory model is also a Bayesian
network but since the trajectory models also incorporate time dependencies, it is referred to
as a Dynamic Bayesian network. This model structure was based on the Dynamic Bayesian
network of the uncorrelated encounter models, which did not model distance or bearing
with respect to some spatial point. Illustrated in Figure 21, the aircraft’s track at the next
time step is dependent on its current track, its bearing from the runway, and its distance
from the runway.
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Figure 21. Dynamic Bayesian network for the trajectory forwards propagation model.

All variables in the trajectory generation model, defined in Table 7, are inherently
continuous. Some cutpoints are different from those for the same variable in the encounter
geometry model (e.g., altitude is more finely discretized here). For a given training dataset,
different forward and backwards propagation models are trained for each intent of landing,
taking off, and transiting. Forwards propagation models are trained on time-ordered
trajectory data while backwards propagation models use reverse-time-ordered trajectory
data for training. Future work may consolidate these models.

Table 7. Trajectory generation model continuous variables.

Variable (Units) Node Label Cutpoints

Intent intent [1—Land, 2—Takeoff, 3—Transit]
Distance (nautical miles) distance [0, 0.5, 1, 2, 3, 4, 5, 8]

Bearing (degrees) bearing [0, 5, 15, 25, . . . , 355, 360]
Altitude (feet) altitude [200, 300, . . . , 2000, 2500, 3000, 5000]

Speed (feet per second) speed [75, 100, 150, 200, . . . , 350, 450]
Track (degrees) trk_angle [−180, −175, −165, . . . , 175, 180]

4.4. Model Sampling and Encounter Generation

Once the model has been trained with the observed trajectory data, it can be sampled
to generate new encounters (“synthetic encounters”). Encounter generation is completed
in three steps: sampling the geometry model, sampling the trajectory models, and rejecting
or accepting the encounter based on general assumptions or aircraft performance.
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4.4.1. Sampling the Encounter Geometry Model

First the encounter geometry is sampled to generate aircraft positions at CPA given
distance and bearing relative to a runway’s mean position. The encounter geometry
model is sampled with a uniform prior (i.e., absent any additional information, that all
combinations of variables are equally likely). Figures 22 and 23 illustrate 500 samples from
the geometry model where ownship is taking off and the intruder is landing or transiting.
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Figure 23. Sampled positions at CPA when ownship is taking off and intruder is transiting.

These figures illustrate two important elements of the model. First, the coordinate
system is oriented such that ownship’s runway is parallel to the y-axis, with positive
down the runway from the threshold. This results in ownship predominately operating to
the “south” of the runway and the cone shape of ownship’s position is indicative of the
30 degree heading requirements for a straight landing or taking off. Second, the intruder
position is dependent on its intent. Note in Figure 22 that a cluster of intruder positions
are near (0,0). This cluster is not evident in Figure 23 and when transiting, the intruder at
CPA is more dispersed. This was expected as transiting aircraft should not be operating
predominantly along an approach or departure route. This is an outcome of the intent
classification described in Section 2.3 and visually demonstrates how encounter geometry
is dependent on aircraft intent.
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4.4.2. Sampling the Trajectory Models to Propagate Tracks

Next, the ownship and intruder trajectories are successively sampled using the associ-
ated forwards and backwards trajectory generation models. Trajectories are propagated up
to 120 one second timesteps before and after CPA, with initial positions provided by the
geometry model sample. Propagation is achieved by successively sampling a trajectory
model’s variables from the top of the graph to the bottom, applying the learned condi-
tional probabilities in conjunction with Bayes Rule. The trajectory models are sampled
using a non-transitioning prior: absent observed information, dynamic variables remain
constant. It is important to use these priors because the large space of discrete-valued
variable combinations make it likely that there are gaps in the conditional probability tables.
Sampling only gives discrete values for each of the model variables. Continuous values for
the continuous variables must subsequently be sampled. In all cases, the model assumes
this sampling will be from a uniform distribution within the relevant bin.

Unlike previous encounter models, with which all transition events throughout an
encounter can be sampled at once, the trajectory models can only be applied one time step
at a time, with the new aircraft position being computed after each step. The new aircraft
position is used to calculate the distance and bearing the track is away from the runway,
with distance and bearing being model variables. This is required because distance from or
bearing to the runway are not temporal variables in the Dynamic Bayesian network.

Additionally, unlike other MIT LL developed models, tracks do not need to fully
overlap in time. It is possible for an encounter to start or end with only one aircraft in the
vicinity of the runway. For example, an encounter could start at t = −120 s (prior to CPA)
with the intruder initially positioned within 8 nautical miles of the runway. An ownship
could be initialized at t = −30 s near the runway at a low altitude to simulate the ownship
beginning to takeoff. In this example, CPA would occur at t = 0. At t = 30 s, the intruder
could be more 8 nautical miles from the runway and no more track updates would be
generated for it. From t = 31 and onward, only ownship would be simulated.

