
����������
�������

Citation: Jargalsaikhan, T.; Lee, K.;

Jun, Y.-K.; Lee, S. Architectural

Process for Flight Control Software of

Unmanned Aerial Vehicle with

Module-Level Portability. Aerospace

2022, 9, 62. https://doi.org/10.3390/

aerospace9020062

Academic Editor: Sergey Leonov

Received: 30 November 2021

Accepted: 20 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Architectural Process for Flight Control Software of Unmanned
Aerial Vehicle with Module-Level Portability
TSogbayar Jargalsaikhan 1 , Keonpyo Lee 2, Yong-Kee Jun 3,* and Seongjin Lee 2,*

1 Department of Informatics, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea;
tsogbayr@gnu.ac.kr

2 Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinjudaero,
Jinju 52828, Korea; gnurvy2@gnu.ac.kr

3 Division of Aerospace and Software Engineering, Gyeongsang National University, 501 Jinjudaero,
Jinju 52828, Korea

* Correspondence: jun@gnu.ac.kr (Y.-K.J.); insight@gnu.ac.kr (S.L.);
Tel.: +82-55-772-1371 (Y.-K.J.); +82-55-772-1378 (S.L.)

Abstract: To apply UAVs (Unmanned Aerial Vehicle) into different fields, including research and
industry, and expand it quickly, reliable but modular software is required. The existing flight control
software (FCS) of the UAV consists of various types of modules categorized into different layers,
and it is responsible for coordinating, monitoring, and controlling the vehicle during its flight. This
paper proposes mpFCS, a structure of UAV flight control software, which provides portability to its
modules and is easy to expand. The mpFCS consists of four segments and several modules within
the segments. mpFCS provides portability for each module within the segment. Existing software
does not provide portability for its modules because of the tight coupling resulting from its different
and private interfaces. The mpFCS uses interfaces of the standard airborne software architecture to
transfer data between its modules. Moreover, the structure provides portability for its modules to run
in the standard airborne software environment. In order to verify the mpFCS, we tested the mpFCS
with the conformance test suite of the airborne software that provides the testing environment for the
interfaces and modules of the software. The mpFCS passed the test. Test results show that all modules
of the mpFCS are portable. Additionally, portable modules can be interoperable with other software,
and the structure is expandable with new modules that use standard airborne software interfaces.

Keywords: unmanned aerial vehicle; flight control software; portability

1. Introduction

UAVs are currently becoming popular due to their high maneuverability, good perfor-
mance, low cost, and reliability [1,2]. By 2021, the target of the drones market is estimated
at 4.5 billion US dollars and will reach 10.4 billion US dollars by 2031 [3]. Controlling a
UAV from a ground control station (GCS) provides a new possibility for the UAV to reach
the furthest areas with few human resources needed and require minimal energy, time,
and effort. Recent technological advances create more new possibilities for UAVs [4,5],
and UAVs are employed commonly in tasks such as surveillance [6], search and rescue
missions [7] in the disaster area, wildfire, tracking, borderline security [8], remote sensing
of the environment [9], etc. This is one of the biggest reasons UAVs are being adopted
worldwide, especially by these sectors: personal, commercial, military, academia, and
future technology.

Flight control software (FCS) is required to control and monitor UAVs from GCS [10].
Necessary characteristics of the software are (1) navigation, (2) guidance, and (3) control.
Navigation is the process of data acquisition, data analysis, and estimation of information
about vehicle state and its surrounding environments. Several fundamental sensors are
used in the navigation process: an accelerometer, gyroscope, magnetometer, GPS, and

Aerospace 2022, 9, 62. https://doi.org/10.3390/aerospace9020062 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9020062
https://doi.org/10.3390/aerospace9020062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-9311-137X
https://orcid.org/0000-0002-4753-3651
https://orcid.org/0000-0003-0760-1880
https://doi.org/10.3390/aerospace9020062
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9020062?type=check_update&version=1

Aerospace 2022, 9, 62 2 of 24

other peripheral sensors such as airspeed sensor, barometer, etc. Guidance is the process
concerned with user input, such as path planning, mission planning, flight mode changing,
etc. The control component ensures that the flying vehicle follows the desired path and
altitude by manipulating control surfaces. Employing UAVs in different fields requires
modular and portable software that can expand quickly based on increased functionality.
When functionalities and requirements of the software increase, the software can fulfill
new functionalities and requirements by developing (or porting) a new module (from
other software).

Software (or software module) portability is an important feature of the software, as
it enables the software (or software module) to be reused in other software tools and/or
operating environments [11]. When the design of a software does not consider portability
and was not developed in modules, it is not possible to adopt the software in a new
environment. This is because the software must be redesigned, reconfigured, and modified
significantly to be able to run in a new system. Converting non-portable software to
portable software is very costly because most of the conversion needs to be processed
manually, and it also has to be tested for conformity [12,13]. By porting the software
(or expanding with modules of other software) from one environment to another, major
economic savings can be achieved by dropping out the development and modification
costs of the software [14].

In order to be portable, the software must satisfy the portability requirements such
as layered and modular structure, loosely coupled and high cohesion on its modules,
standard interfaces, and hardware abstraction layer (HAL) [15]. These requirements result
in easy expandability of the software. In order to be expandable and portable, many UAV
software followed a layered structure with different modules and centralized all message-
passing services between its modules as a middleware. The structure of existing UAV
software [6–10,16–23] consists of common layers that contain different modules, such as

1. a hardware layer responsible for interface to the device,
2. a middleware layer, which works as a bridge between the hardware layer and appli-

cation layer, and
3. an application layer that contains various functional modules, including navigation,

guidance, and control modules.

Unfortunately, existing software does not satisfy all requirements and fulfills only
some of them. Each software provides unique interfaces for communication between
modules. These unique interfaces introduce a barrier to the portability of the modules and
provide more complexity to the software and bring tight coupling into modules.

Due to its tightly coupled modules, the existing software cannot provide portability
into its modules, and it is not easy to extend the software with new modules and transfer its
modules to a different environment. Despite the technical advances, many software today
result in the tightly coupled integration of software modules without regard to portability.
This lack of focus on portability results in software modules that are unable to be reused
from one software to another without significant modification.

This paper proposes a new structure of the flight control software of UAV named
mpFCS (module-level portable Flight Control Software) that can provide portability to the
software and each software module. In order to eliminate tight couplings and provide
portability for its modules, we isolated its modules and designed the structure of the
software. To design a new structure, we analyzed the structure of existing software at its
module level. To do this, we used the standard FACE (Future Airborne Capability Environ-
ment) architecture for airborne software, and a new structure is based on specifications and
requirements of the architecture that provides portability to the software. The FACE stan-
dard architecture [24] defines interfaces intended to develop software made up of portable
components. The mpFCS consists of different portable modules in different segments,
which can send and receive a message between its modules and between the software
and GCS. We implemented a new structure with its core modules: flight mode, attitude,
position, servo control, sensor, communication, transmitter, and IO module. Each module

Aerospace 2022, 9, 62 3 of 24

uses the FACE standard interfaces to transfer data between its modules. We evaluated the
software with the FACE conformance test suites.

The result shows that each module of our software is portable to the different software
that runs in the FACE environment, and they are also interoperable with the different
software modules that use the same interfaces. Furthermore, to prove its expandability,
we developed a sample module and ported it into our software. The result shows that the
structure is expandable with a new module.

The main contributions of the work are as follows:

• Framework for providing module-level portability for the software: we propose the
framework that can provide portability to the software. The framework not only
provides portability to the software, but also provides its modules.

• Portable and expandable software with module-level portability: The proposed struc-
ture mpFCS provides portability for the software as well as portability for its modules
to run in the standard FACE environment. The software based on the structure can
expand with any new user-defined module or previously well-developed module that
uses the standard FACE interfaces.

• The software can be used as a prototype of actual FACE software. It means developers
can test their software or module with actual FACE-based software.

• Guideline for creating a portable module or converting the current module into a
portable module. The guideline provides steps of analysis and how to do it.

The remainder of this paper is organized as follows. Section 2 explores related work,
and Section 3 introduces a problem of the existing software and its causes. The solution
for the problem and the proposed structure mpFCS are described in Section 4. Then,
Section 5 explains the overall design of the mpFCS and its modules. Section 6 discusses the
implementation of mpFCS. Section 7 provides experiments, results, and discussion. Finally,
we conclude the paper in Section 8.

2. Related Work

UAVs are growing rapidly, and their software functionalities are increasing. Applying
UAVs in different fields requires portable and modular software that can expand quickly
based on increased functionality and is transferable to different platforms. Nowadays, vari-
ous types of software are developed by academia, industry, and hobbyists, including open
source and commercial software. First, this section explores the definition of portability
and its characteristics. Then, the section continues with an analysis of existing software
and summarizes how developers enable portability to their software.

2.1. The Portability and Its Characteristics

According to ISO/IEC 25010 [25], portability is the “degree of effectiveness and effi-
ciency with which a system, product or component can be transferred from one hardware,
software or other operational or usage environment to another.” Additionally, Mooney,
J.D described [11,26] portability as a desirable attribute of the software and is typically
concerned with reusing complete software (or part of the software) on new platforms. In
other words, if the software is written without regard to hardware implementations and
other dependencies, the software can be called portable [27]. As a view of Mooney, J.D, the
primary goal of software portability “is to facilitate the activity of porting” of software from
the “environment in which it currently operates to a new or target environment” before
allowing “reuse of the complete existing application in the new environment” [11].

For achieving portability into software and its modules, software needs to fulfill
requirements. Within the European standards for the aerospace industry (ECSS) [28],
IEEE-830 [29], and ISO 2382-1 [30], and several other concepts are provided to describe
various types of requirements of portability. There are similar requirements such as in-
dependence of (1) the operating system, (2) the middleware, and (3) the programming
language. Haile [31] mentioned that the software could not provide portability to itself
and its module due to (1) different types of programming framework, (2) proprietary

Aerospace 2022, 9, 62 4 of 24

application programming interface (API), and (3) its data format. Thus, Haile [31] listed up
requirements as (1) common programming framework, (2) standardized API, and (3) data
format for the standard API. In this paper, we followed characteristics of the portability
described by Beningo, J. [15], which can be summarized as follows:

1. Simple and understandable structure (layered structure).
2. Separated into different and independent modules (modular structure).
3. Loosely coupled and high cohesion on its modules.
4. Standard interfaces between its modules to transfer data.
5. Hardware abstraction layer (HAL), the standard function set that can be used to access

hardware functions without a detailed understanding of how hardware works.
6. Well-organized and detailed documentation for developers to understand its struc-

ture easily.

2.2. General Structure of the Existing Software

In this subsection, we summarized the structure of UAV software. In order to be
portable, many software follows a layered structure with different modules and use differ-
ent messaging mechanisms between its modules [15]. Figure 1 shows the most common
layers and their modules in the structure of the existing UAV software. The software runs
on different operating systems, such as open-source real-time operating systems including
NuttX, Free RTOS, and ChibiOS. Most of them are open-source software, but some of the
open-source software in academic work uses commercial operating systems such as Vx-
Works. Each software uses its message mechanism in the middleware layer. The software
has various types of modules in the application layer. Figure 1 included the most common
modules of existing software, such as control, position, attitude, motor, sensor, navigation,
and communication modules.

