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Abstract: A critical drawback of battery-powered eVTOL UAVs is their limited range and endurance,
and this drawback could be solved by using a combination of hydrogen fuel cells and batteries.
The objective of this paper is to develop a sizing methodology for the lift+cruise-type eVTOL UAV
powered by a hydrogen fuel cell and battery. This paper presents the constraints analysis method
for forward flight/VTOL multi-mode UAV, the regression model for electric propulsion system
sizing, a sizing method for an electric propulsion system and hydrogen fuel cell system, and a
transition analysis method. The total mass of the UAV is iteratively calculated until convergence,
and the optimization method is used to ensure that the sizing results satisfy the design requirements.
The sizing results are the UAV’s geometry, mass, and power data. To verify the accuracy of the
proposed sizing methodology, the sizing and the conceptual design phase results of a 25 kg hydrogen
fuel-cell-powered UAV are compared. All parameters had an error within 10% and satisfied the
design requirements.

Keywords: UAV; eVTOL; multi-mode; hydrogen fuel cell; sizing; optimization

1. Introduction

Recently, the aviation industry has been attempting to incorporate electrification to
solve various social problems. Electrification has been most developed in the field of UAVs
(unmanned aerial vehicles) among various aviation industries, and many companies that
develop and sell eVTOL (electric vertical take-off and landing) multi-copter drones, such
as DJI, have appeared. However, with the current battery technology, multi-copter-type
electric aircrafts have an endurance of up to 55 min (DJI MATRICE 300 RTK), and even
electric multi-mode aircraft that can perform both forward flight (FF) and vertical take-off
and landing (VTOL) to overcome the limitations of multi-copters have an endurance of
only approximately 2 h (Penguin BE UAV). This endurance may be sufficient to carry out
the mission, but to perform a greater variety of missions and increase the efficiency of the
mission, technology that can overcome the current limitations is required. A hydrogen fuel
cell (HFC) is one of the technologies developed to overcome this limitation, increasing the
endurance through high specific energy. Table 1 compares the specific energy and specific
power of the state-of-the-art battery technologies with those of the HFC system. According
to a report by the Faraday Institute [1], the specific energy of the Tesla battery pack recently
reached 270 Wh/kg, and NASA has set the specific energy to 400 Wh/kg as the future
battery performance improvement goal for eVTOL aircrafts. In contrast, the HFC system
has a higher specific energy of 1.7 kWh/kg [2]. Contrary to the specific energy, the specific
power of the battery was higher than that of the HFC system. Therefore, although the HFC
provides long endurance based on the high specific energy, it cannot be used in mission
segments that require high power, and the battery can be used in VTOL missions that
require large power based on the high specific power but cannot provide endurance.
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Table 1. Specific energy and specific power comparison of Li-ion batteries and HFC systems.

Specific Energy (Wh/kg) Specific Power (W/kg)

Li-ion battery 270 [1] 1000 [2]
HFC system 1700 [2] 400 [2]

As the advantages and disadvantages of both batteries and HFCs are clear from the
above analysis, to build a system that overcomes the limitations of the battery-only powered
UAV, it is necessary to use the battery and HFC in a hybrid system. The propulsion system
targeted in this paper was also an HFC–battery hybrid system, and a sizing methodology
was developed considering its characteristics.

There are various ways in which the eVTOL UAV implements multi-mode flight.
These can be represented by the lift+cruise type, vectored-thrust type, and tail-seater type
as shown in Figure 1 below.

Figure 1. Various types of multi-mode aircrafts: (a) lift+cruise-type UAV, Mugin 350EV model [3];
(b) vectored-thrust-type UAV, Foxtech Nimbus VTOL V2 model [4]; (c) tail-seater-type UAV, Bell APT
model [5].