4.4.3. Rejection Sampling

Given an encounter of two aircraft tracks, we assess if its valid or should be rejected. If
an encounter fails any of the described criteria, it is rejected and the encounter generation
process is restarted with a new sample from the encounter geometry model. Criteria are
organized into three categories: those based on training assumptions, assumptions unique
to ownship, and dynamic constraints. The criteria based on training assumptions are
designed such that the sampled synthetic encounters are subject to similar constraints and
assumptions used to identify encounters for training:

• Encounter CPA must occur within 5 s of the sampled CPA;
• Tracks must overlap at least 30 s in time;
• If taking off or landing, a track must have at least one track update within 2.5 nautical

miles of the runway mean position;
• For track updates within 2.5 nautical miles of the runway mean position, at least one

point must have an altitude of 750 feet or less;
• A track must have sufficient quantity of updates with a vertical rate magnitude of

300 feet per minute or greater. If landing, the rate must be negative and if taking off,
the rate must be positive;

• A track ends if it is within 0.25 nautical miles or more than 8 nautical miles away from
the runway.

Similar to when classifying track intent, ownship must satisfy a relative heading
criterion, so it is representative of a straight landing or takeoff. The ownship heading
criteria is dependent upon intent:

• If landing, at least 95% of heading updates need to be 90 ± 30 degrees;
• If taking off, at least 95% of heading updates need to be 270 ± 30 degrees.
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The last set of criteria ensure that aircraft ownship or intruder satisfied a set of dynamic
limits. The publicly available sampling software [8] has a default four sets of dynamic
limits based on assumptions of different aircraft by RTCA SC-28. Dynamic limits were
minimum and maximum speed; acceleration; and minimum and maximum vertical rate.
Please refer to Appendix E for the specific dynamic limits as of publication.

4.5. Example Nominal Encounters

Figures 24–26 illustrate example encounters sampled from the model trained from
terminal area radar tracks. Sampled encounters assume a generic aircraft type, and not
necessarily reflective of the desired range of dynamics from Table 7. Examples are intended
to highlight the advantages and disadvantages of the model and rejection sampling ap-
proach to create encounters. In all the examples, the runway is oriented parallel to the
y-axis. Tracks are illustrated as peri- or intra-. Track updates when only one aircraft is
simulated at the timestep are noted as peri- while track updates when both aircraft are
simulated are intra-.
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4.5.1. Sampled Nominal Landing Encounter

Figure 24 illustrates a sampled encounter where both aircraft are landing. While
ownship must land straight, the intruder happens to also land straight but is not required
to do so. The encounter starts at 120 s prior to CPA with only the ownship track simulated
until 91 s prior to CPA when the intruder track is initialized approximately 8 nautical miles
away from the runway. The ownship track ends shortly after CPA because it had a low
enough altitude and close enough to the runway such that the tracks end. The intruder
aircraft continues to be simulated until it ends at 82 s after CPA.

This illustrate how model structure influences the simulated kinematics. Both vertical
rate and speed are estimated from track updates with vertical rate derived from the differ-
ence between altitude reports and speed based on distance and bearing from the runway.
Altitude is a temporal variable with (t) and (t + 1) variables in the trajectory model but
distance and bearing from the runway are not. Consequently, vertical rate is better modeled
and more realistic. We rarely observe speed changes in sampled tracks.
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4.5.2. Sampled Encounter with Transiting Intruders

Figure 25 illustrates an ownship taking off, like Figure 24, but has an intruder transiting
through the airspace. Ownship exhibits similar features as in the previous examples with
minimal heading changes, a reasonable vertical rate, and a constant speed. Since the
coordinate system is centered on the assumed runway mean position, rather than an end of
a runway, a track can be initialized anywhere near the origin, not necessarily on the y-axis.
More importantly, this example illustrates how a transiting intruder behaves differently
than one taking off or landing. The intruder has a relatively constant altitude, more heading
changes, and flies relatively farther away from the runway.

4.5.3. Sampled Encounter Idiosyncrasies

Figure 26 illustrates an ownship taking off and an intruder transiting the airspace.
The intruder maintains a relatively higher altitude and more lateral movement. Similar to
the previous examples, ownship has minimal heading changes but exhibits an interesting
altitude and vertical rate behavior. The ownship has an initial position within 2.5 nautical
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miles of the runway but at an altitude greater than 750 feet. The previously described
rejection sampling criteria is that at least one track update within 2.5 nautical miles of the
runway must have an altitude of 750 feet or less and given that ownship is taking off, a
sufficient number of track updates need to have a vertical rate of at least 300 feet per minute.
Since the ownship immediately descends to an altitude below 750 feet, it satisfied the
altitude criteria when near the runway. As the track climbs after CPA, it then also satisfied
the vertical rate criteria. This example illustrates an advantage of using encounter models
to support Monte Carlo simulations for safety evaluations. In practice, not all takeoffs have
a smooth vertical ascent and not all landings have smooth descents. This encounter also is
not physically impossible. While encounters like this, it is reasonable to include them in
safety assessments because they stress DAA systems in novel ways.