Aerospace 2022, 9, x FOR PEER REVIEW 5 of 25

Figure 1. The most common structure of the existing software, which consists of layers and modules.

2.3. Enabling Portability in the Software
The messaging mechanism in the middleware layer decreases the coupling of the

modules and increases the portability capability. Additionally, it provides independent
and separate modules and expands the software with a new module [15]. Table 1 com-
pares the existing flight control software based on their documentation and shows its gen-
eral structure, messaging mechanism, written language, and supported operating system.
Chong et al. [2] and Ying et al. [17] use message bus in the middleware layer. Theile et al.
[23] provide a modular autopilot framework named uavAP for UAVs. As the core func-
tionality of the uavAP, cpsCore is responsible for managing its modules through its pro-
priety interface, which is defined in the framework.

Table 1. Comparison of the flight control software and its features.

Features He [16] Ying [17] Chon [2]
Hegde

[10]
Theile

[23]
AP [18] PX4 [19]

P-UAV
[20]

dRonin
[22]

General
Structure

Layered Y Y Y Y Y Y Y Y Y
Modules Y Y Y Y Y Y Y Y Y

Messaging Direct Calls
Middle-

ware
Middle-

ware
Direct
Calls

Middle-
ware

Direct Calls
Middle-

ware
Middle-

ware
Middle-

ware
Language C++ N/A N/A N/A C++ C++ C C C++

OS supported
Linux,

ChibiOS
VxWorks VxWorks

Free
RTOS

Arch-
Linux

Linux,
ChibiOS

NuttX,
ROS

ChibiOS PiOS

Is it Portable?
(Based on its

documentation)
N N N N N Y Y N N

AP—ArduPilot, P-UAV—PaparazziUAV, N/A—Information not available, Y—Yes, N—No.

The popular open-source software PX4 [19] uses its messaging API named uORB for
its internal communication to transfer data between modules. uORB is automatically
started on the bootup, and many modules depend on it. Messages are defined as separate
.msg files in the msg/folder. For its communication module, to connect UAV to GCS, it
uses the MAVLink protocol. PaparazziUAV [20] uses proprietary middleware named ABI
(AirBorne Ivy) to transfer data between modules. ABI gives an easy way to allow the soft-
ware modules to exchange data. Messages are defined in the XML file with a unique name
and id. For its communication module, to connect UAV to GCS, it uses PPRZLINK.

Figure 1. The most common structure of the existing software, which consists of layers and modules.

Hedge et al. [10] developed flight control software for UAVs with two primary layers
and four primary modules. Chong et al. [2] designed and developed flight control software
for small UAVs based on the real-time operating system. The software is divided into
three layers and consists of six application modules: navigation, control, fault manage,
sensor, servo, and communication module. He et al. [16] created an open-source and
lightweight flight control software for a UAV, consisting of two layers and main flight
modules for initialization, sensing, PID control, and PID actuating. Ying et al. [17] designed
and developed a distributed flight control software for UAVs. The software architecture is
divided into four layers according to its functions.

There are many open-source flight control software for UAVs [32]. We list the popular
software for completeness of the paper: ArduPilot [18] started by Chris Anderson, PX4 [19]

Aerospace 2022, 9, 62 5 of 24

created by Lorenz Meier, PaparazziUAV [20] from ENAC (École Nationale de l’Aviation
Civile, France), MultiWii series [21], including Baseflight, Betaflight, INAV, Hackflight, and
Cleanflight, developed by Alexandre Dupus [33], dRonin [22] and OpenPilot series [34]
from TauLabs. Among these open-source software, we choose the most popular software:
ArduPilot, PX4, PaparazziUAV, and dRonin.

2.3. Enabling Portability in the Software

The messaging mechanism in the middleware layer decreases the coupling of the
modules and increases the portability capability. Additionally, it provides independent
and separate modules and expands the software with a new module [15]. Table 1 compares
the existing flight control software based on their documentation and shows its general
structure, messaging mechanism, written language, and supported operating system.
Chong et al. [2] and Ying et al. [17] use message bus in the middleware layer. Theile
et al. [23] provide a modular autopilot framework named uavAP for UAVs. As the core
functionality of the uavAP, cpsCore is responsible for managing its modules through its
propriety interface, which is defined in the framework.

Table 1. Comparison of the flight control software and its features.

Features He [16] Ying
[17] Chon [2] Hegde

[10]
Theile

[23] AP [18] PX4 [19] P-UAV
[20]

dRonin
[22]

General
Structure

Layered Y Y Y Y Y Y Y Y Y

Modules Y Y Y Y Y Y Y Y Y

Messaging Direct
Calls

Middle-
ware

Middle-
ware

Direct
Calls

Middle-
ware

Direct
Calls

Middle-
ware

Middle-
ware

Middle-
ware

Language C++ N/A N/A N/A C++ C++ C C C++

OS supported Linux,
ChibiOS VxWorks VxWorks Free

RTOS
Arch-
Linux

Linux,
ChibiOS

NuttX,
ROS ChibiOS PiOS

Is it Portable?
(Based on its

documentation)
N N N N N Y Y N N

AP—ArduPilot, P-UAV—PaparazziUAV, N/A—Information not available, Y—Yes, N—No.

The popular open-source software PX4 [19] uses its messaging API named uORB
for its internal communication to transfer data between modules. uORB is automatically
started on the bootup, and many modules depend on it. Messages are defined as separate
.msg files in the msg/folder. For its communication module, to connect UAV to GCS, it
uses the MAVLink protocol. PaparazziUAV [20] uses proprietary middleware named ABI
(AirBorne Ivy) to transfer data between modules. ABI gives an easy way to allow the
software modules to exchange data. Messages are defined in the XML file with a unique
name and id. For its communication module, to connect UAV to GCS, it uses PPRZLINK.
dRonin [22] defines the data representation named UAVObject, and it is used for inter-
module communication. Different functions are used to transfer data defined in UAVObject.
UAVObjects are generated dynamically from XML definitions. For its communication
module, to connect UAV to GCS, it uses the UAVTalk protocol.

3. Portability Issues of the Current Software

Due to the increase of tasks and functionalities of UAVs, its software is becoming more
complex. The general structure of the existing UAV software is divided into common layers
that contain various types of different modules. However, each software uses different
interfaces to transfer data between its modules, resulting in tight couplings of modules.
Due to the tight coupling of the modules, the software does not provide portability for
its modules. This section discusses the status of existing UAV software and explains the
problem related to portability and its cause.

Aerospace 2022, 9, 62 6 of 24

3.1. Current Status of the Software

In order software to be portable, the software must satisfy the characteristics men-
tioned in Section 2. First, the general structure of existing UAV software follows a simple
structure that [2,6–19] consists of common layers. Those common layers include (1) the
hardware layer (the main IO device module), (2) the middleware layer that is responsible
for connecting the application and hardware layers, and (3) the main flight application layer
with different modules that control UAV’s movement. The software consists of different
and separated modules based on their functionalities located in the application layer. To
decrease the tight coupling and increase the high cohesion of the modules, the software
uses different types of middleware that we explained in Section 2, which centralizes all
message passing in one place. Nevertheless, each software uses its proprietary interfaces
between its modules when it transfers data. Additionally, only Ying [17], ArduPilot [18],
PX4 [19], and dRonin [22] have HAL. One of the non-functional requirements of being
portable is its documentation. Academic works do not provide any documentation. Open-
source software provides documentation, but because of its complex functionality and
huge numbers of source lines of code, it is not easy to understand its documentation, and it
takes much time. Only the main source code contains more than the following source lines
of codes (SLOC): ArduPilot 350K, PX4 290K, PaparazziUAV 240K, dRonin 300K.

3.2. Portability Issue

The existing software does not fulfill the main requirements of portability that we
mentioned in Section 2. A comparison of the existing software based on portability require-
ments and its summary is shown in Table 2. Each software followed a simple (layered) and
modular structure, and most of them centralized their messaging in the middleware layer.
Nevertheless, each software uses different types of messaging mechanisms that have pro-
prietary interfaces in its inter-module communication. These different interfaces introduce
a barrier to the portability of the modules and software modules between different software.
Due to proprietary interfaces, expanding the software is becoming more complex, and it
requires understanding the structure of each software to port the user-defined module to
the software and run the software on the different platforms. Some modules use direct call
of functions of other modules. A few of them provide hardware abstraction layers (HAL).
The comparison result shows that each software cannot satisfy the portability requirements,
thus it cannot provide portability not only to the software, but also to its modules.

Table 2. Comparison on requirements of the portability of the existing software.

Requirements He [16] Ying [17] Chon [2] Hegde
[10]

Theile
[23] AP [18] PX4 [19] P-UAV

[20]
dRonin

[22]

Simple structure Y Y Y Y Y Y Y Y Y

Modular Y Y Y Y Y Y Y Y Y

Centralized Messages N Y Y N Y N Y Y Y

Standard interface N N N N N N N N N

HAL N Y N N N Y Y N Y

Well Documented N/A N/A N/A N/A N/A Y *(ab) Y *(ab) Y *(abcd) Y *(abc)

Analysis (Does it
satisfy the

requirements of
portability?)

Software
Level N N N N N N N N N

Module
Level N N N N N N N N N

AP—ArduPilot, P-UAV—PaparazziUAV, N/A—Information not available, Y—Yes, N—No; * Documented, but
it (a) is partially outdated, (b) is complicated to understand, (c) has an incomplete description, (d) has anomitted
description.

Figure 2 shows proprietary interfaces between modules and layers that cause tight
coupling of its modules. The module-level portability provides the easiest way to expand

Aerospace 2022, 9, 62 7 of 24

the software by porting a new module. Using the standard architecture reduces the coupling
of the modules and brings portability into the software and its modules.

Aerospace 2022, 9, x FOR PEER REVIEW 7 of 25

Table 2. Comparison on requirements of the portability of the existing software.

Requirements
He
[16]

Ying
[17]

Chon
[2]

Hegde
[10]

Theile
[23]

AP
[18]

PX4 [19] P-UAV [20]
dRonin

[22]
Simple structure Y Y Y Y Y Y Y Y Y

Modular Y Y Y Y Y Y Y Y Y
Centralized Messages N Y Y N Y N Y Y Y

Standard interface N N N N N N N N N
HAL N Y N N N Y Y N Y

Well Documented N/A N/A N/A N/A N/A Y *(ab) Y *(ab) Y *(abcd) Y *(abc)
Analysis

(Does it satisfy the
requirements of

portability?)

