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Abstract: The maximum contact force is one of the most important indicators for contact problems.
In this paper, the configuration optimization is conducted to reduce the maximum contact force for
a free-floating space robot capturing tumbling target. First, the dynamics model of a free-floating
space robot is given, with which the inertial properties perceived at the end-effector can be derived.
Combing the inertial properties of the contact bodies, a novel concept of integrated effective mass
is proposed. It tries to transform the complex contact process into the energy change of a virtual
single body with integrated effective mass. On this basis, a more general continuous contact model is
established, which is also suitable for non-central collisions between space robot and the tumbling
target. Thereafter, the maximum contact force is derived as an important indicator for the null-space
optimization method to reduce the maximum contact force. Finally, numerical simulations with a
3-degree-of-freedom free-floating space robot and a 7-degree-of-freedom free-floating space robot,
as the research objects, are carried out respectively and the results show the effectiveness of the
method proposed.

Keywords: free-floating space robot; configuration optimization; maximum contact force; integrated
effective mass; tumbling target capture

1. Introduction

Due to the characteristics of microgravity, high vacuum, and strong radiation in space,
astronauts carrying out space missions will face extremely high risks. Space robots, with
their outstanding advantages in terms of strong adaptability to the space environment and
freedom from physiological conditions, have gradually become the main force in space
exploration [1–3]. In recent years, with the continuous development of space exploration,
capturing non-cooperative targets has attracted much attention, as the technique is expected
to be applied for functions such as the removal of debris from orbit and servicing broken
satellites for repair [4–6].

Scholars have conducted research on related technologies in the capture of non-
cooperative targets. It is generally known that an entire capture task contains three phases:
the target-chasing control phase, which is also called the pre-contact phase; the contact
phase between the target and end-effector of the space robot; and the stabilization control
phase of tumbling motion, which is also called the post-contact phase [7,8]. Most research
focuses on the pre-contact phase to optimize the capture configuration or follow an optimal
trajectory [9–12], and the post-contact phase to detumble the non-cooperative target or
reduce the base attitude disturbance [13–16]. In this paper, based on the analysis of the
contact phase, which emphasizes contact modelling, the capture configuration is optimized
to minimize the maximum contact force.

For the contact-modelling problem, there are generally two different approaches
from the perspective of whether the contact process is assumed to be continuous or not.
The first approach is usually called discrete contact dynamics modelling method, which
assumes that the contact is an instantaneous phenomenon, and that the configuration
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of contacting bodies does not change significantly. Therefore, the contact effect in this
approach is usually regarded as a contact–impact impulse. Most of the early studies on
the contact problem between space robots and targets are based on the first approach,
and the minimization of the contact-impact impulse becomes one concern to reduce the
effect caused by contact [17–22]. It is simple and efficient to make a contact dynamics
analysis of a space robot by the first approach, but only the contact–impact impulse can be
calculated and no more detailed information during the contact process can be obtained.
The second approach is usually called the continuous contact dynamics modelling method,
which is based on the fact that the interaction forces act in a continuous manner during
the contact. Some contact force models are proposed based on the second approach, for
example, the Hunt–Crossley, Herbert–McWhannell, Lankarain–Nikravesh, Zhiying–Qishao
and Lee–Wang models [23–25]. Several of these models have been used to analyze the
contact process between a space robot and a target [26–29]. The analytical expression of
contact force can be obtained by this approach and thus the detailed information during
the contact process can also be described. However, it may not be very efficient to directly
apply these models to a space robot system, because it requires all of the motion equations
integrated over the entire contact period. Refer to the concept of virtual mass proposed
in [30]; an effective mass concept is proposed for the contact modelling of space robots
performing contact tasks [31,32], and this method is further extended to solve the contact
problem of flexible space robots [33]. Computational efficiency can be improved by this
method, and an analytical solution of the contact information is given, but it is based on
the assumption that only a central collision occurs.