5. Sampled Encounter Dataset

To characterize the model samples at scale, one million encounters were generated
each from models trained on the terminal radar tracks and OpenSky Network. Ownship
used “RTCA228-A1” dynamic constraints while the intruder used the “generic” constraints.
For each of these million encounters, there was a uniform distribution over airspace class,
ownship intent, and intruder intent. The encounters were simulated using a basic 6 degrees-
of-freedom dynamics model in the DEGAS simulation environment [26]. We characterized
the encounter sets based on aircraft kinematic states at CPA and the horizontal miss distance
(HMD) and vertical miss distance (VMD) at CPA. Distributions were compared between the
different models to characterize if the different training datasets led to different sampled
encounters. Ultimately, training data sources have different biases and assumptions,
so generating encounter sets using both modeled improved the robustness of the final
simulation results.

5.1. Kinematic Distributions at CPA

Figures 27 and 28 provide the distributions for distance from the runway, altitude,
speed, and vertical rate for ownship and intruder at CPA. Figure 27 was generated using
the model trained using the terminal area radar tracks while Figure 28 used the OpenSky
Network-based model. Histogram bins are based on the bins used by the encounter
geometry model and may not be uniform.

Foremost, the altitude and vertical rate magnitude distributions were similar between
the models. In general, the intruder was at lower altitude than the ownship at CPA, with
both aircraft at 1500 feet or less. Extreme vertical rates were rarely observed at CPA, with
most vertical rates of 10 feet per second (600 feet per minute) or less. The distance at
which CPA occurred from the runway slightly differed between the sampled encounter sets.
While both encounter sets had approximately 75% of encounters within 4 nautical miles
of the runway, the terminal area radar-based encounters had more encounters within one
nautical mile of the runway, while the OpenSky Network-based encounters had a few more
encounters at two to four nautical miles from the runway mean position For assessing DAA
performance, these differences are not particularly impactful because the DAA system is
more influenced by the kinematics of which altitude and vertical rate had unimportant
differences but there was a notable difference in the speed distributions.

For the terminal radar-based encounters, approximately 60% of encounters had own-
ship flying between 225 to 300 feet per second at CPA, while only 46% of OpenSky Network-
based encounters had ownship at that speed at CPA. Additionally, only approximately
12% of intruders had a speed of 75 to 150 feet per second at CPA with the terminal radar-
based encounters, compared to nearly 28% of the other encounter set. Speeds greater than
300 feet per second (178 knots) at CPA were infrequently observed in approximately 7% of
encounters in both sets.
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Upon review of the encounters, we have a couple hypothesis to explain the differences
in the speed distributions. Principally, aircraft type of fixed-wing or rotorcraft can be
identified when training with the OpenSky Network-based model but not when using the
terminal area radars. For the uncorrelated encounter models, we have observed models
trained solely using observations of rotorcraft will have a speed distribution slower than
models trained using solely fixed-wing aircraft [7]. An uncorrelated rotorcraft-based model
also has a relatively slower speed distribution than a model trained using heterogenous
mix of aircraft types. We hypothesized a similar trend is occurring with the terminal model,
where the OpenSky Network-based model can leverage the aircraft type information and
generate tracks that are more representative of relatively slower moving aircraft. An
inspection of the model distributions given an aircraft type of rotorcraft support this
hypothesis. Additionally, due to ADS-B transponder equipage mandates, it is possible
that more rotorcraft or general aviation fixed-wing single engine were equipped with
transponders in 2018 than in 2015 when the terminal area radar dataset was curated. The
models also inherently were trained based on different compositions of aircraft types, with
the speed distributions reflecting these different compositions.

5.2. Horizontal and Vertical Miss Distance Distributions

While independent aircraft speeds are important in characterizing an encounter, the
closing speed between aircraft significantly influences the risk of a collision given an
encounter and subsequently the HMD and VMD at CPA. The separation between aircraft is
also based on other kinematic variables as well, such as relative heading between aircraft,
aircraft turn rate, altitude, and vertical rate. Accordingly, Figures 29 and 30 visualize the
HMD and VMD distributions as two-dimensional CDF contour plots for each encounter set;
while specific values from these distributions are summarized in Table 8. The differences
between these distributions are more pronounced at smaller HMD and VMD values and
that as HMD and VMD at CPA increases, the distributions between the two encounter sets
become more similar.
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Table 8. Select HMD and VMD fractiles for one million encounters with a “RTCA228-A1” ownship
and “generic” intruder with models trained using different data.