Software
Level

N N N N N N N N N

Module
Level

N N N N N N N N N

AP—ArduPilot, P-UAV—PaparazziUAV, N/A—Information not available, Y—Yes, N—No; * Doc-
umented, but it (a) is partially outdated, (b) is complicated to understand, (c) has an incomplete de-
scription, (d) has anomitted description.

Figure 2. The proprietary interface between layers and its modules.

4. Solution
This section introduces a new structure of the software named mpFCS that provides

portability to its modules. First, the section describes the main specification of the com-
mon modules, and then the section continues our design strategy for bringing portability
to modules. We analyzed the structure of the existing flight control software, its modules,
and connection methods between its modules and then segmented it into the FACE archi-
tecture [24], which provides airborne software’s standard interfaces and architecture.
Bringing the standard architecture into the UAV flight control software provides porta-
bility to the module.

4.1. Standard for the Portability Problem
Owing to the software’s tightly coupled modules in the different layers, it is not easy

to port the software and its modules in a different environment without modifying the
source code. In order to solve this problem and enable portability to the software, we
choose the FACE (Future Airborne Capability Environment) architecture. Figure 3 ex-
plains the overall design of the FACE architecture, which can provide portability into the
software modules.

The FACE architecture from the Open Group provides portability to airborne soft-
ware that can be redeployed on different computing hardware and/or the standard air-
borne software environment. The FACE architecture is composed of five logical segments:

Figure 2. The proprietary interface between layers and its modules.

4. Solution

This section introduces a new structure of the software named mpFCS that provides
portability to its modules. First, the section describes the main specification of the common
modules, and then the section continues our design strategy for bringing portability to
modules. We analyzed the structure of the existing flight control software, its modules,
and connection methods between its modules and then segmented it into the FACE ar-
chitecture [24], which provides airborne software’s standard interfaces and architecture.
Bringing the standard architecture into the UAV flight control software provides portability
to the module.

4.1. Standard for the Portability Problem

Owing to the software’s tightly coupled modules in the different layers, it is not easy to
port the software and its modules in a different environment without modifying the source
code. In order to solve this problem and enable portability to the software, we choose the
FACE (Future Airborne Capability Environment) architecture. Figure 3 explains the overall
design of the FACE architecture, which can provide portability into the software modules.

Aerospace 2022, 9, x FOR PEER REVIEW 8 of 25

1. The Operating System Segment (OSS): It provides and controls access to the compu-
ting platform for the other FACE segments.

2. Input/Output Services Segment (IOSS): It is a bridge for data from the device drivers
to the PSSS.

3. Platform-Specific Services Segment (PSSS): It creates an infrastructure unique to the
platform that provides device data to the components located in the Portable Com-
ponent Segment.

4. Transport Services Segment (TSS): It provides movement of data between PCS and
PSSS.

5. Portable Components Segment (PCS): It is a set of portable components.
The architecture defines a set of standardized interfaces providing connections be-

tween the FACE architectural segment such as Operating System Segment Interface (OSS
Interface), the Input/Output Services Interface (IOS Interface), the Transport Services In-
terfaces, and Component-Oriented Support Interfaces. Additionally, the architecture de-
fines the Unit of Portability (UoP), a set of components that provides one or more mission-
level capabilities. The main characteristic of UoPs is portability to the other software that
follows the FACE architecture. In this paper, we use the word module instead of the ab-
breviation UoP, which means the word module and UoP are interchangeable and have
the same meaning in our work [24].

Figure 3. The overall design of the FACE architecture.

4.2. Restructuring Process
To follow the FACE architecture, first, we need to understand the structure of the

existing software and its module’s dependencies and design its structure via following
the specification and requirements of the FACE architecture. To achieve the above speci-
fication, we analyzed various UAV software and matched similar software layers into the
FACE segments depending on each segment’s functionality and requirements. Figure 4
shows the matching process of the existing software into the FACE architecture. We called
this process the AMR-Process (Analyze, Match, Restructure Process). It consists of two
phases: analyzing the structure phase and redesigning the structure phase.

In the phase of analyzing the structure, we followed the steps below to analyze the
structure of the existing software.
1. Analyze the software layers.
2. Recognize the modules and detect their dependencies.
3. Identify the functions and interfaces between modules.
4. Trace data between the functions to match the data for the next phase.

In the restructuring phase, we match the modules with the FACE segments based on
analyzed data from the previous phase, the main requirements of the FACE architecture
segments, and interfaces. Due to functions, dependencies, interfaces between modules,
and input/output data, modules in the application layer match the PCS of FACE architec-
ture. The modules in the middleware layer are divided into the TSS and PSSS, depending

Figure 3. The overall design of the FACE architecture.

The FACE architecture from the Open Group provides portability to airborne software
that can be redeployed on different computing hardware and/or the standard airborne
software environment. The FACE architecture is composed of five logical segments:

1. The Operating System Segment (OSS): It provides and controls access to the comput-
ing platform for the other FACE segments.

2. Input/Output Services Segment (IOSS): It is a bridge for data from the device drivers
to the PSSS.

Aerospace 2022, 9, 62 8 of 24

3. Platform-Specific Services Segment (PSSS): It creates an infrastructure unique to
the platform that provides device data to the components located in the Portable
Component Segment.

4. Transport Services Segment (TSS): It provides movement of data between PCS and PSSS.
5. Portable Components Segment (PCS): It is a set of portable components.

The architecture defines a set of standardized interfaces providing connections be-
tween the FACE architectural segment such as Operating System Segment Interface (OSS
Interface), the Input/Output Services Interface (IOS Interface), the Transport Services Inter-
faces, and Component-Oriented Support Interfaces. Additionally, the architecture defines
the Unit of Portability (UoP), a set of components that provides one or more mission-level
capabilities. The main characteristic of UoPs is portability to the other software that follows
the FACE architecture. In this paper, we use the word module instead of the abbreviation
UoP, which means the word module and UoP are interchangeable and have the same
meaning in our work [24].

4.2. Restructuring Process

To follow the FACE architecture, first, we need to understand the structure of the
existing software and its module’s dependencies and design its structure via following the
specification and requirements of the FACE architecture. To achieve the above specification,
we analyzed various UAV software and matched similar software layers into the FACE
segments depending on each segment’s functionality and requirements. Figure 4 shows
the matching process of the existing software into the FACE architecture. We called this
process the AMR-Process (Analyze, Match, Restructure Process). It consists of two phases:
analyzing the structure phase and redesigning the structure phase.

Aerospace 2022, 9, x FOR PEER REVIEW 9 of 25

on their functionality and dependencies. The device driver layer matches with IOS be-
cause of its role in the software.

Figure 4. The AMR-Process of matching the existing FCS into the FACE architecture.

After identifying and analyzing module dependencies, we replace the software’s pro-
priety interfaces with the FACE standard interfaces to transfer data. All the above pro-
cesses result in portability to the software and its modules on the FACE software environ-
ment.

4.3. The Proposed Structure: mpFCS
In order to validate the AMR-Process on different types of software, we choose the

software that (1) is open-source, (2) is currently effective, (3) follows a common structure,
and (4) has good documentation. The software that fulfill the criteria are PaparazziUAV,
ArduPilot, and PX4. The result of the analysis phase is shown in Figure 5a.

Based on the result of the analysis phase, we execute the restructuring process. Our
proposed structure resulting from the redesigning phase has different layers and is mod-
ular, same as the existing FCS. It uses the FACE standard interfaces to transfer data instead
of proprietary interfaces. Due to the standard architecture, it results in portability of the
software and its modules. Table 3 shows a general comparison of our solution with the
existing FCS.

Table 3. Comparison of the existing FCS and the mpFCS.

Characteristics Existing FCS mpFCS
Layered Yes Yes
Modular Yes Yes

Centralized Messages Yes * Yes

Data Transfer
Interface Proprietary Interfaces Standard Interfaces

Direct Call of Functions Yes No

Portability
Software No * Yes

Module Level No Yes
* some FCS does not centralize messages.

Figure 4. The AMR-Process of matching the existing FCS into the FACE architecture.

In the phase of analyzing the structure, we followed the steps below to analyze the
structure of the existing software.

1. Analyze the software layers.
2. Recognize the modules and detect their dependencies.
3. Identify the functions and interfaces between modules.
4. Trace data between the functions to match the data for the next phase.

In the restructuring phase, we match the modules with the FACE segments based on
analyzed data from the previous phase, the main requirements of the FACE architecture
segments, and interfaces. Due to functions, dependencies, interfaces between modules, and
input/output data, modules in the application layer match the PCS of FACE architecture.

Aerospace 2022, 9, 62 9 of 24

The modules in the middleware layer are divided into the TSS and PSSS, depending on
their functionality and dependencies. The device driver layer matches with IOS because of
its role in the software.

After identifying and analyzing module dependencies, we replace the software’s pro-
priety interfaces with the FACE standard interfaces to transfer data. All the above processes
result in portability to the software and its modules on the FACE software environment.

4.3. The Proposed Structure: mpFCS

In order to validate the AMR-Process on different types of software, we choose the
software that (1) is open-source, (2) is currently effective, (3) follows a common structure,
and (4) has good documentation. The software that fulfill the criteria are PaparazziUAV,
ArduPilot, and PX4. The result of the analysis phase is shown in Figure 5a.

Aerospace 2022, 9, x FOR PEER REVIEW 10 of 25

(a) (b)

Figure 5. The analysis of the modules of open-source software and the mpFCS. (a) Open Source
(PaparazziUAV, PX4, ArduPiolot). (b) mpFCS.

5. Design of the Proposed Structure: mpFCS
In order to solve the portability problem of modules, we followed the AMR-Process

mentioned in the previous section on the structure of different flight control software and
designed the structure. This section explains the overall design of the mpFCS based on the
result of the analysis. Then, we explain each segment of the structure and its modules. The
FACE architecture defines only the segments, interfaces, and requirements of each
segment and interface. Thus, we placed modules of the software in the segments based on
their requirements and specifications to follow the FACE architecture.

5.1. The General Structure of the mpFCS
Figure 5b shows the overall design of mpFCS that proposed structure of UAV

software with module-level portability, which is based on FACE architecture. Figure 6
describes the data flow of all modules in the segments. The IO segment receives data and
sends it to the platform-specific service segment via the IO interface. Based on the IO
service segment’s output, platform-specific service segments calculate data and send the
calculated result to the portable component through the transport service segment. The
transport service segment uses transport interfaces to transfer data between the portable
component and platform-specific service segments. On the other hand, to send a state
message from UAV to GCS, the portable component segment transfers state data (GPS
location, altitude, heading, IMU data, mission state) to the platform-specific services
segment through the transport service segment. When the platform-specific services
segment receives data, it calculates, converts, and sends the data to the IO services module
via the IO interface.

Running the common and open source UAV software does not require a specific
operating system, such as a real-time operating system (ARINC-653, POSIX, etc.). The
software runs on open-source operating systems, including Robot Operating System
(ROS), NuttX, ChibiOS, etc. The Operating System Segment of the FACE architecture is
not included in our design and is not implemented. Nevertheless, since we use the FACE
interfaces between the modules, porting the structure into such operating systems is not
a problem.