As the contact–impact impulse is the integration of contact force over the entire
contact period, the minimization of the contact–impact impulse is not equivalent to the
minimization of the maximum contact force. If the maximum contact force exceeds the
physical limit the space robot allows, the robot itself or the target may be severely damaged.
Therefore, the maximum contact force should command attention and, actually, it is one
of the most important indicators for contact problems [34]. This paper is focused on
continuous contact modelling and configuration optimization to reduce the maximum
contact force for free-floating space robot capturing tumbling target. The main contributions
of this paper are: (1) A novel concept of integrated effective mass that integrates the
inertial properties of the contact bodies is proposed in an attempt to transform the complex
contact process into the energy change of a virtual single body with integrated effective
mass; (2) A more general continuous contact model is established, which is also suitable
for non-central collisions between a space robot and a tumbling target; (3) The maximum
contact force is derived as an important indicator for the null-space optimization method
to reduce the maximum contact force. It is worth noting that the concept of integrated
effective mass and the continuous contact model proposed in this paper are common to
both redundant robots and non-redundant robots. However, due to the use of the null-
space optimization algorithm, the optimization part is only applicable to redundant robots.
If there is a need to optimize the maximum contact force for a non-redundant robot, the
task constraints can be reduced or other optimization methods, such as the Particle Swarm
Optimization (PSO), can be used.

The rest of this paper is organized as follows. The analytical expression of integrated
effective mass is derived in Section 2. On this basis, the continuous contact model between a
free-floating space robot and a tumbling target is given in Section 3, in which the maximum
contact force expression is also derived. Thereafter, in Section 4, the configuration opti-
mization based on the null-space method is conducted for capturing a tumbling target, and
the effectiveness of the proposed method is verified by numerical simulations in Section 5.
Finally, conclusions are drawn in Section 6.
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2. Integrated Effective Mass

A novel integrated effective mass concept is first proposed in this section. It integrates
the inertial properties of the contact bodies and tries to transform the complex contact
process into the energy change of a virtual single body with integrated effective mass.

2.1. Inertial Properties Perceived at End-Effector

Generally, the contact occurs at the end-effector of a free-floating space robot as shown
in Figure 1. Therefore, the inertial properties perceived at the end-effector must be analyzed
first. All variables in the following are expressed in the inertial frame OI if not stated.

Figure 1. Free-floating space robot capturing a tumbling target.

The dynamics model of a free-floating space robot with n revolute joints is expressed
in the following general form [7,8]:

H
..
φ + C = Fb_m + JT

b_mFe, (1)

where H is the inertial matrix, C is the velocity-dependent nonlinear term;
..
φ =

[ ..
xb,

..
θ
]T

with
..
xb =

[ .
v0,

.
ω0
]

and
..
θ =

[ ..
θ1,

..
θ2, . . . ,

..
θn

]
, and

.
ω0,

.
v0 represent the angular acceler-

ation and linear acceleration of base,
..
θi represents the ith joint angular acceleration;

Fb_m = [Fb, τm]
T with Fb = [fb, τb], and fb, τb represent the external applied force and torque

on base, τm is an n-dimensional vector of control torques applied at joints; Fe = [fe, τe]
T

with fe, τe representing external applied force and torque on end-effector; Jb_m = [Jb, Jm]
with Jb, Jm representing the Jacobian matrices of base and manipulator, respectively.

The relationship between end-effector velocity, joint angular velocity, and base velocity
is expressed as:

.
xe = Jb_m

.
φ, (2)

where
.
xe = [ve, ωe]

T with ωe, ve representing the angular velocity and linear velocity of

end-effector;
.

φ =
[ .
xb,

.
θ
]T

with
.
xb = [v0, ω0], and ω0, v0 represent the angular velocity and

linear velocity of the base, respectively.
As the inertial matrix H is invertible, Jb_mH−1 is multiplied on both sides of Equations (1) and (2)

is then combined, giving the dynamics model with variables of the end-effector:

Ĥ
..
xe + Ĉ = F̂b_m + Fe, (3)

where Ĥ =
(

Jb_mH−1JT
b_m

)−1
, Ĉ =

(
JT

b_m

)†
C− Ĥ

.
Jb_m

.
φ, and F̂b_m =

(
JT

b_m

)†
Fb_m with(

JT
b_m

)†
the generalized inverse of JT

b_m.
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The inertial properties perceived at the end-effector can be expressed as follows [31,35]:

me =
1

uTĤ−1
ν u

, (4)

where u is a unit direction vector, me is called the effective mass, and Ĥν =
(

Jb_mvH−1JT
b_mv

)−1

with Jb_mv the Jacobian matrix corresponding to the linear velocity.