Of these, the most used types are the lift+cruise and vectored-thrust types. This is
because the tail-seater type has to change the direction of the entire UAV during transition;
thus, the stability is lowered and there are fewer missions available. Both the lift+cruise and
vectored-thrust types are suitable concepts for implementing multi-mode. The lift+cruise
type has a disadvantage in that the VTOL propulsion system does not operate and acts as a
drag force during FF flight, but this type is optimized for a wider range of missions, and
the transition method is simple, so it is more commonly applied in UAVs [6]. Therefore, the
UAV concept targeted in this paper was selected as a lift+cruise-type UAV.

Although various sizing methodologies for multi-mode UAVs powered by HFCs have
been proposed, existing studies have several limitations. A study by Ng and Datta, which
is the most similar to this paper, proposed a sizing method considering HFC–battery power
sharing as well as an experimental study on the steady-state model and transient character-
istics of the HFC and batteries [7]. In addition, the generation of the HFC polarization curve
and the HFC sizing technique based on it are well described. Thirkell and Chen proposed
a sizing method for a wide range of HFC systems presented through the consideration
of various types of components [8]. Thomas suggested a multidisciplinary modeling and
design environment that does not contain the assumption of a fuel-cell UAV [9]. However,
since there is no sizing technique from the point of view of an aircraft, there is no method
that considers the UAV’s entire mission, and both the propulsion system sizing method
based on the limited parameters given in the early design stage and the sizing method
based on the design requirements are also insufficient. Therefore, our research team at
Konkuk University has continuously been developing a sizing methodology from the
perspective of the overall aircraft design process by improving the classical sizing method-
ology. The classical sizing method proposed by Raymer [10] and Roskam [11] considers
the aircraft mission and the sizing method through the constraint analysis proposed by
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Gudmundsson [12]. Maxim Tyan improved these classical sizing methods and developed
the eVTOL UAV sizing methodology through consideration of multi-mode UAVs [13]. His
methodology is a useful sizing tool in the early design stage, because it uses the design
requirements as input, considers the entire mission performed by the UAV, and logically
performs sizing using limited parameters. In addition, the sizing result obtained through
this methodology satisfies the design requirements and is very accurate compared with
the actual data from the developed UAV. However, his methodology was applied to a
battery-only system, and a new sizing methodology is needed for a system using a hybrid
HFC–battery system. In addition, the empirical method used in the propulsion system
sizing should be updated.

Therefore, this paper proposed an improved methodology such that the previously
developed eVTOL UAV sizing methodology can be applied to the hybrid HFC–battery
system and can be accurately sized for the propulsion system by a regression model created
using the latest propulsion system’s performance data. The improved sizing methodology
proposed in this paper uses only the limited parameters given in the early design stage, and
the necessary assumptions are logically suggested. In addition, analysis of the transition
mode, which is an important mission segment in multi-mode UAVs, is also included in
the proposed sizing methodology to consider the transition requirements, stability, and
required power. Sizing through the methodology proposed in this paper provides weight
data including the weight of the UAV’s propulsion system, power data for the entire
mission segment, and geometry data of the main wing and propeller. These are all results
that satisfy the design requirements through optimization and are sufficient to be used as
data for conceptual and preliminary design, which is the next design stage.

2. Multi-Mode eVTOL UAV Concept
2.1. Multi-Mode UAV Operation Concept

For lift+cruise-type UAVs, FF and VTOL propulsion systems exist independently.
Therefore, depending on the flight mode of the UAV, the propulsion system operates inde-
pendently except when in transition mode. In transition mode, the FF and VTOL propulsion
systems operate simultaneously. The VTOL propulsion system provides insufficient lift
until the UAV achieves sufficient forward speed in the transition mode. However, they
only operate together in this transition mode and do not share their functions. There-
fore, the lift+cruise-type UAV can independently perform sizing of the FF and VTOL
propulsion system.