Figure 5. The analysis of the modules of open-source software and the mpFCS. (a) Open Source
(PaparazziUAV, PX4, ArduPiolot). (b) mpFCS.

Based on the result of the analysis phase, we execute the restructuring process. Our
proposed structure resulting from the redesigning phase has different layers and is modular,
same as the existing FCS. It uses the FACE standard interfaces to transfer data instead
of proprietary interfaces. Due to the standard architecture, it results in portability of the
software and its modules. Table 3 shows a general comparison of our solution with the
existing FCS.

Table 3. Comparison of the existing FCS and the mpFCS.

Characteristics Existing FCS mpFCS

Layered Yes Yes

Modular Yes Yes

Centralized Messages Yes * Yes

Data Transfer
Interface Proprietary Interfaces Standard Interfaces

Direct Call of
Functions Yes No

Portability Software No * Yes

Module Level No Yes
* some FCS does not centralize messages.

Aerospace 2022, 9, 62 10 of 24

5. Design of the Proposed Structure: mpFCS

In order to solve the portability problem of modules, we followed the AMR-Process
mentioned in the previous section on the structure of different flight control software and
designed the structure. This section explains the overall design of the mpFCS based on the
result of the analysis. Then, we explain each segment of the structure and its modules. The
FACE architecture defines only the segments, interfaces, and requirements of each segment
and interface. Thus, we placed modules of the software in the segments based on their
requirements and specifications to follow the FACE architecture.

5.1. The General Structure of the mpFCS

Figure 5b shows the overall design of mpFCS that proposed structure of UAV software
with module-level portability, which is based on FACE architecture. Figure 6 describes the
data flow of all modules in the segments. The IO segment receives data and sends it to the
platform-specific service segment via the IO interface. Based on the IO service segment’s
output, platform-specific service segments calculate data and send the calculated result
to the portable component through the transport service segment. The transport service
segment uses transport interfaces to transfer data between the portable component and
platform-specific service segments. On the other hand, to send a state message from UAV to
GCS, the portable component segment transfers state data (GPS location, altitude, heading,
IMU data, mission state) to the platform-specific services segment through the transport
service segment. When the platform-specific services segment receives data, it calculates,
converts, and sends the data to the IO services module via the IO interface.

Aerospace 2022, 9, x FOR PEER REVIEW 11 of 25

Figure 6. Data flow of the mpFCS.

5.2. IO Service Segment
The IO module in the I/O Service Segment (IOSS) is responsible for interface devices,

and it connects hardware drivers with platform-specific modules, which is the basis of
information between platform-specific modules and external devices. The module
receives command data from the I/O device and passes them to the module in the Platform
Specific Service Segment (PSSS). Concurrently, the module receives state data from the
module in the PSSS. All input and output data between modules in IOSS and PSSS goes
through the IO interface.

5.3. Platform Specific Service Segment
We designed modules in the Platform Specific Service Segment (PSSS) that depend

on the IO module data, and all data flow in the PSSS is shown in Figure 7.
The segment consists of three modules: sensor-calculation, communication, and

transmitter modules. The segment receives data from the Transport Service Segment (TSS)
or IOS and sends them to IOS or TSS.
• The communication module is responsible for sending and receiving a message

between UAV and GCS. It receives a command message from IOSS via the IO
interface, then passes a message to TSS using the TS interface. Simultaneously, it
receives a state message from TSS through the TS interface and passes it to IOS
through the IO interface.

• The sensor-calculation module is responsible for data from various sensors, and it
receives data from IO devices via the IO interface, converts them, and transfers them
to the transport module in the TSS via TS-interface.

• The transmitter module is responsible for converting and transferring data to
actuators, which comes from the portable component segment.

Figure 6. Data flow of the mpFCS.

Running the common and open source UAV software does not require a specific
operating system, such as a real-time operating system (ARINC-653, POSIX, etc.). The
software runs on open-source operating systems, including Robot Operating System (ROS),
NuttX, ChibiOS, etc. The Operating System Segment of the FACE architecture is not
included in our design and is not implemented. Nevertheless, since we use the FACE
interfaces between the modules, porting the structure into such operating systems is not
a problem.

5.2. IO Service Segment

The IO module in the I/O Service Segment (IOSS) is responsible for interface devices,
and it connects hardware drivers with platform-specific modules, which is the basis of
information between platform-specific modules and external devices. The module receives
command data from the I/O device and passes them to the module in the Platform Specific

Aerospace 2022, 9, 62 11 of 24

Service Segment (PSSS). Concurrently, the module receives state data from the module in
the PSSS. All input and output data between modules in IOSS and PSSS goes through the
IO interface.

5.3. Platform Specific Service Segment

We designed modules in the Platform Specific Service Segment (PSSS) that depend on
the IO module data, and all data flow in the PSSS is shown in Figure 7.

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 25

Figure 7. Data flow in the PSSS.

5.4. Transport Service Segment
The transport module in the Transport Service Segment (TSS) can transfer data

between PSSS and the Portable Components Segment (PCS). Figure 8 shows the data flow
between TSS and PSSS. The transport module consists of two submodules which are
StateModule and CommandModule.

The StateModule receives a state message from the main flight module and transfers
it to the communication module in the PSSS. Additionally, it receives sensor data from the
sensor-calculation module. At the same time, the CommandModule receives command
data from the communication module, and it checks data and transfers data to the specific
module in the main flight module depending on the message-id. Besides, it receives a
message from the main flight module and transfers a message to the transmitter module
in the PSSS. All data between PSSS, TSS, and PCS are transferred through the FACE TS
interfaces.

Figure 8. Data flow between TSS and PSSS.

5.5. Portable Component Segment
The Portable Component Segment, designed at the top of the software structure, is

the key to realizing the UAV flight control function. The main functions, such as UAV

Figure 7. Data flow in the PSSS.

The segment consists of three modules: sensor-calculation, communication, and
transmitter modules. The segment receives data from the Transport Service Segment (TSS)
or IOS and sends them to IOS or TSS.

• The communication module is responsible for sending and receiving a message be-
tween UAV and GCS. It receives a command message from IOSS via the IO interface,
then passes a message to TSS using the TS interface. Simultaneously, it receives a
state message from TSS through the TS interface and passes it to IOS through the
IO interface.

• The sensor-calculation module is responsible for data from various sensors, and it
receives data from IO devices via the IO interface, converts them, and transfers them
to the transport module in the TSS via TS-interface.

• The transmitter module is responsible for converting and transferring data to actuators,
which comes from the portable component segment.

5.4. Transport Service Segment

The transport module in the Transport Service Segment (TSS) can transfer data between
PSSS and the Portable Components Segment (PCS). Figure 8 shows the data flow between
TSS and PSSS. The transport module consists of two submodules which are StateModule
and CommandModule.

The StateModule receives a state message from the main flight module and transfers it
to the communication module in the PSSS. Additionally, it receives sensor data from the
sensor-calculation module. At the same time, the CommandModule receives command
data from the communication module, and it checks data and transfers data to the specific
module in the main flight module depending on the message-id. Besides, it receives a
message from the main flight module and transfers a message to the transmitter module
in the PSSS. All data between PSSS, TSS, and PCS are transferred through the FACE
TS interfaces.

Aerospace 2022, 9, 62 12 of 24

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 25

Figure 7. Data flow in the PSSS.

5.4. Transport Service Segment
The transport module in the Transport Service Segment (TSS) can transfer data

between PSSS and the Portable Components Segment (PCS). Figure 8 shows the data flow
between TSS and PSSS. The transport module consists of two submodules which are
StateModule and CommandModule.

The StateModule receives a state message from the main flight module and transfers
it to the communication module in the PSSS. Additionally, it receives sensor data from the
sensor-calculation module. At the same time, the CommandModule receives command
data from the communication module, and it checks data and transfers data to the specific
module in the main flight module depending on the message-id. Besides, it receives a
message from the main flight module and transfers a message to the transmitter module
in the PSSS. All data between PSSS, TSS, and PCS are transferred through the FACE TS
interfaces.

Figure 8. Data flow between TSS and PSSS.

5.5. Portable Component Segment
The Portable Component Segment, designed at the top of the software structure, is

the key to realizing the UAV flight control function. The main functions, such as UAV

Figure 8. Data flow between TSS and PSSS.

5.5. Portable Component Segment

The Portable Component Segment, designed at the top of the software structure, is the
key to realizing the UAV flight control function. The main functions, such as UAV flight
status management, navigation, and control management, sensor and servo management,
and peripheral device management are achieved at this segment, and it consists of five
modules: flight control, altitude, position, servo-motor, and main control modules. The
modules in the PCS receive and send data from/to TSS via the TS interface.

• Main control module: The main control module in the PCS is responsible for control-
ling the UAV, managing, and showing the vehicle’s current state.

• Flight control module: is responsible for changing its flight modes and converting the
user’s input into a lean angle, rotation rate, climb rate, etc., that is appropriate for this
flight mode.

• Attitude control module: calculates attitude and target roll, pitch, yaw rotation rates,
converts to high-level motor requests.

• Position control module: calculates path and the position, velocity, and acceleration,
and updates position.

• Servo-motor control module: receives high-level motor request data from modules in
the PCS and converts it into individual motor outputs.

6. Implementing the mpFCS

This section explains the implementation steps of the mpFCS stated in Section 5. First,
we explain how we implement the structure, and then we continue with verification of
the implementation.

To implement modules, we analyzed various types of existing software for UAVs
with different layers and modules. We choose ArduCopter, part of ArduPilot flight control
software suites, an advanced open-source software autopilot system for multicopters,
helicopters, and other rotors vehicles. Internal functionalities of our implementation are
based on the open source, flight control software ArduCopter [18].

ArduCopter consists of different layers, and it provides libraries that are respon-
sible for its flight, device drivers, and communication. For example, GCS_Copter and
GCS_MAVLink in the application layer are responsible for sending a state message to
the communication module and receiving a command message. GCS_MAVLink in the
shared library provides a possibility to send and receive messages between GCS and UAV,
and it uses MAVLink protocol on its communication. The hardware abstraction layer pro-

Aerospace 2022, 9, 62 13 of 24

vides interfaces for various devices, including sensors, boards, etc. The flight codes in the
application layer provide possibilities for UAV’s control and management of its movement.

The FACE architecture provides its requirement for each segment and interfaces
between segments. To meet the requirements, we follow the matching process described in
Section 5. This process provides the matching table of the software with FACE segments.
Table 4 shows the codes of ArduCopter and our matching of the software with the FACE
segments. We matched the basic modules of the ArduCopter into the proposed structure.
PCS consists of five modules (flight mode, position, attitude, motor, and main control) that
are the main modules of the ArduCopter. In the PSSS, we choose the most basic modules
related to the data of IOSS, which are communication, sensor, and transmitter modules.

Table 4. Modules of flight control software and their matching of the FACE segments.