2.2. Analytical Expression of Integrated Effective Mass

The dynamics model of the target is:

Ht
..
xt + ct = Ft, (5)

where Ht =

[
mtE 0

0 It

]
with mt, It the mass and inertia matrix of target, E an identity ma-

trix; ct =

[
0

ωt × (Itωt)

]
with ωt the angular velocity of target; Ft =

[
fc

rtp × fc

]
with rtp

the vector from mass center of target to contact point, fc the contact force applied on target;
..
xt =

[ .
vt,

.
ωt
]T with

.
ωt,

.
vt representing the angular acceleration and linear acceleration of

target, respectively.
Integrating Equation (5) over an infinitesimally small time period δt from an arbi-

trary time t0, canceling velocity-dependent terms and internal forces, and replacing all
accelerations with respective finite changes of velocity, denoted by δ(•), gives:

Htδ
.
xt = Φt, (6)

where δ
.
xt = [δvt, δωt]

T with δωt, δvt representing the changes of linear velocity and angular
velocity of target; Φt =

[
Pc, rtp

×Pc
]T with Pc =

∫ t0+δt
t0

fcdt; rtp
× is the skew symmetric

matrix of vector rtp.
From Equation (6), the following can be obtained:

δvt =
1

mt
Pc, (7)

δωt = It
−1rtp

×Pc, (8)

Similarly, by virtue of Equation (4), the change of the end-effector linear velocity can
be obtained:

δve =
Pe

me
, (9)

where Pe = −Pc according to the act-react principle at the contact point.
It is known that Newton’s coefficient of restitution cr is defined as the ratio of the

relative velocity along the normal direction at the contact point of two bodies before and
after the contact [34]:

cr =
un

T(v′tp − v′e
)

unT
(
ve − vtp

) , (10)

where v′tp, v′e represent the contact point linear velocity of target and end-effector after
contact, and

v′e = ve + δve, (11)

vtp = vt + ωt × rtp, (12)

v′tp = vt + δvt + (ωt + δωt)× rtp. (13)
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Substituting Equations (7)–(9) and (11)–(13) into Equation (10), the following equation
can be obtained:

Pc = Mie(1 + cr)
(
ve − vtp

)
, (14)

where Mie = 1
unT

(
−rtp×It−1rtp×+

me+mt
mtme E

)
un

represents the integrated effective mass with un

the unit norm direction vector.

3. Continuous Contact Model between Space Robot and Tumbling Target

The contact between space robot and tumbling target is a complex process, and thus
the following contact model is established under the assumptions of single-point contact
and no friction. The classical model of contact force is shown in Equation (15), which
incorporates a spring and damper in parallel, connecting the contact points:

F = Kδα + λδα
.
δ, (15)

where K is the stiffness parameter, δ,
.
δ represent deformation and deformation velocity; α is

the nonlinear power exponent, which is considered to be 1.5 in most cases, and λ is called
the hysteresis damping factor with several classical expressions shown in Table 1 [23–25].

Table 1. Classical expressions of hysteresis damping factor.