Energy supply systems as well as propulsion systems are classified according to flight
modes. The VTOL mode requires more power than the FF mode, but the mission time is
shorter, so the energy required is less than that of the FF mode. Conversely, the FF mode
requires less power than the VTOL mode but requires more energy than the VTOL mode
because the mission time is longer. Therefore, it is necessary to apply an appropriate energy
supply system for the flight mode of the UAV. Table 2 shows an appropriate energy supply
system according to the power and energy required.

Table 2. Multi-mode UAV operation concept.

Mission Power Required Energy Required Energy Supply System

Hovering High Low Battery
VTOL High Medium Battery

Transition High Low Battery
Steady level flight Low High HFC

Climb Medium High HFC
Descent Low Low HFC
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2.2. Propulsion System Concept

Before sizing, it is necessary to define the type of propulsion system for the UAV,
which is the main object of sizing. As mentioned earlier, the propulsion system targeted in
this paper was a hybrid HFC–battery system and is configured as shown in Figure 2.

Figure 2. Multi-mode HFC eVTOL UAV propulsion system concept.

The HFC system consists of a hydrogen tank, an HFC stack that produces electricity,
a regulator that ensures correct fuel flow to the stack, a control board that controls the
entire system by receiving status information from pressure/temperature/current sensors,
an air inlet, and a fan for maintaining the temperature of the stack. The battery exists
independently of the HFC system and provides power. In addition, the lift+cruise-type
UAV exists independently of the FF and VTOL electric branch that include the motor,
electric speed controller (ESC), and propeller.

Since there are various types of each component constituting the UAV propulsion
system and their characteristics are different, it is necessary to define a suitable type to
be applied to the UAV. First, the hydrogen fuel cell selected was a proton exchange (or
electrolyte) membrane fuel cell (PEMFC). Since the PEMFC is a hydrogen fuel cell with
high technological maturity and operated at a low temperature of 30–100 ◦C, it is suitable
for application to UAVs [14]. Air cooling is used as a method to maintain the temperature
of the PEMFC, being suitable for UAVs with a power of under 5 kW [8]. For the hydrogen
tank, a Type 4 tank was selected among the gaseous hydrogen tanks. Liquid hydrogen is
800 times less in volume and has higher energy density than gaseous hydrogen, but it must
be kept at a low temperature, which limits its use in HFC UAVs [15]. The Type 4 tank is a
structure in which a high-density plastic liner is wound with full carbon fiber, and it is used
in hydrogen cars and aircrafts because it is light and durable. The battery selected was a
Li-polymer (Li-po) battery, which is light, has high energy density, and is the main type
used in UAVs. Table 3 summarizes the propulsion system targeted for sizing in this paper.

Table 3. Propulsion system configuration for the HFC eVTOL UAV.

Components Type

Hydrogen fuel cell PEMFC
Cooling method for HFC Air cooling

Hydrogen tank type Type 4 tank
Hydrogen tank pressure 300 bars

Hydrogen storage method Gaseous hydrogen
Battery Li-po battery
Motor Brushless DC (BLDC) motor
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3. Sizing Procedure

The sizing method proposed in this paper is performed as shown in Figure 3. Sizing is
performed based on the design requirements through requirement analysis, the mission
profile, and assumptions for sizing, and it predicts the weight, power, and geometry of
the UAV.

Figure 3. Sizing procedure.

The input for UAV sizing is the design requirements from the requirement analysis,
the mission profile, which includes each mission segment’s time, velocity, altitude, etc., and
the assumptions for sizing. Multi-mode UAV sizing proceeds in the following order:

• Step 1. Multi-Mode Constraints Analysis (MCA): MCA is the stage in which the
design area and the initial point are defined through sizing parameters, such as wing
loading (WL), power loading (PL) and disk loading (DL), and the initial aspect ratio
(AR), which is given from an assumption based on the performance constraints of the
UAV for multi-mode that include the forward flight (FF) mode and the VTOL mode;