FCS Segment mpFCS

File/Library Name Name Module Name

Flight mode

PCS

Flight Mode Control

Position Position Control

Attitude Attitude Control

Motors Motor Control

Main Flight Code Main Control

Main Flight Code
TSS Transport Module

MAVLink

MAVLink

PSSS

Communication Module

Sensor Sensor Module

RC Transmitter Module

HAL IOSS IO Module

6.1. Implementation of the Portable Modules

We implemented the structure with modules that consist of portable component
segments (PCS), transport services segment (TSS), platform-specific services segments
(PSSS), an input-output services segment (IOSS), and the core functions of each segment,
which are responsible for sending and receiving a message.

In order to implement the structure with the FACE segment, we performed the follow-
ing steps:

1. Identify code dependency and its coupling with different functions in other modules.
2. Match libraries and modules with the FACE segments.
3. Match its proprietary interface with FACE interfaces.
4. Mapping FACE IDL interface files into C++.

We implemented each segment and interface based on the reference implementation
guide for FACE architecture [35].

To implement modules, we divided messages between modules into two main cate-
gories: internal and external messages. First, the external message is related to GCS, which
can be a raw command message sent by GCS (a message from bottom modules to upper
modules) to UAV or a UAV real state message sent to GCS (a message from top modules to
bottom modules). Second, the internal message is related to the sensors and motors, which
can be a real command message that goes to the UAV motor and actuator (a message from
top modules to bottom modules) or a raw state message from the sensor, which needs to be
calculated (a message from bottom modules to upper modules).

In order to send and receive the internal and the external message, we implemented
the following interfaces:

Aerospace 2022, 9, 62 14 of 24

1. IO interfaces such as FACE::IO::Write and FACE::IO::Read to transfer a message
between the IO module and modules in the PSSS and

2. FACE::TS::Send_Message and FACE::TS::Receive_Message to transfer a message be-
tween modules in the PSSS, TSS, and PCS [35].

For implementing the structure, this paper uses Ubuntu Linux 16.04 64-bit operating
system and GCC v7.5.0 as compiler and linker.

6.2. Verification

To prove our implementation works faultlessly and messages between modules and
GCS are correct, we traced, collected, and compared the mpFCS and the general FCS data.
We tested the following test case: (1) external message test (a message to/from GCS),
(2) internal message test (a message to/from motor/sensor). A state message on GCS must
be equal to the state data that the main flight module sends, and a command message on
the flight module must equal a message that GCS sends.

To check and compare the specification of portable modules, we run both the general
software and the mpFCS in the simulated environment. Figure 9 shows the process of
comparing the general software and the mpFCS in the simulation environment. The
simulation environment allows the software to run on the PC without any special hardware.
The mpFCS runs on the simulation environment, which runs on the system with Intel
i5-10400F 2.9 GHz CPU and 12 GB main memory, and Ubuntu 16.04 LTS-64bit OS. On the
other hand, we run the GCS on the second system with Intel i5-4590 3.3 GHz CPU and 8 GB
main memory, and Ubuntu 16.04 LTS-64bit OS to control and exchange data between GCS
and the mpFCS. The mpFCS connects to GCS via TCP. Simultaneously, we run the general
FCS in the simulation environment and connect it to GCS on another system with the exact
specification. When communications are established, we make the test for sending and
receiving data. GCS sends a command message to both simulators and receives a state
message from both simulators.

Aerospace 2022, 9, x FOR PEER REVIEW 15 of 25

general FCS in the simulation environment and connect it to GCS on another system with
the exact specification. When communications are established, we make the test for send-
ing and receiving data. GCS sends a command message to both simulators and receives a
state message from both simulators.

Figure 9. The process of the compared running of original FCS and mpFCS.

To verify the external message, first, we traced a state message on the communication
module and GCS. A test result of the state and command message through its communi-
cation modules is shown in Figure 10. During the flight, the communication module of
the software encodes a state message and sends it to GCS. When GCS receives a state
message, we compare this message to a message on the communication module. Concur-
rently, we send a command message to the software. Same as previous steps, when the
software receives a command message, we compare this message to a message that we
send to the software. The result shows that our solution works appropriately, and its final
data between GCS and the simulator are precisely the same.

Figure 10. A test result of the state and command message through the communication module.

To verify the internal message, we traced the internal state and command messages
between modules. First, we trace the state message from the sensor to the main flight
module on both software. During the flight, the sensor module of the software gets a state
message and transfers it to the application layer. Second, we traced the command mes-
sages among modules. When the main flight module receives a command message, it
transfers a message to the motor and actuator. We compare the input and output of each

Figure 9. The process of the compared running of original FCS and mpFCS.

To verify the external message, first, we traced a state message on the communication
module and GCS. A test result of the state and command message through its communica-
tion modules is shown in Figure 10. During the flight, the communication module of the
software encodes a state message and sends it to GCS. When GCS receives a state message,
we compare this message to a message on the communication module. Concurrently, we
send a command message to the software. Same as previous steps, when the software
receives a command message, we compare this message to a message that we send to
the software. The result shows that our solution works appropriately, and its final data
between GCS and the simulator are precisely the same.

Aerospace 2022, 9, 62 15 of 24

Aerospace 2022, 9, x FOR PEER REVIEW 15 of 25

general FCS in the simulation environment and connect it to GCS on another system with
the exact specification. When communications are established, we make the test for send-
ing and receiving data. GCS sends a command message to both simulators and receives a
state message from both simulators.

Figure 9. The process of the compared running of original FCS and mpFCS.

To verify the external message, first, we traced a state message on the communication
module and GCS. A test result of the state and command message through its communi-
cation modules is shown in Figure 10. During the flight, the communication module of
the software encodes a state message and sends it to GCS. When GCS receives a state
message, we compare this message to a message on the communication module. Concur-
rently, we send a command message to the software. Same as previous steps, when the
software receives a command message, we compare this message to a message that we
send to the software. The result shows that our solution works appropriately, and its final
data between GCS and the simulator are precisely the same.

Figure 10. A test result of the state and command message through the communication module.

To verify the internal message, we traced the internal state and command messages
between modules. First, we trace the state message from the sensor to the main flight
module on both software. During the flight, the sensor module of the software gets a state
message and transfers it to the application layer. Second, we traced the command mes-
sages among modules. When the main flight module receives a command message, it
transfers a message to the motor and actuator. We compare the input and output of each

Figure 10. A test result of the state and command message through the communication module.

To verify the internal message, we traced the internal state and command messages
between modules. First, we trace the state message from the sensor to the main flight
module on both software. During the flight, the sensor module of the software gets a state
message and transfers it to the application layer. Second, we traced the command messages
among modules. When the main flight module receives a command message, it transfers
a message to the motor and actuator. We compare the input and output of each module.
The result proves that the mpFCS works correctly, and its final data among modules are
correct. The comparison of data flow between the mpFCS and general software is shown
in Table 5. This comparison shows that FligtControl from the general FCS depends on the
motor, sensor, and communication module and is coupled with them. On the other hand,
modules in the PCS of mpFCS depend only on modules of the TSS.

Table 5. A comparison of data flow between two software.

Message Type General FCS mpFCS

External
State FlightControl→ Communication→ HAL PCS→ TSS→ PSSS→ IOS

Command HAL→ Communication→ FlightControl IOS→ PSSS→ TSS→ PCS

Internal
State Sensor→ FlightCode IOS→ PSSS→ TSS→ PCS

Command FlightControl→Motor PCS→ TSS→ PSSS→ IOS
→ arrow indicates the direction of the data flow.

7. Experiments

This section discusses the experiment and its result. To evaluate modules, we made
two experiments as (1) A test of the FACE conformance test suite (CTS) [36], for verifying
conformance of modules to the FACE standard and testing its interoperability with FACE
software and its module portability, (2) a test of adding a new module to the structure,
for proving extendibility of the software with different modules from FACE software and
other software, (3) a test of running the mpFCS on the Windows system, for verifying
portability of the mpFCS. Table 6 shows our experiment environments. In order to perform
experiments, we use two systems for the environments of UAV simulation and GCS, which
have the same software installed on them.

Aerospace 2022, 9, 62 16 of 24

Table 6. Software and hardware environment of experiments.

Software

Operating System Ubuntu Linux 16.04 64-bit and Windows 10 64-bit

Compiler/Linker GCC v7.5.0 (GNU Compiler Collection)

Testing Tool FACE CTS v2.1.1

Hardware

PC1: GCS for UAV

CPU i5-4590 3.30 GHz

Memory 16 GB

GPU GeForce GTX 650

PC2: UAV simulator

CPU i5-10400F 2.90 GHz

Memory 12 GB

GPU GeForce GTX 1660

7.1. The FACE Conformance Test Suite Test

The FACE CTS is a testing suite for checking the FACE standard requirements of
units in the FACE segments. It provides the testing environment for the FACE standard
conformance, and it can test the comfortability of the FACE segments and their interfaces
with the FACE software. The software module must be linked with FACE test interfaces
and interfaces to run the test most likely linked against FACE test applications provided by
the FACE CTS. If the compiling and linking of the software pass the test, the software code
is conformant concerning the requirements tested. If the test result fails, the software is not
conformant with the FACE, and the software cannot provide portability to the software.
Results that test output will show in the browser.

We tested our modules with the FACE CTS, which can test PCS, PSSS, TSS, IOSS,
and interfaces. We run the test on the Linux-based computer system, which can also be
Windows. After configuring testing environments, we test each segment with the interfaces.
To test modules, we made the following steps and configurations.

1. Create an object file of each module using the makefile,
2. Link the FACE CTS library to the object file of each module,
3. Configure the general settings for the testing environment and specific segment

settings on the FACE CTS GUI.

Figure 11 shows how the FACE CTS works and its flow. After following the above
steps and configuration, we compile and link each segment with the FACE CTS. The module
successfully passed the FACE architecture comfortability test. The process of compiling
and linking passed the test, and the test output shows detailed information. Table 7 shows
the test results of each module, its interface, and its data in the environment. Each module
passed FACE CTS, and the test result on FACE CTS shows that portable modules can be
interoperable with the FACE software. Figure 12 shows the test result of FACE CTS. The
test result includes passed or failed for each test. The result also includes the code used
for the test and the log generated in performing the test. All results are shown on the web
browser after the successful test.

Aerospace 2022, 9, x FOR PEER REVIEW 17 of 25

We tested our modules with the FACE CTS, which can test PCS, PSSS, TSS, IOSS, and
interfaces. We run the test on the Linux-based computer system, which can also be Win-
dows. After configuring testing environments, we test each segment with the interfaces.
To test modules, we made the following steps and configurations.
1. Create an object file of each module using the makefile,
2. Link the FACE CTS library to the object file of each module,
3. Configure the general settings for the testing environment and specific segment set-

tings on the FACE CTS GUI.
Figure 11 shows how the FACE CTS works and its flow. After following the above

steps and configuration, we compile and link each segment with the FACE CTS. The mod-
ule successfully passed the FACE architecture comfortability test. The process of compil-
ing and linking passed the test, and the test output shows detailed information. Table 7
shows the test results of each module, its interface, and its data in the environment. Each
module passed FACE CTS, and the test result on FACE CTS shows that portable modules
can be interoperable with the FACE software. Figure 12 shows the test result of FACE
CTS. The test result includes passed or failed for each test. The result also includes the
code used for the test and the log generated in performing the test. All results are shown
on the web browser after the successful test.