HMD (Feet) VMD (Feet) Terminal Area Radars OpenSky Network Aerodromes

2200 450 0.17 0.25
2500 0 0.10 0.15
2500 250 0.16 0.25
7000 500 0.25 0.40

16,400 0 0.25 0.34
23,600 0 0.50 0.51

A positive VMD is indicative of the intruder above ownship and a negative VMD
is when the ownship was above the intruder. Figure 29 indicates that 25% of encounters
sampled from the terminal area radar trained model, had an HMD of 7000 feet or less and
a VMD of 500 feet or less at CPA. Whereas 40% of encounters sampled from the OpenSky
Network-based model satisfied these HMD and VMD thresholds.

Regardless of the model, majority of encounters had a CPA where the intruder was
above the ownship. This can be attributed to transiting intruders which tend to have higher
relative altitudes and the glide slope constraints on the ownship. Majority of encounters
had a HMD and VMD greater than 2200 and 450 feet, respectively, at CPA. This combination
of HMD and VMD are notable as it a separation metric used by RTCA SC-228 [27–29] and
similar to separation criteria used by a different DAA standard published by ASTM F38 [30].
As the OpenSky Network-based model had 25% of encounters with a HMD and VMD
of this or less, that encounter set was slightly more stressing to the DAA system and had
encounters to estimate safety metrics based on that separation.
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6. Discussion

This section critically summarizes the model and discusses potential future work. As
of December 2021, model development is ongoing.

6.1. Accomplishments

Using a classical Bayesian network to model where CPA occurred was shown to be
practical and scalable, whereas many of the issues can be attributed to propagating tracks
over the duration of the encounter. We also demonstrated the viability of a clustering
approach to identify encounters based on assumptions of airport design, approach and
departure routes, and aviation heuristics. When parallelizing across multiple processors on
the LLSC, the approach identified a sufficient set of encounters for model training.

Regarding the use of the model for safety analyses, aircraft tracks were often initialized
multiple nautical miles away from the runway and with faster airspeeds than associated
with landings of rotorcraft, fixed-wing single-engine or smaller fixed-wing multi-engine
aircraft. However, as discussed in Section 3.3.1, the modeled speeds at CPA were reasonable.
There was no indication that aircraft were modeled with speeds slower than anticipated
nor with unreasonably fast speeds at low altitudes. Collision risk increases with aircraft
speed because closing speed also increases, which reduces the time required to loss of
separation between aircraft. This was previously assessed for uncorrelated encounters
with smaller drones [31]. Given there exists some relationship between closing speed and
risk, we assumed that the sampled encounters likely did not underestimate risk because
the sampled encounters were presumed to not be slower than reality. Collision risk is
not solely dependent on closing speed and there are other variables, many of which are
encoded in the model itself. So, while modeled aircraft are not slowing down as they fly
closer to the runway, additional validation is required to assess if the encounters slightly
overestimated the risk due to the higher than expected speeds. Assuming fixed-wing
aircraft have a minimum stall speed of 75–100 feet per second, we hypothesize that tracks
could experience a speed change up to 85 feet per second over the course of an encounter
in an improved model. Additional information may be found in the websites listed under
Supplementary Materials.

6.2. Future Work

Model development will focus on improving how aircraft move through the airspace
with respect the runway, rather than identifying where CPA or if an encounter was observed.
Potential near-term future work includes aggregating the trajectory models into a one or
two trajectory model with additional parent variables to denote if an aircraft is the ownship
or intruder; or specifying additional, more specific intents such as “landing-straight,” or
“landing-any.” Future work could also explore training a model using a hidden semi-
Markov model, like Mahoubi and Kochenderfer [18], or with longer timesteps, such that,
for example, track updates are sampled every ten instead of every one second. However,
neither of these proposed developments would address issue of sampled speeds generally
remaining constant.

Additionally, track classification for training and the model structure can be improved
to better distinguish and model different track intents. Specifically, the current intruder
intent of “transiting” can be too vague and likely insufficiently captures behavior tailored
to terminal VFR or helicopter routes.

It was insightful that vertical rate estimated from a temporal variable, altitude, was
a better model than speed, which was not estimate from a temporal variable. While we
could prototype modifying the trajectory model such that distance and bearing from the
runway are temporal variables, the current Dynamic Bayesian network structure is reliant
upon discretized variables, which could produce similar intra-bin sampling issues.

One potential approach is to use aggregate or relative variables, instead of absolute
variables in the model structure. Speed and vertical rate are currently absolute variables
that models the absolute kinematics of the aircraft. An example aggregate variable would
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be the sum of aircraft speeds or the sum of vertical rates; while a potential relative variable
would be the relative speed difference between the ownship and intruder. Using absolute,
aggregate, and relative variables in combination could be memory efficient and better
model the combinatorial state space of different aircraft kinematics. The use of aggregate
states yielded promising results when previously exploring aircraft avoidance Markov
Decision Processes (MDP)s [32].