• Step 2. Electric Propulsion System (EPS) Sizing: EPS sizing is the stage of sizing the
motor, ESC, propeller, and HFC. This step includes the estimation of not only the
weight of the EPS but also the diameter of the propeller and the efficiency of the HFC;

• Step 3. Mission Analysis: This is the step of calculating the required power for each
mission segment performed by the UAV and predicting the weight of the battery and
hydrogen tank accordingly. This step includes an analysis of the transition segment;

• Step 4. Total Mass Calculation: This is the step of calculating the maximum take-
off weight (MTOW) of the UAV by adding the weight and mass fraction of UAV
components calculated through the EPS sizing and mission analysis. This step checks
the tolerance of the calculated MTOW and repeatedly calculates the EPS sizing and
mission analysis until the MTOW converges through fixed point iteration;

• Step 5. Optimization: This is the stage of optimizing the design point so that the
sizing result can satisfy it by composing the optimization problem through the design
requirements. The optimization objective function is to minimize the MTOW, and the
design variables are wing loading, power loading, disk loading, and AR.
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4. Multi-Mode Constraints Analysis (MCA)

The constraints analysis of general aircraft using internal combustion engines defines
the design space using WL and the thrust-to-weight ratio (TW) as parameters. Therefore,
the performance constraints are expressed in the form of TW = f (WL). There are two
differences between general constraints analysis and MCA. The first is that, since the
aircraft targeted for sizing in this paper is an eVTOL UAV, the performance constraints are
expressed as PL rather than TW as shown in Equation (1).

PL =
(TW)V

ηprop
(1)

V is the speed in the direction of the UAV, and ηprop is the efficiency of the propeller.
In this process, unlike normal piston engines, the EPS does not require a separate normal-
ization because the performance of the motor does not change according to the air density.
The second difference is that, as constraints for the VTOL mode are added, DL, which is a
VTOL sizing parameter, is included in the sizing parameter, and FF PL and VTOL PL must
be defined.

Since MCA has to define the design space, the performance requirements of the
UAV should consist of the most critical conditions in the FF and VTOL modes. The most
critical performance requirement means the condition that requires the most power and
the requirements defined in Table 4 are the conditions that require the most power in the
FF and VTOL modes, respectively.

Table 4. Performance constraints for multi-mode constraint analysis.

Flight Mode Constraints

FF Maximum speed level flight, maximum rate of climb, and stall speed
VTOL Hovering, maximum speed take-off, and service ceiling

Equation (2) is an expression defining the PL constraints required when the UAV
performs steady level flight at the maximum speed [12,16].

(PL)FF
level = ηprop/

(
0.5ρ0V3

maxCD0

(WL)
+

2(WL)
ρ0Vmax(πeAR)

)
(2)

Here, CD0 , is the minimum drag coefficient, and in the sizing corresponding to the
initial design stage, it is assumed by comparing with the same class of UAV. Raymer [10]
and Roskam [17] recommended 0.03 for propeller aircrafts, and Gudmundsson recom-
mended 0.028–0.035 for fixed gear aviation aircrafts [12]. Since the multi-mode UAV has an
additional motor boom and VTOL propeller, a higher value of 0.035 can be used. ρ0 is sea
level air density, and e is Oswald’s span efficiency factor, which can by calculated using
Equation (3) through AR [10].

e = 1.78
(
1 − 0.045 × AR0.68)− 0.64 : Straight − wing aircra f t

e = 4.61
(
1 − 0.045 × AR0.68)(cosΛLE)

0.15 − 3.1 : Swept − wing aircra f t
(Where ΛLE > 30 deg)

(3)

For sweeps between 0 and 30, linearly interpolate between the results from the two
equations [10]. When the UAV climbs at the maximum rate of climb (RoC), the PL con-
straints are defined as in Equation (4) [12,16].