Model Hysteresis Damping
Factor Model Hysteresis Damping

Factor

Herbert–McWhannell λ = 6(1−cr)

((2cr−1)2+3)
K

.
δ
(−) Hunt-Crossley λ = 3(1−cr)

2
K

.
δ
(−)

Lankarain–Nikravesh λ =
3(1−cr

2)
4

K
.
δ
(−)

Lee-Wang λ = 3(1−cr)
4

K
.
δ
(−)

Flores et al. λ = 8(1−cr)
5cr

K
.
δ
(−) Gonthier et al. λ = 1−cr

2

cr
K

.
δ
(−)

Zhiying–Qishao λ =
3(1−cr

2)e2(1−cr)

4
K

.
δ
(−)

Hu-Guo λ = 3(1−cr)
2cr

K
.
δ
(−)

For the principle of model selection, the reader is referred to [31], and δ and
.
δ are calcu-

lated by the position and velocity information of the contact point. By directly substituting
Equation (15) into Equations (3) and (5), the entire contact process can be obtained after
several iterations, as shown in Figure 2. This method may not be very efficient because it
requires all of the motion equations to be integrated over the entire period of contact.

An integrated effective mass based continuous contact model is established in the
following. From Equation (15), it can be obtained that:

Mie
..
δ + λδα

.
δ + Kδα = 0, (16)

where
..
δ represents deformation acceleration.

Integrate Equation (16) from the initial contact state to any state in the contact process.

∫ .
δ

.
δ
(−)
−Mie

.
δ

λ
.
δ + K

d
.
δ =

∫ δ

0
δαdδ, (17)

where
.
δ
(−)

is the initial relative velocity along the normal direction at the contact point.
It can be obtained that:(

Mie

λ

)2
(
− λ

Mie

(
.
δ−

.
δ
(−)
)
+

K
Mie

ln

∣∣∣∣∣ λ
.
δ + K

λ
.
δ
(−)

+ K

∣∣∣∣∣
)

=
δα+1

α + 1
, (18)
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Figure 2. Classical numerical integration method for contact force calculation.

Through mathematical manipulation, the expression of deformation can be obtained:

δ =

(
Mie(α + 1)

λ2

(
−λ

(
.
δ−

.
δ
(−)
)
+ K ln

∣∣∣∣∣ λ
.
δ + K

λ
.
δ
(−)

+ K

∣∣∣∣∣
)) 1

α+1

. (19)

Substituting
.
δ = 0 into Equation (19), the maximum deformation can be expressed as:

δmax =

(
Mie(α + 1)

λ2

(
λ

.
δ
(−)

+ K ln

∣∣∣∣∣ K

λ
.
δ
(−)

+ K

∣∣∣∣∣
)) 1

α+1

. (20)

However, different from the basic Hertz model, in which the maximum contact force
occurs at the maximum deformation, the calculation of the maximum contact force of the
Hertz damping model is more complex. Figure 3 shows the curve of the contact force with

respect to deformation, where Mie = 1 kg, K = 109N/m1.5,
.
δ
(−)

= 0.2m/s, and cr = 0.5,
and the Gonthier et al., model of the hysteresis damping factor is adopted. The marker “∗”
represents the maximum-contact-force point with coordinates (δ′max,Fmax), and the marker
“o” represents the maximum-deformation point with coordinates (δmax,F′max). It can be
seen that the maximum-contact-force and maximum-deformation points are not consistent.

The relative force error between Fmax and F′max is defined as follows:

ξ =
Fmax − F′max

Fmax
× 100%. (21)

It can be seen from Table 1 that the hysteresis damping factors all have the following
form:

λ = f (cr)
K

.
δ
(−) , (22)

where f (cr) is a general expression with variable cr.
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Figure 3. Curve of contact force with respect to deformation.

Therefore, assuming that both the kinematics parameters and dynamics parameters
of the space robot and target are determined, ξ is only related to the contact stiffness

parameter K, restitution coefficient cr, and initial relative contact velocity
.
δ
(−)

. ξ is proved

to be unaffected by K and
.
δ
(−)

, as shown in Figures 4 and 5, and becomes increasingly
smaller as cr increases, as shown in Figure 6.

Figure 4. Errors with different stiffness parameters (
.
δ
(−)

= 0.2 m/s, cr = 0.9).

Figure 5. Errors with different initial relative contact velocities (K = 109 N/m1.5, cr = 0.9).
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Figure 6. Errors with different restitution coefficients (K = 109 N/m1.5,
.
δ
(−)

= 0.2 m/s).