Another approach similar to Mahboubi and Kochenderfer [18] could be prototyped
where tracks can be classified by the probability of an aircraft transitioning from one
navigation goal to the next. While Mahboubi and Kochenderfer used Turning Points as a
navigation goal, goals could also be formulated origin and destination (O-D) pairs. O-D
pairs have been used to model potential air taxi traffic between locations, with O-D pairs
enabling models to assess various operational constraints between different structured
routes [33]. Mahboubi and Kochenderfer modeled aircraft navigation between stochastic
O-D pairs, the parameters and nodes of the models were hand engineered based on a
nominal traffic pattern, while demonstrating they could be learned from observations.

We hypothesize that instead of a network based on specific phases of a terminal
operation, such as states associated with a 45 degree entry into a downwind, turn onto
base, and a turn into final before landing. Using the existing or modified model structure,
Dynamic Bayesian Network(s) could be trained for each state. For example, consider
a terminal environment with a single runway and VFR route. The VFR route could be
composed of multiple waypoints but the proposed model would represent the entire VFR
route as a single state. Similar to the cluster approach described in Section 2.3, we could
identify tracks with a VFR route state. Subsequently, states associated with landing or
taking off from the ends of the runway would have their own states. Given this state
classification, we could train models tailored to the states. Then, similar to the encounter
identification approach from Section 2.4, we could identify encounters given navigational
state and relative position. This should enable the model to better distinguish between an
intruder flying along a VFR route with specific operating rules and assumptions and an
intruder transiting through the airspace at relatively higher altitudes. Each state could have
a Dynamic Bayesian network to model how aircraft operate within a state (i.e., flying along
the VFR route) with a separate Bayesian network to model the transition between states.
This hierarchical model would then enable modeling of both aircraft kinematics and the
relative interactions between navigational states. Notwithstanding, future work will focus
on improving modeled speed and various intents.

Other avenues for future work include rotorcraft track identification with techniques
that do not leverage the aircraft registry, such as using an autoencoder [34] or kinematic
features [35]; considerations for non-conventional aircraft, such as gliders or balloons;
incorporate traffic flow management concepts [36]; or compare sampled tracks between
the correlated terminal and en route models.
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Appendix A. Datasets of Aircraft Tracks

Appendix A.1. OpenSky Network

Observations of crewed aircraft were sourced from the OpenSky Network [15], a com-
munity network of ground-based sensors that observe aircraft equipped with Automatic
Dependent Surveillance-Broadcast (ADS-B) Out. The OpenSky Network offers a historical
database and we developed and publicly released the software, em-download-opensky [37],
to generate queries based on AGL altitude, location of airports, airspace class, and time
zones. Using this software, we generated 136,884 queries for 196 days across 695 bounding
boxes across Class B, C, and D airspace across the United States. Temporally, we queried
for the first 14 days of each month from January 2019 through February 2020. This time
window was largely unaffected by the COVID-19 pandemic, as the Schengen Area travel
ban did not take effect until March 2020 [38].

Prior to model training, the OpenSky Network data were (1) parsed and organized; (2)
archived; and (3) processed and interpolated into track segments [39]. Processing included
removing track segments with less than ten observations; calculating the above ground
level altitude was calculated; identifying airspace class; and estimating dynamic rates
(e.g., vertical rate) were calculated. Once processed, track segments were ready for model
training. For details on how this dataset was curated and processed, please see [16] where
this dataset is referred to as the aerodrome dataset.

The aerodromes dataset differed from the Mondays dataset, that was curated from the
OpenSky Network to train the recent uncorrelated encounter models [16]. The Mondays
dataset was curated from OpenSky Networks from 104 Mondays spanning from 5 February
2018 to 16 November 2020; not all Mondays in this span were included. This dataset was
not spatially limited to regions around airports but had a more restrictive temporal scope
of just Mondays.

Appendix A.2. Terminal Area Radars

Observations of crewed aircraft were sourced from raw secondary radar reports from
terminal radars (ASR-9) that participated in the TCAS RA Monitoring System (TRAMS)
from January through September 2015. Radars included the ASR-9 located at MIT LL
and radars associated with the following airports: KATL, KDEN, KDFW, KFLL, KHPN,