Figure 11. Specification of the FACE CTS.

Table 7. A test result of the FACE CTS.

Segment Module
Conformances

Interface
Data

TS IO
IOSS IO N/A N/A Passed

PSSS
Communication Passed Passed Passed

Transmitter Passed Passed Passed
Sensor Passed Passed Passed

TSS
StateModule N/A N/A Passed

CommandModule N/A N/A Passed

PCS

Main Passed N/A Passed
Flight Passed N/A Passed

Position Passed N/A Passed
Attitude Passed N/A Passed

Servo-motor Passed N/A Passed

Figure 11. Specification of the FACE CTS.

Aerospace 2022, 9, 62 17 of 24

Table 7. A test result of the FACE CTS.

Segment Module

Conformances

Interface
Data

TS IO

IOSS IO N/A N/A Passed

PSSS

Communication Passed Passed Passed

Transmitter Passed Passed Passed

Sensor Passed Passed Passed

TSS
StateModule N/A N/A Passed

CommandModule N/A N/A Passed

PCS

Main Passed N/A Passed

Flight Passed N/A Passed

Position Passed N/A Passed

Attitude Passed N/A Passed

Servo-motor Passed N/A PassedAerospace 2022, 9, x FOR PEER REVIEW 18 of 25

Figure 12. The test result of CTS is shown in the web browser. (1) results of the FACE CTS, (2) the
code used for the test, and (3) test log file generated in performing the test.

7.2. Adding a Module into the mpFCS
The software’s expandability is the ability that increases the software’s functionality

by adding or porting new modules. The module extends the software by adding new
functionality or modifying existing functionality, and it must extend the software without
ever modifying the core base code. Since we focused on the expandability of the software,
we adhere the standard architecture and exploit its interfaces on the mpFCS; thus, the
mpFCS can expand with any module that uses the same interfaces. In order to port a new
module in the PCS, a module needs to use the TS-Interface. Additionally, modules in the
PSSS must use TS-Interfaces and IO-Interfaces. Thus, to prove this, we developed a sam-
ple module, ported it into the software based on the proposed structure, and extended it
to show its expandability. Additionally, we added a module from the existing software
and showed how to add the existing module into the structure.

7.2.1. Adding a New Module into the mpFCS
A sample module named distCalc module receives the current navigation data, and

it calculates and shows the percentage of the distance between the endpoint and the UAV.
Figure 13 shows the general design of the module and its interface to the transport mod-
ule. In order to work as a portable module, we located the module in the PCS. To port the
module into the software and receive navigation data from the transport module, it must
use the TS interface. Thus, we added distanceCal in the distCalc module, and it invokes
FACE::TS::Send_Message from the stateModule in the transport module to receive a mes-
sage. The module receives data from the transport module in every set of time intervals
and calculates the distance. Table 8 shows the specification of the module and sample data
collected during its running. To execute and port the module, first, we run the mpFCS in
the simulated environment. When the software runs, the distCalc receives data and cal-
culates it. At first, the module receives the coordination of the starting point that is S x, y
(S—the starting point, x- longitude, y- latitude) and endpoint data: E x, y (E—the end-
point) from TSS. Then, the module calculates the distance between two points. Second,
the module calculates and shows the percentage between the endpoint and the current
location when the UAV moves. In order to calculate this, the module collects the current

Figure 12. The test result of CTS is shown in the web browser. (1) results of the FACE CTS, (2) the
code used for the test, and (3) test log file generated in performing the test.

7.2. Adding a Module into the mpFCS

The software’s expandability is the ability that increases the software’s functionality
by adding or porting new modules. The module extends the software by adding new
functionality or modifying existing functionality, and it must extend the software without
ever modifying the core base code. Since we focused on the expandability of the software,
we adhere the standard architecture and exploit its interfaces on the mpFCS; thus, the
mpFCS can expand with any module that uses the same interfaces. In order to port a new
module in the PCS, a module needs to use the TS-Interface. Additionally, modules in the
PSSS must use TS-Interfaces and IO-Interfaces. Thus, to prove this, we developed a sample

Aerospace 2022, 9, 62 18 of 24

module, ported it into the software based on the proposed structure, and extended it to
show its expandability. Additionally, we added a module from the existing software and
showed how to add the existing module into the structure.

7.2.1. Adding a New Module into the mpFCS

A sample module named distCalc module receives the current navigation data, and
it calculates and shows the percentage of the distance between the endpoint and the
UAV. Figure 13 shows the general design of the module and its interface to the transport
module. In order to work as a portable module, we located the module in the PCS. To
port the module into the software and receive navigation data from the transport module,
it must use the TS interface. Thus, we added distanceCal in the distCalc module, and it
invokes FACE::TS::Send_Message from the stateModule in the transport module to receive
a message. The module receives data from the transport module in every set of time
intervals and calculates the distance. Table 8 shows the specification of the module and
sample data collected during its running. To execute and port the module, first, we run
the mpFCS in the simulated environment. When the software runs, the distCalc receives
data and calculates it. At first, the module receives the coordination of the starting point
that is S(x, y) (S—the starting point, x—longitude, y—latitude) and endpoint data: E(x, y)
(E—the endpoint) from TSS. Then, the module calculates the distance between two points.
Second, the module calculates and shows the percentage between the endpoint and the
current location when the UAV moves. In order to calculate this, the module collects the
current navigation data that is a new starting point data Si (x, y), which changes in a set of
time intervals from TSS.

Table 8. A specification of distCalc and sample data.

Specification Input Output

Main Specification

Starting Point

Percentage to the endpoint
from current location

Navigation Data

Endpoint (constant data)

Endpoint E(x, y) 47.9222,106.9183

Starting point S (x, y) 47.9178, 106.9192 100%

A New Starting Point (it
changes in a set of time

intervals)
Si (x, y)

47.9182, 106.9191 90%

47.9186, 106.9191 80%

47.9193, 106.9189 70%

47.9200, 106.9188 60%

47.9201, 106.9187 50%

47.9203, 106.9187 40%

47.9205, 106.9187 30%

47.9212, 106.9185 20%

47.9217, 106.9184 10%

47.92225,106.9183 0% Reached
E: Endpoint, S: Starting Point, Si : Current Location, x—Longitude, y—Latitude.

Aerospace 2022, 9, 62 19 of 24

Aerospace 2022, 9, x FOR PEER REVIEW 19 of 25

navigation data that is a new starting point data 𝑆 𝑥, 𝑦 , which changes in a set of time
intervals from TSS.

Figure 13. distCalc module and its location in the mpFCS.

After developing the module, we tested it on the FACE CTS. To test a module, we
followed the steps mentioned in the FACE CTS test. The distCalc module must pass the
test of the TS interface, and its data must be portable with the FACE standard. The module
passed the conformance test, and its result is shown in Table 9.

Same as adding distCalc into the structure, the mpFCS can expand with any different
modules that use the standard FACE interfaces.

Table 8. A specification of distCalc and sample data.

Specification Input Output

Main Specification
Starting Point

Percentage to the endpoint
from current location

Navigation Data
Endpoint (constant data)

Endpoint 𝐸 𝑥, 𝑦 47.9222,106.9183
Starting point 𝑆 𝑥, 𝑦 47.9178, 106.9192 100%

A New Starting Point (it
changes in a set of time

intervals) 𝑆 𝑥, 𝑦

47.9182, 106.9191 90%
47.9186, 106.9191 80%
47.9193, 106.9189 70%
47.9200, 106.9188 60%
47.9201, 106.9187 50%
47.9203, 106.9187 40%
47.9205, 106.9187 30%
47.9212, 106.9185 20%
47.9217, 106.9184 10%
47.92225,106.9183 0% Reached 𝐸: Endpoint, 𝑆: Starting Point, 𝑆 : Current Location, 𝑥—Longitude, 𝑦—Latitude.

Table 9. The test result of distCalc module on the FACE CTS.

Segment Module
Conformance

TS Interface Data
PCS distCalc Passed Passed

Figure 13. distCalc module and its location in the mpFCS.

After developing the module, we tested it on the FACE CTS. To test a module, we
followed the steps mentioned in the FACE CTS test. The distCalc module must pass the
test of the TS interface, and its data must be portable with the FACE standard. The module
passed the conformance test, and its result is shown in Table 9.

Table 9. The test result of distCalc module on the FACE CTS.

Segment Module
Conformance

TS Interface Data

PCS distCalc Passed Passed

Same as adding distCalc into the structure, the mpFCS can expand with any different
modules that use the standard FACE interfaces.

7.2.2. Adding an Existing Module into mpFCS

The mpFCS can be expanded by adding a module from existing software. In order
to add an existing software module to the structure, its proprietary interfaces must be
replaced with the FACE interfaces. However, due to different data structures and functions,
this process requires manual work for each module. Thus, we created a manual process
named Interface and Data Translator, which analyzes a module from existing software and
provides it for the mpFCS. Figure 14 shows a flow of the process. This process consists of
two phases: (1) analyzing phase, which analyzes the module from the existing software,
and (2) translating phase that replaces interfaces and changes data structure. The result of
this process can provide a new module for the structure from the existing software. We
followed the above process, converted the module to the mpFCS, and added the module
into the structure.

Aerospace 2022, 9, x FOR PEER REVIEW 20 of 25

7.2.2. Adding an Existing Module into mpFCS
The mpFCS can be expanded by adding a module from existing software. In order to

add an existing software module to the structure, its proprietary interfaces must be re-
placed with the FACE interfaces. However, due to different data structures and functions,
this process requires manual work for each module. Thus, we created a manual process
named Interface and Data Translator, which analyzes a module from existing software
and provides it for the mpFCS. Figure 14 shows a flow of the process. This process consists
of two phases:(1) analyzing phase, which analyzes the module from the existing software,
and (2) translating phase that replaces interfaces and changes data structure. The result of
this process can provide a new module for the structure from the existing software. We
followed the above process, converted the module to the mpFCS, and added the module
into the structure.

Figure 14. The flow of the Interface and Data Translator.

7.3. Running the mpFCS in a Different Environment
Since our approach follows the standard FACE architecture and its interfaces along

with programming interfaces, the compiler guarantees portability. It also allows the im-
plemented structure to run on different environments seamlessly. The process of deploy-
ing of a FACE-compatible software to any environment is shown in the Figure 15.

We implemented the mpFCS in Ubuntu Linux 16.04 64-bit operating system. To ver-
ify the portability of the mpFCS, we recompile and deploy the mpFCS on a Windows
system that has the same hardware specifications we used in our experiments. Figure 16
illustrates the running of the mpFCS on a Windows system without any issues. Addition-
ally, the distCalc module is successfully ported into the mpFCS that runs on the Windows
system. The distCal module works correctly, and its data is the same as on the Ubuntu
system. We only present the result acquired in Linux system because the results are the
same on both environments.