Based on the above analysis, when the restitution coefficient cr of the contact environ-
ment is large enough, Fmax can be approximated by F′max, namely:

Fmax = K

(
Mie(α + 1)

λ2

(
λ

.
δ
(−)

+ K ln

∣∣∣∣∣ K

λ
.
δ
(−)

+ K

∣∣∣∣∣
)) α

α+1

. (23)

In addition, when the error ξ could not be ignored Fmax can be obtained through the
comparison of the contact force during the entire contact period, as shown in Figure 3.

4. Configuration Optimization for Capturing Tumbling Target

The maximum contact force is regarded as an optimization indicator in this section,
and it can be further written as follows by substituting Equation (22) into Equation (23):

Fmax = ζ(Mie)
α

α+1 , (24)

where

ζ = K
1

α+1


(α + 1)

(
.
δ
(−)
)2

f 2(cr)

(
f (cr) + ln

∣∣∣∣ 1
f (cr) + 1

∣∣∣∣)


α
α+1

.

From Table 1, it is known that f (cr) > 0 as 0 < cr < 1, and thus ζ becomes

ζ = K
1

α+1


(α + 1)

(
.
δ
(−)
)2

f 2(cr)

(
f (cr) + ln

1
f (cr) + 1

)
α

α+1

. (25)

Letting h( f (cr)) = f (cr) + ln 1
f (cr)+1 , its derivative can be calculated as:

h′( f (cr)) =
f (cr)

f (cr) + 1
> 0( f (cr) > 0). (26)

It is proved that h( f (cr)) is an increasing function, and h( f (cr)) > h(0) = 0. Therefore,
ζ is a positive constant when the contact parameters K, cr, α and the initial relative contact

velocity
.
δ
(−)

are determined.



Aerospace 2022, 9, 69 9 of 17

Taking the derivative of Equation (24), the following equation can be obtained:

Fmax
′(Mie) =

αζ

α + 1

(
1

Mie

) 1
α+1

> 0, Mie > 0. (27)

Therefore, Fmax is an increasing function and a smaller integrated effective mass is
safer. Generally, the kinematics parameters and dynamics parameters of the target and
space robot are determined. The best way to decrease Mie is to optimize me by regulating
the capture configuration. The relationship between integrated effective mass Mie and the
capture configuration θ can be directly established as:

Mie = g(θ), (28)

where g(θ) is a general expression with variable θ.
Assuming that, following a specific trajectory in Cartesian space is required in the

capture task, a gradient-optimization method in null-space can be used [7,18]. For a free-
floating space robot, the relationship between the joint angular velocity and end-effector
velocity can be expressed as:

.
xe = Jf

.
θ, (29)

where Jf is the generalized Jacobian matrix of the free-floating space robot.
Non-minimum-norm solutions to Equation (29) based on a Jacobian pseudo-inverse

can be written in the general form:

.
θ = Jf

† .
xe + ρℵ(Jf)ϕ, (30)

where Jf
† is the pseudo-inverse of the Jacobian matrix Jf. ℵ(Jf) = E− Jf

† Jf is the null space
of Jf, ρ is a gain coefficient, and ϕ is an arbitrary vector that can be designed as:

ϕ =

[
∂g
∂θ1

,
∂g
∂θ2

, · · · ,
∂g
∂θn

]
. (31)

Actually, task priority exists in Equation (31), where the desired trajectory following
has higher priority and the optimization of the objective function by null-space has lower
priority. This ensures that the space robot can first accurately reach the capture point along
the preset trajectory, and then try to optimize the objective function as much as possible.

5. Numerical Simulations
5.1. Simulation for a 3-Degree-of-Freedom Free-Floating Space Robot

A 3-degree-of-freedom (3-DOF) free-floating space robot is studied and shown in
Figure 7 with a = 0.6 m, b = 1.4 m, c = 1.6 m, and d = 0.5 m. rtp = [−0.25, 0.15, 0] m
and ωt = [0, 0, 2] deg/s are both expressed in the target coordinate frame. The dynamics
parameters of the space robot and target are listed in Table 2.