https://zenodo.org/communities/airspace-encounter-models/
https://zenodo.org/communities/airspace-encounter-models/
https://www.ll.mit.edu/r-d/datasets
https://github.com/airspace-Encounter-Models/em-model-manned-bayes
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KJFK, KLAS, KLAX, KOAK, KORD, KPDX, KPHL, KSDF, KSEA, KSTL. The specific radar
identifiers were, respectively, Atlanta (ATL), Denver (DEN), Dallas Fort Worth (DFW),
Fort Lauderdale (FLL), Westchester County (HPN), New York (JFK), Las Vegas (LAS), Las
Angeles (LAX, LAXN), MIT LL (MOD), Oakland (OAK), Chicago (ORDA), Portland (PDX),
Philadelphia (PHL), Phoenix (PHX), Louisville (SDF), Seattle-Tacoma (SEA), St. Louis (STL).
These radars support the TCAS Operational Performance Assessment (TOPA) program
that was established over a decade ago [40]. While TOPA is ongoing program, the data
made available to support model development varied in quantity and temporal scope.
For example, KDFW had data from January through August while KOAK only from June
through August.

These radar reports provide latitude, longitude and barometric altitude for transponder-
equipped aircraft within the radar’s surveillance volume. All of these radars were located
within a Mode C veil, where aircraft, with few exemptions, are required to be transponder-
equipped. While these radars surveil standard aviation transponders, not all surveillance
information was made available to MIT LL. Specifically, the Mode S address was not in-
cluded in this dataset, preventing classification of aircraft type using the approach described
in [39].

Appendix A.3. Altitude and Airspace Class Characterization

To identify potential biases in the training data, we characterized the different datasets,
leveraging software and a methodology previously described in [41]. This characterization
was also important in assessing if the different training datasets were similar or different
and if there was a sufficient difference between datasets to warrant training a model with
each dataset. For each dataset, the altitude distributions given airspace class was calculated
using all latitude, longitude, and barometric altitude reports using the workflow described
in [39]. Unlike [41], we did not consider the number of seats onboard the aircraft, as we
lacked the metadata in the terminal area radar dataset required for that characterization.
Figure A1 is for the terminal area radar dataset, Figure A2 for the OpenSky Network
aerodromes dataset, and for comparison, Figure A3 is the distribution of the “Mondays”
dataset used for the recent uncorrelated encounter models.

First, we observe in Figures A1–A3 the Class C and D distributions taper off at 2500
and 4000 feet AGL, the nominal ceilings for the respective airspace classes. Regardless of
airspace class, the majority of observations were above 500 feet AGL. Note that the limit of
the y-axis is greater in Figure A1 than Figures A2 and A3, due to the terminal area radar
dataset being significantly larger. The peak in all figures between 500 and 1000 feet was
hypothesized to aircraft trying to maintain an altitude below the nominal Class E floor
of 700 feet AGL or the Class G ceiling of 1200 feet AGL. The decrease in observations at
3000 feet AGL and upward can be partly attributed to behavior induced by 14 CFR § 91.159
that regulates the hemispheric flight rules and when VFR must navigate using MSL altitude.
This was especially evident in the terminal area radars dataset. We also hypothesized the
peak between 1500–2000 feet AGL could be attributed to general aviation cross-country
operations, but no analysis was conducted to make a definitive conclusion.

Next, by comparing the figures, we observed that the terminal area radar dataset
(Figure A1) had the most observations, below 1000 feet, in Class B and other airspaces,
followed by the aerodromes dataset and lastly by the “Mondays” dataset. As the terminal
area radars were largely co-located at Class B airports, this was expected. The aerodromes
dataset had the most observations for the Class C and D airspaces. At higher altitudes,
there was less of a difference between the terminal area radar and aerodrome datasets for
Class B but the terminal area radars consistently had significantly more observations for
the other airspace classes.
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Since the model encompassed the airspace within 8 nautical miles of the airport,
identified encounters can cross multiple airspaces. Generally below 1200 feet AGL, Class C
and D airspaces extend 2.5–5 nautical miles from a controlled runway. Given our encounter
range criteria of 4 nautical miles, an encounter could occur when one aircraft was in Class D
airspace and another in other airspace. An aircraft could also transition between airspaces
over the course of the 30 s encounter duration. Thus, the significantly more observations of
aircraft in other airspace at low altitudes was advantageous for the terminal radar dataset.
The terminal area radar dataset had the most observations for a given location, if lower
altitude surveillance was available, but this dataset was also the most restricted spatially
and temporally.

Furthermore, when comparing the two OpenSky Network-based datasets, the percent
difference between datasets for Class E and G (other) airspace was only 4.27%, yet it was
30% or greater for the other airspace classes. These percent differences demonstrate the
advantage of curating a dataset, based on areas of interest, by querying the OpenSky
Network. While the “Mondays” dataset has theoretically the best spatial coverage, as all
data observed in the United States is in scope for that dataset, the OpenSky Network does
not have universal low-altitude coverage across the United States. The OpenSky Network
has significant coverage gaps in rural or low population areas. However, these regions
also typically have a low density of crewed aircraft traffic and these coverages gaps are
not a significant impediment for model training. Accordingly, the wider temporal scope of
the aerodromes dataset and surveillance of more types of transponders with the terminal
area radar dataset results in these datasets having more observations than the “Mondays”
dataset. The “Mondays” dataset also included 2018, when fewer aircraft were equipped
with ADS-B and fewer sensors were participating in the OpenSky Network, and 2020 when
aviation activity sharply decreased due to the COVID-19 pandemic [38].