Figure 15. The deploying process of the mpFCS into any environment.

Figure 14. The flow of the Interface and Data Translator.

Aerospace 2022, 9, 62 20 of 24

7.3. Running the mpFCS in a Different Environment

Since our approach follows the standard FACE architecture and its interfaces along
with programming interfaces, the compiler guarantees portability. It also allows the imple-
mented structure to run on different environments seamlessly. The process of deploying of
a FACE-compatible software to any environment is shown in the Figure 15.

Aerospace 2022, 9, x FOR PEER REVIEW 20 of 25

7.2.2. Adding an Existing Module into mpFCS
The mpFCS can be expanded by adding a module from existing software. In order to

add an existing software module to the structure, its proprietary interfaces must be re-
placed with the FACE interfaces. However, due to different data structures and functions,
this process requires manual work for each module. Thus, we created a manual process
named Interface and Data Translator, which analyzes a module from existing software
and provides it for the mpFCS. Figure 14 shows a flow of the process. This process consists
of two phases:(1) analyzing phase, which analyzes the module from the existing software,
and (2) translating phase that replaces interfaces and changes data structure. The result of
this process can provide a new module for the structure from the existing software. We
followed the above process, converted the module to the mpFCS, and added the module
into the structure.

Figure 14. The flow of the Interface and Data Translator.

7.3. Running the mpFCS in a Different Environment
Since our approach follows the standard FACE architecture and its interfaces along

with programming interfaces, the compiler guarantees portability. It also allows the im-
plemented structure to run on different environments seamlessly. The process of deploy-
ing of a FACE-compatible software to any environment is shown in the Figure 15.

We implemented the mpFCS in Ubuntu Linux 16.04 64-bit operating system. To ver-
ify the portability of the mpFCS, we recompile and deploy the mpFCS on a Windows
system that has the same hardware specifications we used in our experiments. Figure 16
illustrates the running of the mpFCS on a Windows system without any issues. Addition-
ally, the distCalc module is successfully ported into the mpFCS that runs on the Windows
system. The distCal module works correctly, and its data is the same as on the Ubuntu
system. We only present the result acquired in Linux system because the results are the
same on both environments.

Figure 15. The deploying process of the mpFCS into any environment. Figure 15. The deploying process of the mpFCS into any environment.

We implemented the mpFCS in Ubuntu Linux 16.04 64-bit operating system. To verify
the portability of the mpFCS, we recompile and deploy the mpFCS on a Windows system
that has the same hardware specifications we used in our experiments. Figure 16 illustrates
the running of the mpFCS on a Windows system without any issues. Additionally, the
distCalc module is successfully ported into the mpFCS that runs on the Windows system.
The distCal module works correctly, and its data is the same as on the Ubuntu system.
We only present the result acquired in Linux system because the results are the same on
both environments.

Aerospace 2022, 9, x FOR PEER REVIEW 21 of 25

Figure 16. The running of the mpFCS on the Windows system in a simulated environment.

7.4. Analysis
This subsection discusses a comparison of the mpFCS and the existing flight control

software on their module level. This comparison is based on its expandability,
interoperability, and portability.

In order to make software portable, expandable, and interoperable, we need to use
standard interfaces. Thus, we use the standard interfaces in each module of segments to
send and receive a message between them. In the experimentation, a new module uses
the TS interface to receive a message from the transport module in TSSS.

7.4.1. Analysis of Portability
Figure 17 compares layers and interfaces between the existing software and our

structure experimentation. The existing software uses its proprietary interfaces for its in-
ternal communication to transfer data between modules. PaparazziUAV uses functions
from the ABI middleware, which has prefixes such as abiSendMsg and abiBindMsg de-
pending on the message types. dRonin also uses proprietary UAVObj interfaces, and de-
pending on message types, different interfaces of UAVObj are used for transferring mes-
sages. uORB messaging API is used in PX4 for internal communication. On the other
hand, the mpFCS uses the FACE standard interfaces in its modules, such as IO interfaces
(FACE::IO::Write() and FACE::IO::Read()) and TS interfaces (FACE::TS::Send_Message()
and FACE::TS::Receive_Message()) to transfer data between its modules. It brings
portability not only to software, but also to the software modules.

Figure 17. A comparison on layers and interfaces of related work and the mpFCS.

Figure 16. The running of the mpFCS on the Windows system in a simulated environment.

7.4. Analysis

This subsection discusses a comparison of the mpFCS and the existing flight control
software on their module level. This comparison is based on its expandability, interoper-
ability, and portability.

In order to make software portable, expandable, and interoperable, we need to use
standard interfaces. Thus, we use the standard interfaces in each module of segments to
send and receive a message between them. In the experimentation, a new module uses the
TS interface to receive a message from the transport module in TSSS.

7.4.1. Analysis of Portability

Figure 17 compares layers and interfaces between the existing software and our
structure experimentation. The existing software uses its proprietary interfaces for its
internal communication to transfer data between modules. PaparazziUAV uses functions
from the ABI middleware, which has prefixes such as abiSendMsg and abiBindMsg de-
pending on the message types. dRonin also uses proprietary UAVObj interfaces, and
depending on message types, different interfaces of UAVObj are used for transferring

Aerospace 2022, 9, 62 21 of 24

messages. uORB messaging API is used in PX4 for internal communication. On the other
hand, the mpFCS uses the FACE standard interfaces in its modules, such as IO interfaces
(FACE::IO::Write() and FACE::IO::Read()) and TS interfaces (FACE::TS::Send_Message() and
FACE::TS::Receive_Message()) to transfer data between its modules. It brings portability
not only to software, but also to the software modules.

Aerospace 2022, 9, x FOR PEER REVIEW 21 of 25

Figure 16. The running of the mpFCS on the Windows system in a simulated environment.

7.4. Analysis
This subsection discusses a comparison of the mpFCS and the existing flight control

software on their module level. This comparison is based on its expandability,
interoperability, and portability.

In order to make software portable, expandable, and interoperable, we need to use
standard interfaces. Thus, we use the standard interfaces in each module of segments to
send and receive a message between them. In the experimentation, a new module uses
the TS interface to receive a message from the transport module in TSSS.

7.4.1. Analysis of Portability
Figure 17 compares layers and interfaces between the existing software and our

structure experimentation. The existing software uses its proprietary interfaces for its in-
ternal communication to transfer data between modules. PaparazziUAV uses functions
from the ABI middleware, which has prefixes such as abiSendMsg and abiBindMsg de-
pending on the message types. dRonin also uses proprietary UAVObj interfaces, and de-
pending on message types, different interfaces of UAVObj are used for transferring mes-
sages. uORB messaging API is used in PX4 for internal communication. On the other
hand, the mpFCS uses the FACE standard interfaces in its modules, such as IO interfaces
(FACE::IO::Write() and FACE::IO::Read()) and TS interfaces (FACE::TS::Send_Message()
and FACE::TS::Receive_Message()) to transfer data between its modules. It brings
portability not only to software, but also to the software modules.

Figure 17. A comparison on layers and interfaces of related work and the mpFCS. Figure 17. A comparison on layers and interfaces of related work and the mpFCS.

7.4.2. Analysis of Expandability

Expandability allows the addition of new capabilities or functionality to the software.
The existing software uses its interfaces defined by the software. To expand the software
with a user-defined module, the developer needs to understand the structure of the software.
To add a new module to PX4 [19], the developer needs to know how its middleware uORB
works and its data structure. However, a module works only on the chosen software.
Expanding the software with another module from different software takes time, and a
large amount of work is required to modify its source code to expand the software with
that module. We expand our structure with a user-defined module named distCalc that
calculates the distance between the current point and endpoint. The distCalc can expand
any other software that runs in the same environment. On the other hand, the mpFCS
can be expanded by different modules from different FACE software because of the same
interfaces. In order to expand the mpFCS by adding a module from existing software, we
created a manual process named Interface and Data Translator, as shown in Figure 14.

7.4.3. Analysis of Interoperability

Interoperability allows the capability of two or more functional units to process data
cooperatively. A new user-defined module needs to interoperate with other modules of the
software. Same as expandability, interoperability with other modules from different soft-
ware requires lots of modification on the software’s source code. A new module, distCalc,
expands the mpFCS and uses the FACE standard interfaces (FACE::TS::Receive_Message)
to interoperate stateModule in the Transport Service Segment (TSSS). The current capability
of the distCalc is only receiving data from TSSS, but capability can increase by sending data
to TSS. Due to the FACE interfaces in a new module, the module can interoperate with any
software that runs on the FACE environment.

We compared the interfaces, expandability, interoperability, and portability of mpFCS
with other software, and Table 10 shows the comparison result. The existing software [2,6–19]
is not portable, and its modules are tightly coupled due to its unique interfaces. Expanding
the existing software with a new module requires understanding its structure and interfaces.
However, a new module only expands the chosen software and interoperates its modules.

Aerospace 2022, 9, 62 22 of 24

Table 10. Comparison of the existing FCS and the mpFCS.

FCS Name
Data Transfer

(Interface) Expandability Interoperability
Portability

SW ML

PaparazziUAV [20] ABI Yes * Yes * No No

PX4 [19] uORB Yes * Yes * No No

dRonin [22] UAVObject Yes * Yes * No No

He [16] N/A No No No No

Yi [17] N/A N/A N/A No No

Chon [2] N/A N/A N/A No No

Hedge [10] N/A No No No No

Theile [23] cpsCore Yes * Yes * No No

mpFCS The FACE interface Yes ** Yes ** Yes Yes
*—A new module works only on that software; **—mpFCS can expand and interoperate with different modules of
the FACE software.

The experiment result shows that each module of the mpFCS can be ported to other
FACE software, which means modules can be ported to any software that runs on the FACE
software environment. After porting a module to another software, it can exchange data
with them, which means it is interoperable with another software. Compared with the
related work (Table 10), our structure not only provides portability for its module but also
provides the expandability of the software and interoperability with different software.

7.5. Discussion

The verification result shows that the mpFCS works correctly, and experiments show it
can provide portability for its software modules to run in the standard FACE environment.
Furthermore, experiment results show that it can interoperate with other FACE software
and expand with new modules that use FACE interfaces.

Currently, we designed and implemented only the basic modules of the software, but
these modules are enough to control the UAV by sending/receiving a message to/from GCS.
Additionally, other payloads in the message or an increase of commands will not affect the
structure. Since we use the FACE architecture in our solution, more work would be required
to port the module with different software types that run in a different environment.