(PL)FF
climb = ηprop/

(
0.5ρ0V3

c CD0

(WL)
+

2(WL)cos2(γ)

ρ0Vc(πeAR)
+ Vc sin(γ)

)
(4)
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Here, Vc is calculated as the airspeed in the direction of flight when climbing at the
maximum RoC as in Equation (5), and γ is the climb angle of the UAV [12,17].

Vc =

√√√√(2(WL)
ρ0

)√
k

3CD0

(5)

When performing level flight at stall speed, the constraint function is expressed as
in Equation (6), which suggests the maximum value of WL. CLmax can be estimated by
airfoil data.

(WL)FF
stall = 0.5CLmax ρ0V2

stall (6)

The performance constraints function of the VTOL mode is defined by axial momen-
tum theory. In this case, it is difficult to calculate the parameters for the profile power in
the initial design stage. Therefore, to account for these powers, the total required power is
calculated using figures of merit (FoM). The FoM is the ratio of ideal induced power for a
rotor in hover obtained from momentum theory and the actual power consumed by the
rotor. Equation (7) shows the PL constraints required for the UAV to hover at ceiling [18,19].

(PL)VTOL
hover = FoM/

√
(DL)
2ρ0

(7)

Unlike hovering, when the UAV takes off vertically, climb power and parasite power
are required in addition to induced power and profile power. Equation (8) shows the PL
constraints required when the UAV takes off vertically at the maximum speed [18].

(PL)VTOL
takeo f f

= 1
Vtakeo f f

2 + 1
2

√
V2

takeo f f +
2DL
ρ0

+
ρ0V3

tipσCdblade
8DL +

ρ0V3
takeo f f
DL +

ρ0V3
takeo f f

SratioWL

(8)

Here, Cdblade
is the average value of the profile drag of the UAV VTOL propeller’s

cross-section, and 0.01 can be used in the UAV [20]. σ is the solidity of the VTOL propeller,
and it was assumed to be 0.077 with reference to the data of the existing T-motor VTOL
UAV propeller. Figure 4a shows the solidity of the T-motor’s multi-copter propellers by
series [21].

Figure 4. VTOL propeller data: (a) the solidity ratio of the T-motor’s VTOL propeller for each
series [21]. The average value of solidity was 0.077; (b) the regression model for estimating the VTOL
propeller’s rpm according to the propeller diameter from the T-motor’s VTOL propeller data [21].
The accuracy of the model was measured by the R-squared error, and the accuracy was high at 0.95.
The unit of propeller diameter was in meters (m).
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Vtip is the tip speed of the VTOL propeller and is calculated as in Equation (9). To
assume the rpm, the maximum rpm data for each diameter of approximately 70 VTOL
propellers of the T-motor were collected as shown in Figure 4b, and a regression model was
made as shown in Equation (10) [21].

Vtip =
π × RPM × DVTOL

60
(9)

RPM = 2762.786 × D−0.932
VTOL (10)

Vtakeo f f is the vertical take-off speed, and Sratio is the ratio of the total projected area
of the UAV to the wing area, usually 1.3–1.4 [13]. Finally, in order to maintain the VTOL
mode with a stability at high altitudes, the VTOL ceiling constraint was set in the service
ceiling. The RoC at the service ceiling of a low subsonic aircraft is typically 0.5 m/s. To
consider the safety margin in the service ceiling, the ratio of air density should be applied
to Equation (8). The ratio of the air density at the service ceiling to the air density at sea
level can be calculated as in Equation (11).

σair =
ρceiling

ρo
(11)

Figure 5 is an example of a multi-mode constraint diagram that visualizes the design
space and design point as a graph through the previously defined constraint functions.
The x-axis is PL, and the FF mode and VTOL mode share an axis on the graph, but the
values are different at the design point, and the y-axis is WL in the FF mode and DL in the
VTOL mode. In the example diagram, the blue area represents the design space of the FF
mode, and the red area represents the design space of the VTOL mode. All points within
the design space are feasible points, and the selection of design points was decided by the
designer. Gudmundsson and other classical sizing methods suggest that design point at
the constraint analysis should be to minimize wing area and required power [12]. In this
paper, in the same context, the initial point for sizing was selected as a point that minimizes
the wingspan and minimizes the FF/VTOL power, which is shown in Figure 5.