Appendix A.4. Data per National Plan of Integrated Airport Systems

Table A1 reports the data identified as spatial filtering for select airports. For each air-
port, we also noted if the airport was designated as a primary airport in the 2015–2019 FAA
National Plan of Integrated Airports Systems (NPIAS) [42]. Primary airports are grouped
into categories of large (L), medium (M), small (S), and nonhub (N). Large hubs are those
airports that each account for at least 1% total U.S. passenger enplanements; while nonhub
primaries enplane less than 0.05% of all commercial passenger enplanements but have
more than 10,000 annual enplanements. Medium and small hubs are grouped between
large and nonhub primaries.

Table A1. Total track points after initial spatial filtering for select airports.

FAA ID Class Hub OpenSky Network Terminal Area Radar

BOS B L 10,881,938 13,270,494
ABE C N 1,816,670 2,285,593
BUR C M 16,789,410 29,748,003
FLL C L 10,342,130 50,856,891
SMF C M 6,876,029 0
XNA C S 1,466,794 0
ACK D N 21,934 0
ADS D - 20,954,315 68,151,579
BED D N 2,740,664 6,220,588
EYW D S 0 0
MVY D N 820,654 0
RNT D - 21,892,547 46,653,226
TTD D - 5,360,106 14,106,809
7N7 E/G - 7,968,295 18,523,179
17N E/G - 2,252,995 13,006,900
19N E/G - 5,818,462 18,784,328

DDH E/G - 0 0
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As hubs increased in enplanements, we generally identified more potential tracks;
although there was not a strong correlation. The quantity of data was dependent more on
the surveillance source, which likely has some correlation with NPIAS categorization. For
example, Addision Airport (ADS), a nonprimary national airport, had one of the largest
datasets. The size of the ADS dataset, however, was due to ADS located in the vicinity of
Dallas Love Field (DAL) and Dallas Fort Worth International (DFW) which are medium
and large hubs, respectively. Additionally, more data were available for BED and ABE,
nonhub primaries, than XNA or EYW, small hubs. These four airports all had less data
identified than Oldsman Township Airport (7N7), a non-towered single-runway airport
approximately 10 nautical miles from Philadelphia International.

One potential bias was due to the that the ADS-B FAA mandate was not in effect until
2020, whereas the majority of the OpenSky Network data were from 2019 and before this
mandate. Today, ADS-B has also been mandated in most busy ATC controlled airspaces in
the United States and there are various local, regional, and international roll-outs of ADS-B.
As more aircraft equip ADS-B, we expect more encounters to be identified.

Appendix B

This appendix supplements Section 3.1 and illustrates by the distance from airport
and relative altitude distributions for Lehigh Valley International (ABE), a Class C airport
in Pennsylvania approximately 40 nautical miles north of Philadelphia, PA and 60 nautical
miles west of Newark, NJ. Table A1 reported that the terminal radar dataset had at least
450,000 observations, within 10 nautical miles and 4000 feet of ABE, more than the OpenSky
Network-based tracks. However, Figures A4 and A5 illustrate that nearly all the terminal
radar-based tracks are at least 15,000 feet above ABE, while the OpenSky Network had
significantly better low-altitude coverage of the region. This would ultimately result in no
encounters identified for model training with the terminal radar dataset while encounters
were identified using the OpenSky Network-based dataset. Similar trends were exhibited
with Hollywood Burbank (BUR), a Class C airport serving northern greater Las Angeles.
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Appendix C

When identifying encounters as part of model training, all observations of aircraft
transmitting any of the special transponder codes in the following Table A2 were rejected.

Table A2. Special use transponder codes not used for model training.

Code Purpose

1206 VFR law enforcement, first responder by L.A., may
not be in contact with ATC

1255 Firefighting aircraft

1273–1275 Calibration and performance
monitoring equipment

1276 Air defense identification zone penetration (when
unable to contact ATC or aeronautical facility)

4401–4433, 4466–4477 Special aircraft—sensitive unclassified

4434–4437 Weather reconnaissance

4447–4452 Special flight support codes

5000–5057, 5063–5077, 5400, 6100, 6400,
7501–7577

DOD reserved codes only to be assigned
by NORAD

5100–5300 More DOD aircraft

7400 Reserved for uncrewed aircraft with a lost link

7500 Hijack

7600 Radio failure

7601–7607, 7701–7707 Allocated by the FAA for special use by law
enforcement agencies

7700 Emergency

7777 DOD interceptor aircraft on active air defense
missions -operating without ATC clearance

Furthermore, when training version 2.0, we assessed that the transponder code filtering
did not have a significant impact on identifying encounters with the OpenSky Network
based encounters. Without any Mode C filtering, 2428 Class D encounters were identified,
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while with filtering 2150 Class D encounters were identified. We did not repeat this analysis
when training version 3.0.