8. Conclusions

UAV flight control software handles the movement of UAVs and is responsible for
controlling and monitoring it. Unfortunately, the software does not provide portability for
its module due to the tight coupling with different modules. This paper proposes mpFCS, a
new structure of UAV flight control software, which can provide portability to its modules
in the environment of standard airborne software. To evaluate the structure and modules,
we redesigned existing UAV flight control software and tested them on the FACE CTS. Then,
we compared their specification and functionalities with the original software. Redesigned
modules passed FACE CTS testing, and the comparison shows that they are working
correctly. Additionally, we developed a sample module named distCalc and ported the
module into our implementation of the proposed structure. The experimentation shows that
the software based on the proposed structure provides portability to its modules, and it can
interoperate with the software that runs on the standard airborne software environment.
The software is expandable as long as a new module uses standard airborne software
interfaces. Health monitor and fault management is a critical software module for UAV
which detects, reports, and handles faults in the system and its modules. Based on these
standardized methods, developers can create their health and fault management system
module to cover fault tolerance of the system. The Interface and Data Translator is required
to port the module with different types of software in the standard airborne software

Aerospace 2022, 9, 62 23 of 24

environment. Future works are needed to focus on running the structure implementation
on the actual UAV and bringing the automatic process to Interface and Data Translator.

Author Contributions: Conceptualization, T.J.; data curation, T.J.; methodology, T.J. and K.L.; super-
vision, Y.-K.J.; writing—original draft preparation, T.J.; writing—review and editing, S.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was carried out with the support of ’R&D Program for Forest Science Technology
(Project No. 2021344A00-2123-CD01)’ provided by Korea Forest Service (Korea Forestry Promotion
Institute), and this work was supported by the Technology Innovation Program (or Industrial Strategic
Technology Development Program, 20005378, Open Avionics System Architecture and Software
Development for Small to Medium Aircraft Class), funded By the Ministry of Trade, Industry, &
Energy (MOTIE, Korea). Additionally, this work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C1014163).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cai, G.; Dias, J.; Seneviratne, L. A survey of small-scale unmanned aerial vehicles: Recent advances and future development

trends. Unmanned Syst. 2014, 2, 175–199. [CrossRef]
2. Chong, M.; Chuntao, L. Design of flight control software for small unmanned aerial vehicle based on VxWorks. In Proceedings of

the 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 1831–1834. [CrossRef]
3. Research and Markets. Report, Target Drone Market-A Global and Regional Analysis: Focus on End-User, Application, Platform, Mode of

Operation, Speed, Target Type, Payload, and Country-Analysis and Forecast; Research and Markets: Dublin, Ireland, 2021.
4. Bolkcom, E.B.A.C. Unmanned Aerial Vehicles: Background and Issues for Congress; Library of Congress, Congressional Research

Service: Washington, DC, USA, 2011.
5. Battsengel, G.; Geetha, S.; Jeon, J. Analysis of technological trends and technological portfolio of unmanned aerial vehicle. J. Open

Innov. Technol. Mark. Complex. 2020, 6, 48. [CrossRef]
6. Darwante, S.; Kadam, A.; Talele, H.; Ade, O.; Bankar, A. Border Surveillance Monitoring Application. In Proceedings of the

2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 19–21
September 2019; pp. 1–6. [CrossRef]

7. Quigley, M.; Goodrich, M.A.; Griffiths, S.; Eldredge, A.; Beard, R.W. Target acquisition, localization, and surveillance using a
fixed-wing mini-UAV and gimbaled camera. In Proceedings of the 2005 IEEE international conference on robotics and automation,
Barcelona, Spain, 18–22 April 2005; pp. 2600–2605. [CrossRef]

8. Beard, R.W.; McLain, T.W.; Nelson, D.B.; Kingston, D.; Johanson, D. Decentralized cooperative aerial surveillance using fixed-wing
miniature UAVs. Proc. IEEE 2006, 94, 1306–1324. [CrossRef]

9. Iscold, P.; Pereira, G.A.; Torres, L.A. Development of a hand-launched small UAV for ground reconnaissance. IEEE Trans. Aerosp.
Electron. Syst. 2010, 46, 335–348. [CrossRef]

10. Hegde, M.; Raveendra, M. Development of flight control software for Unmanned Aerial Vehicle. Int. J. Emerg. Technol. Comput.
Sci. Electron. 2015, 14, 661–664.

11. Mooney, J.D. Portability and reusability: Common issues and differences. In Proceedings of the 1995 ACM 23rd Annual
Conference on Computer Science, Nashville, TN, USA, 28 February–2 March 1995; pp. 150–156.

12. Singh, C.; Sharma, N.; Kumar, N. Analysis of software maintenance cost affecting factors and estimation models. Int. J. Sci.
Technol. Res. 2019, 8, 276–281.

13. Ren, Y. Research on Software Cost Estimation and Its Expert System. Ph.D. Thesis, Liaoning Technical University, Fuxin,
China, 2008.

14. Hopsu, A. Portability of IEC 61499 Compliant Software; Aalto University: Espoo, Finland, 2019.
15. Beningo, J. A Practical Approach to Code Reuse. In Reusable Firmware Development; Springer: Berlin/Heidelberg, Germany, 2017;

pp. 277–299.
16. He, Z.; Chen, Y.; Shen, Z.; Huang, E.; Li, S.; Shao, Z.; Wang, Q. Ard-mu-copter: A simple open source quadcopter platform. In

Proceedings of the 2015 11th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 16–18
December 2015; pp. 158–164. [CrossRef]

17. Ying, F.; Xiujuan, L.; Chuntao, L.; Zhenyu, J. Design of distributed flight control software based on software bus. In Proceedings
of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp.
725–729. [CrossRef]

18. ArduPilot. Available online: https://ardupilot.org/ (accessed on 20 January 2021).
19. DroneCode. PX4. Available online: https://px4.io (accessed on 20 January 2021).
20. ENAC. PaparazziUAV. Available online: https://wiki.paparazziuav.org/wiki/Main_Page (accessed on 20 January 2021).
21. MultiWii. Available online: http://www.multiwii.com/ (accessed on 20 November 2021).
22. dRonin. Available online: https://dronin.org (accessed on 14 January 2021).

http://doi.org/10.1142/S2301385014300017
http://doi.org/10.1109/CGNCC.2014.7007459
http://doi.org/10.3390/joitmc6030048
http://doi.org/10.1109/ICCUBEA47591.2019.9128792
http://doi.org/10.1109/ROBOT.2005.1570505
http://doi.org/10.1109/JPROC.2006.876930
http://doi.org/10.1109/TAES.2010.5417166
http://doi.org/10.1109/MSN.2015.9
http://doi.org/10.1109/CGNCC.2016.7828875
https://ardupilot.org/
https://px4.io
https://wiki.paparazziuav.org/wiki/Main_Page
http://www.multiwii.com/
https://dronin.org

Aerospace 2022, 9, 62 24 of 24

23. Theile, M.; Dantsker, O.; Nai, R.; Caccamo, M.; Yu, S. uavAP: A Modular Autopilot Framework for UAVs. In Proceedings of the
AIAA Aviation 2020 Forum, Virtual Event, 15–19 June 2020; p. 3268. [CrossRef]

24. OpenGroup. The FACE Technical Standard. Available online: https://www.opengroup.org/face (accessed on 20 February 2020).
25. ISO/IEC 25010; 2011 Systems and Software Engineering@ Systems and Software Quality Requirements and Evaluation (SQuaRE)@

System and Software Quality Models. 2013; ISO: Geneva, Switzerland. Available online: https://www.iso.org/standard/35733.
html(accessed on 14 June 2021).

26. Mooney, J.D. Developing portable software. In Information Technology; Springer: Berlin/Heidelberg, Germany, 2004; pp. 55–84.
27. Kaindl, H. Portability of software. ACM SIGPLAN Not. 1988, 23, 59–68. [CrossRef]
28. ECSS-E-40-Part-1B, Space Engineering: Software—Part 1 Principles and Requirements. 2003. Available online: https://ecss.nl/

standard/ecss-e-40-part-1b-space-engineering-software-part-1-principles-and-requirements/ (accessed on 14 June 2021).
29. IEEE-Std-830; IEEE Recommended Practice for Software Requirements Specifications. IEEE Press: New York, NY, USA, 1998.
30. ISO 2382–1; Information Technology—Vocabulary—Part 1: Fundamental Terms. 1993; ISO: Geneva, Switzerland. Available

online: https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-1:ed-3:v1:en(accessed on 14 June 2021).
31. Haile, N.; Altmann, J. Evaluating investments in portability and interoperability between software service platforms. Future

Gener. Comput. Syst. 2018, 78, 224–241. [CrossRef]
32. Ebeid, E.; Skriver, M.; Terkildsen, K.H.; Jensen, K.; Schultz, U.P. A survey of open-source UAV flight controllers and flight

simulators. Microprocess. Microsyst. 2018, 61, 11–20. [CrossRef]
33. Dupus, A. Multiwii Source Code. Available online: https://code.google.com/archive/p/multiwii/ (accessed on 20 December

2020).
34. OpenPilot. Available online: https://opwiki.readthedocs.io/en/latest/ (accessed on 15 December 2020).
35. OpenGroup. Reference Implementation Guide for FACE™ Technical Standard, Edition 2.1. Available online: https://www.

opengroup.org/face/docsandtools (accessed on 20 September 2020).
36. OpenGroup. The FACE Conformance Test Suite. Available online: https://www.opengroup.org/face/conformance-testsuites

(accessed on 11 November 2020).

http://doi.org/10.2514/6.2020-3268
https://www.opengroup.org/face
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
http://doi.org/10.1145/44546.44551
https://ecss.nl/standard/ecss-e-40-part-1b-space-engineering-software-part-1-principles-and-requirements/
https://ecss.nl/standard/ecss-e-40-part-1b-space-engineering-software-part-1-principles-and-requirements/
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-1:ed-3:v1:en
http://doi.org/10.1016/j.future.2017.04.040
http://doi.org/10.1016/j.micpro.2018.05.002
https://code.google.com/archive/p/multiwii/
https://opwiki.readthedocs.io/en/latest/
https://www.opengroup.org/face/docsandtools
https://www.opengroup.org/face/docsandtools
https://www.opengroup.org/face/conformance-testsuites

	Introduction
	Related Work
	The Portability and Its Characteristics
	General Structure of the Existing Software
	Enabling Portability in the Software

	Portability Issues of the Current Software
	Current Status of the Software
	Portability Issue

	Solution
	Standard for the Portability Problem
	Restructuring Process
	The Proposed Structure: mpFCS

	Design of the Proposed Structure: mpFCS
	The General Structure of the mpFCS
	IO Service Segment
	Platform Specific Service Segment
	Transport Service Segment
	Portable Component Segment

	Implementing the mpFCS
	Implementation of the Portable Modules
	Verification

	Experiments
	The FACE Conformance Test Suite Test
	Adding a Module into the mpFCS
	Adding a New Module into the mpFCS
	Adding an Existing Module into mpFCS

	Running the mpFCS in a Different Environment
	Analysis
	Analysis of Portability
	Analysis of Expandability
	Analysis of Interoperability

	Discussion

	Conclusions
	References