Figure 5. Example of multi-mode constraints diagram.
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5. Electric Power System (EPS) Sizing

The EPS includes the motor, ESC, propeller, and HFC. Since only limited parameters
are given during the sizing process, a regression model can be constructed based on the
EPS data of the existing UAV, and sizing can be performed through this model. To construct
the regression model, appropriate parameters should be selected, and the accuracy of the
model should be verified by calculating the R-squared error. In this paper, the regression
model was created through the “curve_fit” module of Python SciPy optimize [22].

5.1. Motor Sizing

Figure 6a,b are the regression model generated by collecting data from the products
of the T-motor [21], Scorpion motor [23], and Hacker motor [24] which are representative
UAV motor manufacturers.

Figure 6. Motor and ESC regression model: (a) the model for FF motor sizing; (b) for VTOL motor
sizing; (c) for ESC sizing. The motor data are from the T-motor [21], Scorpion motor [23], Hacker
motor [24], and ESC data from the Hobbywing [25]. The accuracy of the model was measured by the
R-squared error, and the accuracy was high at 0.94, 0.92, and 0.91, respectively. The regression model
was generated by data from approximately 200 FF motors, 100 VTOL motors, and 70 ESCs. The unit
of power is expressed in watts (W), the current in amperes (A), and the mass in grams (g).

Since the motors for the FF and VTOL have different characteristics, a regression
model was also generated separately. The input for motor sizing uses the maximum power
calculated through the PL defined in the MCA so that the motor can be operated without
burn in all mission sections. Equations (12) and (13) are the regression models for sizing
the FF and VTOL motors, respectively.

Mmot.FF = 0.196 × 10−5P2
max.FF + 0.201Pmax.FF + 5.772 (12)

Mmot.VTOL = −0.922 × 10−5P2
max.VTOL + 0.196Pmax.VTOL + 23.342 (13)

Here, the maximum power means electrical power, and it is a value that considers the
efficiency of the motor from the mechanical power calculated through PL, and the efficiency
of the motor is usually approximately 90–95%.

5.2. ESC Sizing

The ESC used for the eVTOL UAV is usually selected to accommodate the peak current
required by the motor. Therefore, a regression model was built so that the maximum current
divided by the maximum electric power by the rated voltage could be used as a sizing
input. Figure 6c is the regression model generated by collecting data from the products of
the Hobbywing [25]. In addition, Equation (14) is the regression model for sizing the ESC.

MESC = 0.324 × 10−2
(

Pmax.elec
U

)2
+ 0.847

(
Pmax.elec

U

)
+ 1.532 (14)
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Here, U is the rated voltage used in the UAV, which is the same as the rated voltage of
the battery.

5.3. Propeller Sizing

Propeller sizing predicts the diameter of the propeller and predicts the weight accord-
ingly. The area of the VTOL disk can be calculated as in Equation (15) through the DL
among the design variables defined by MCA. The area of the VTOL disk calculated here
is the sum of the area of the entire disk, and the disk area of a single propeller must be
divided by the number of VTOL propulsion systems.

AVTOL =
W
DL

(15)

Unlike the VTOL propeller, the FF propeller requires many variables to determine
the diameter. The thrust and power generated by the FF propeller are determined by the
diameter, pitch angle of propeller, forward speed, and rpm of the FF propeller. However,
propeller sizing considering all these parameters in the early design stage is not possible.
Therefore, the diameter of the propeller can be predicted by generating a regression model
for the motor power and Kv, which means rpm per 1 volt and the most critical parameters
in determining the diameter of the propeller. Figure 7 shows the regression model of the
maximum power and Kv of the FF motor and the regression model of the appropriate
diameter of the FF propeller according to the Kv of the motor.