Table 2. Dynamics parameters of 3-DOF free-floating space robot and the target.

Part Mass (kg) Inertia Matrix (kg•m2)

Link 1 5 diag([0.01, 0.82, 0.82])
Link 2 6 diag([0.01, 1.28, 1.28])
Link 3 4 diag([0.00, 0.09, 0.09])
Base 500 diag([200, 200, 200])

Target 200 diag([100, 100, 100])
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Figure 7. Three-DOF free-floating space robot capturing tumbling target.

5.1.1. Accuracy of Proposed Maximum-Contact-Force Model for 3-DOF Space Robot

Since the important indicator Fmax is obtained from the integrated-effective-mass-
based continuous-contact model, its effectiveness must be verified. The contact parameters
are set as α = 1.5, K = 109N/m1.5, and cr = 0.9, and the Herbert–McWhannell model in
Table 1 is chosen as the hysteresis damping factor. The initial state of the target is with
position [2.75, 1.45, 0] m, Euler angle [0, 0, 0] deg, angular velocity [0, 0, 2] deg/s, and linear
velocity [0, 0, 0] m/s. Ten capture configurations are randomly selected and the classical
numerical integration method is used for comparison since it can provide accurate results.

The model accuracy is defined as:

ζ = 1−
∣∣∣∣ Fmax_model − Fmax_exact

Fmax_exact

∣∣∣∣× 100%, (32)

where Fmax_model is the maximum contact force obtained from the proposed model and
Fmax_exact is that obtained from the classical numerical integration method.

The simulation results in Table 3 show that the proposed maximum-contact-force
model has good accuracy. In addition, the following conclusions can be confirmed
from the table.

Table 3. Accuracy of maximum-contact-force model for 3-DOF space robot.

Capture
Configuration (Deg)

Integrated
Effective
Mass (kg)

Proposed Method
(kN)

Numerical
Integration

Method (kN)
Model Accuracy

[36, 30, −4] 1.555 0.834 0.844 98.83%
[85, −41, 11] 1.648 0.863 0.873 98.84%
[−75, 30, 12] 3.679 1.397 1.414 98.86%
[10, 86, −76] 4.299 1.534 1.552 98.85%
[0, 90, −90] 5.817 1.840 1.861 98.84%

[30, 21, −56] 5.926 1.860 1.882 98.84%
[54, −30, −5] 7.446 2.133 2.158 98.87%
[−10, −18, 30] 9.635 2.490 2.519 98.84%

[46, −45, 0] 13.74 3.081 3.119 98.78%
[−6, 20, −7] 21.093 3.985 4.036 98.73%

I. Different capture configurations produce different integrated effective masses;
II. The maximum contact force increases as the integrated effective mass increases;
III. The optimization of maximum contact force is necessary as its value may vary widely.

5.1.2. Configuration Optimization for 3-DOF Space Robot

Combining the expression of integrated effective mass, the mapping relationship
between the capture configuration and integrated effective mass is shown in Figure 8 with
initial relative contact velocity 0.2 m/s, −90 deg ≤ θ1 ≤ 90 deg,, −120 deg ≤ θ2 ≤ 120 deg
and −120 deg ≤ θ3 ≤ 120 deg. The color bar shows the integrated effective mass corre-
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sponding to different capture configurations of space robot. From the analysis in Section 4,
it can be seen that the maximum contact force increases with the increase of integrated
effective mass, and thus the capture configuration with small integrated effective mass is
preferable on the premise of ensuring the correct capture pose of the end-effector.

Figure 8. Relationship between integrated effective mass and capture configuration.

Figure 9 depicts the slice map at θ1 = 0 deg, θ2 = 0 deg, and θ3 = 0 deg. It can be
seen that the maximum value of integrated effective mass occurs at θ = [0, 0, 0] deg and
it is the exact configuration when the robotic arm is fully deployed. Several researchers
proposed to use “straight arm” to capture a target with the purpose of reducing the base
disturbance [36]. According to its definition, this fully deployed state is one case of the
“straight arm”; however, the space robot and target may suffer a very large contact force as
stated above.