Appendix D

Figure A6 visualizes all the ownship and intruder tracks for ABE used as training
data for the trajectory propagation models when training with the OpenSky Network
aerodromes model.
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Appendix E

Summarized by Table A3. “Generic” limits are general limits applicable for a wide
range of crewed aircraft. “RTCA228-A1” corresponds to the RTCA SC-228 assumptions for
a HALE (High Altitude, Long Endurance) aircraft, “RTCA228-A2” for an assumed MALE
(Medium Altitude, Long Endurance) aircraft and “RTCA228-A3” for an assumed LEPR
(Low End Performance Representative) aircraft.

Of the dynamic limits, the acceleration limit was specifically based on the model
structure and how trajectories are propagated. Since the trajectory models are sampled
incrementally with intra-bin uniform sampling, it is possible to sample speed such that it
transitions from 100 (bin 1) to 199 (bin 2) feet per second in one timestep. Since this would
not be realistic, the maximum acceleration is based on the widest speed bin of 50 feet per
second. This sampling criteria often results in tracks not changing speed.
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Table A3. Dynamic limits when sampling encounters.

Variable (Units) Generic RTCA228-A1 RTCA228-A2 RTCA228-A3

Minimum speed
(feet per second) 50 169 68 68

Maximum speed
(feet per second) 506 491 338 186

Acceleration
(feet per second2) 50 50 50 50

Maximum vertical rate
(feet per second) 100.00 41.67 25.00 8.34

Maximum turn rate
(degrees per second) 12 1.5 3 7

Maximum pitch
(degrees) ∞ 15 15 15

Appendix F

This appendix overviews the initial approach of version 1.0 to identify if a runway
was for taking off or landing. This approach was found to be sensitive to false positive
identifications (e.g., wrong runway identified or assessed as landing but actually transiting).
The criteria were tuned to minimize such false positives at the expense of excluding some
otherwise relevant trajectories (i.e., false negatives). In response, the approach described
in Section 2 was developed to reduce misidentifications, enhance the robustness and
improve scalability.

Each trajectory was separately assessed for landing and for takeoff, so it can be tagged
as one or the other, both, or neither. The procedure for both takeoff runway and landing
runway identification entails transforming the latitude/longitude trajectory into a Cartesian
coordinate frame centered on each candidate runway.

For takeoffs, the assessment is limited to the first 30 s of trajectory data. That trajectory
segment is assessed against the following:

• Trajectory segment include altitude below 1500 feet (relative to runway elevation);
• The segment is generally increasing in altitude;
• The ground track is aligned within 45◦ of the runway; and
• The segment includes positive points on the along-runway axis that are within 4000 feet

of the runway laterally.

If no runways satisfy these criteria, the trajectory is not a takeoff. (Conceivably some
takeoff trajectories will be missed if they begin at the defined edge of the terminal area, land,
and immediately take off again.) If a single runway satisfies the criteria, the trajectory is
marked as a takeoff from that runway. If multiple runways satisfy the criteria, the trajectory
is marked as a takeoff from the runway with threshold closest in ground range to the initial
point on the trajectory.

For landings, a similar procedure is followed. The assessment uses the final 30 s
trajectory data, which must satisfy the following criteria:

• Includes altitudes below 1500 feet (relative to runway elevation);
• Ground track is aligned within 35◦ of runway; and
• Includes negative points on the along-runway ways that are within 4000 feet of the

runway laterally.

As for takeoffs, if multiple runways satisfy the criteria, the runway with threshold
closest in ground range to the final point of the trajectory segment is identified as the
landing runway. Note that this procedure likewise will miss the scenario outlined above
where the landing and takeoff occur in the middle of the trajectory. Both assessments neglect
any events in the middle of the trajectory and do not assess, for example, intermediate
landings and takeoffs in trajectories with multiple go-arounds.
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Any landing trajectories are also assessed for using a straight-in approach, which
require that the aircraft make no turns after passing the Final Approach Fix, which is
different for every airfield but typically four to five miles from the runway. This criterion is
simplified to whether the trajectory passes within one nautical mile laterally when it is at
four nautical miles along the negative along-runway axis.

Finally, encounters are identified amongst the landing and taking off trajectories. To be
identified as such, one track must be a straight-in landing (the surrogate uncrewed aircraft)
and the second track must be a landing (either straight-in or otherwise) and/or takeoff.
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