Figure 9. Slice map at θ1 = 0 deg, θ2 = 0 deg and θ3 = 0 deg.

The straight-line trajectory following of the end-effector is assumed to be required
in the task, the initial configuration is θ = [0, 150,−100] deg and the total task time is
180 s. Figure 10 shows the capture process of a 3-dof space robot without optimization and
Figure 11 shows the capture process optimized by the gradient-optimization method in
null-space that has been proposed. It can be seen that a space robot can realize the trajectory
following and reach the capture point in time in both capture processes, but with different
capture configurations. The simulation comparison results are listed in Table 4. Through
optimization, the integrated effective mass is decreased by 77.50% and the maximum
contact force is decreased by 57.86% accordingly.
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Figure 10. Capture process of 3-dof space robot without optimization.

Figure 11. Capture process of 3-dof space robot with maximum-contact-force optimization.

Table 4. Simulation comparison results of 3-dof space robot.

Capture Configuration
(Deg)

Integrate Effective
Mass (kg)

The Maximum
Contact Force (kN)

Without optimization [−2.29, 91.75, −79.77] 5.43 1.71
With optimization [−16.87, 88.06, 11.33] 1.22 0.72

The numerical simulation results show the effectiveness of the proposed continuous
contact model and the maximum-contact-force indicator for the null-space optimization
method. It is worth noting that the reason for choosing a 3-DOF free-floating space robot is
to intuitively show the relationship between joint angles and integrated effective mass. In
this simulation, the attitude of the space robot end-effector is not considered so that the
degrees of freedom of the robot are redundant with respect to the two-dimensional position
task constraint. In this way, the null-space optimization method can be implemented. In the
actual capture process, the attitude of the space robot end-effector may need to be specified,
so a robot with higher degrees of freedom is more suitable, and the optimization method is
still applicable as long as the number of degrees of freedom of the robot is redundant with
respect to the task constraints.

5.2. Simulation for a 7-Degree-of-Freedom Free-Floating Space Robot

A 7-DOF free-floating space robot is shown in Figure 12 with a = 0.6 m, b = 0.2 m, c = 0.2 m,
d = 1.0 m, e = 1.0 m, f = 0.2 m, g = 0.2 m, h = 0.2 m and k = 0.6 m. rtp = [−0.25, 0.15, 0.1] m
and ωt = [1,−0.5, 2] deg/s are both expressed in the target coordinate frame. The dynamics
parameters of the space robot and target are listed in Table 5.
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Figure 12. Seven-DOF free-floating space robot capturing tumbling target.

Table 5. Dynamics parameters of 7-DOF free-floating space robot and the target.

Part Mass (kg) Inertia Matrix (kg•m2)

Link 1 5 diag([0.01, 0.02, 0.02])
Link 2 5 diag([0.02, 0.01, 0.02])
Link 3 10 diag([0.84, 0.01, 0.84])
Link 4 10 diag([0.01, 0.84, 0.84])
Link 5 5 diag([0.02, 0.02, 0.01])
Link 6 5 diag([0.02, 0.02, 0.01])
Link 7 8 diag([0.03, 0.03, 0.01])
Base 1000 diag([500, 500, 500])

Target 200 diag([100, 100, 100])

5.2.1. Accuracy of Proposed Maximum-Contact-Force Model for 7-DOF Space Robot

The contact parameters are set as α = 1.5, K = 109N/m1.5, and cr = 0.9, and the
Herbert–McWhannell model in Table 1 is chosen as the hysteresis damping factor. The
initial state of the target is with position [2.3, −0.8, 2] m, Euler angle [0, 0, 0] deg, angular
velocity [1, −0.5, 2] deg/s, and linear velocity [0, 0, 0] m/s. Ten capture configurations are
randomly selected and the classical numerical integration method is used for comparison.
The simulation results in Table 6 show that the proposed maximum-contact-force model
also has high accuracy for a 7-DOF space robot.

Table 6. Accuracy of maximum-contact-force model for 7-DOF space robot.

Capture Configuration (Deg) Integrated Effective
Mass (kg)

Proposed Method
(kN)

Numerical
Integration Method

(kN)
Model Accuracy

[0, 29, 54, 10, −10, 120, 32] 4.875 1.664 1.659 99.74%
[10, −2, 160, 0, 33, −5, 80] 7.876 2.218 2.213 99.76%

[55, −22, 45, 11, 36, −10, 160] 2.848 1.205 1.202 99.74%
[−10, 30, 60, −45, 0, 22, 4] 3.061 1.258 1.255 99.76%

[23, 33, −64, 145, 34, 88, 60] 3.167 1.284 1.281 99.76%
[74, −20, 2, 19, 112, 75, −10] 5.003 1.690 1.686 99.76%
[5, 100, 26, −69, 20, 108, −66] 2.513 1.118 1.115 99.75%
[100, 23, 126, −6, 34, 34, −1] 1.658 0.871 0.869 99.76%
[1, 110, −90, 90, 14, 150, 45] 2.677 1.161 1.158 99.75%

[−36, 88, 46, 123, −110, 15, 0] 1.495 0.819 0.817 99.77%

5.2.2. Configuration Optimization for 7-DOF Space Robot

The straight-line trajectory following of the end-effector is assumed to be required in
the task, the initial configuration is θ = [0, 90, 90,−90, 90, 90, 0] deg, and the total task time
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is 157 s. Figure 13 shows the capture process of a 7-dof space robot without optimization,
Figure 14 shows the capture process with maximum-contact-force optimization and the
constraint of specified pose of the end-effector, and Figure 15 shows the capture process
with maximum-contact-force optimization and the constraint of specified position of the
end-effector. The simulation comparison results are listed in Table 7. For the case with
end-effector pose constraint in the trajectory tracking process, only one degree of freedom
can be used to optimize the maximum contact force; the integrated effective mass is
decreased by 7.89% and the maximum contact force is decreased by 4.79% accordingly.
For the case with only end-effector position constraint in the trajectory tracking process,
the integrated effective mass is decreased by 84.34% and the maximum contact force is
decreased by 67.04% accordingly. Therefore, for high-degree-of-freedom space robots,
additional constraints can be reduced as much as possible during the capture process to
provide enough degrees of freedom to optimize the maximum contact force.

Figure 13. Capture process of 7-dof space robot without optimization.

Figure 14. Capture process of 7-dof space robot with maximum-contact-force optimization and the
constraint of specified pose of the end-effector.
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Figure 15. Capture process of 7-dof space robot with maximum-contact-force optimization and the
constraint of specified position of the end-effector.

Table 7. Simulation comparison results of 7-dof space robot.

Capture Configuration (Deg) Integrate Effective
Mass (kg)

The Maximum Contact
Force (kN)

Without optimization [−0.81, 90.80, 68.96, −47.37, 67.83, 91.01, −0.92] 17.24 3.55
With optimization (Specified pose

of the end-effector) [−47.56, 44.57, 55.96, −24.88, 96.29, 121.85, 56.33] 15.88 3.38

With optimization (Specified
position of the end-effector) [43.84, 127.47, 69.31, −22.02, 121.81, 86.01, 0] 2.70 1.17

6. Conclusions

Taking the maximum contact force as an indicator, the capture configuration of a
free-floating space robot capturing a tumbling target is optimized in this paper. The concept
of integrated effective mass is first proposed, and a general continuous contact model
that is also suitable for non-central collisions is given. Simulation results verified that the
maximum contact force can be effectively reduced by optimizing the capture configuration.
However, it is worth noting that the maximum-contact-force expression proposed is more
suitable for the case in which the contact environment exhibits a high restitution coefficient.
For the contact problem with a low restitution coefficient, the maximum contact force
can be obtained through the comparison of the contact force during the entire contact
period by virtue of the proposed continuous contact model. Due to the large error of the
maximum contact force model for the low restitution coefficient environment as mentioned
in Section 3, it is not recommended to use the null-space optimization method. Algorithms
such as PSO can be used to optimize the numerical solution of the maximum contact force.
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