Figure 7. Regression model to estimate the diameter of the FF propeller: (a) regression model for
estimating the FF motor’s Kv; (b) the regression model for estimating the FF’s propeller diameter
through the Kv. The FF motor’s Kv data and appropriate propeller diameter data are from the T-
motor [21] and Scorpion motor [23]. The unit of motor power is expressed in watts (W) and diameter
of the propeller is in meters (m).

Equations (16) and (17) are regression models for estimating the FF motor Kv and FF
propeller diameter.

Kv = −0.228 × 10−7 × P3 + 0.0003 × P2 +−1.101 × P + 1685.676 (16)

DFF = 4.735 × Kv−0.405 (17)

FF propellers and VTOL propellers have different pitch angles and structures due
to the fact of their different operating characteristics; thus, the data on weight are also
different. Therefore, the regression model for estimating the weight of the FF propeller and
the VTOL propeller should be generated separately, and the regression model configured
in Figure 8 is shown. For the FF propeller data, the APC propeller’s data were referred to
in [26], and for the VTOL propeller, the T-motor’s propeller data were used [21].
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Figure 8. Propeller regression model: (a) FF propeller regression model from APC propeller data [26];
(b) VTOL propeller regression model from T-motor propeller data [21]. The accuracy of the model
was measured by the R-squared error, and the accuracy was high at 0.94 and 0.93, respectively. The
unit of the diameter of the propeller is in meters (m), and mass of the propeller is in grams (g).

The regression model consists of the weight according to the diameter of the propeller,
and Equations (18) and (19) are regression models for sizing of the FF propellers and VTOL
propellers, respectively.

Mprop.FF = 670.644 ∗ D2.784
FF (18)

Mprop.VTOL = 7.281 × e3.389∗DVTOL − 3.232 (19)

5.4. Electric Branch Mass Calculation

Through the results of the motor, ESC, and propeller sizing, the weight of the electric
branch can be calculated as in Equation (20):

MeBranch = finstall
(
nmot(Mmot + MESC + Mprop)

)
(20)

Here, finstall is the weight of the parts necessary to mount the electric branch to
the UAV, such as a motor mount and additional weight such as cables, and a value of
approximately 1.2 is usually used [13].

5.5. HFC Sizing

In the existing HFC UAV sizing study, specific power was used for HFC sizing. This
can be usefully used when there is no information about the HFC in the early design
stage such as sizing. The Department of Energy (DOE) set a target of 0.85 kW/kg specific
power for an 80 kW (net) integrated transportation FC power system operating on direct
hydrogen [27]. Although this value is for a transportation application, the rated power is
too large to be applied to a UAV, and the accuracy may not be high when applying it for
sizing. Therefore, if the regression model was applied to the sizing through the HFC data
currently used in the UAV, the weight can be predicted more accurately. Table 5 shows the
rated power, system weight, specific power, and HFC system configuration of the HFC
applied to the UAV developed by HES Energy [28], Intelligent Energy [29], and Doosan
Mobility Innovation [30].
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Table 5. HFC data from HES Energy Systems, Intelligent Energy, and Doosan Mobility Innovation.

HFC Rated
Power (W)

Weight
(kg)

Specific Power
(kW/kg) HFC Configuration

HES Aerostak A-250 [28] 250 0.72 0.35 Stack+Control+Case+Fan+Li-po battery
HES Aerostak A-500 [28] 500 1.3 0.38 Stack+Control+Case+Fan+Li-po battery

HES Aerostak A-1000LV [28] 1000 2.036 0.49 Stack+Control+Case+Fan+Li-po battery
HES Aerostak A-1000HV [28] 1000 1.8 0.56 Stack+Control+Case+Fan+Li-po battery

HES Aerostak A-1500 [28] 1500 3 0.50 Stack+Control+Case+Fan+Li-po battery
HES Aerostak A-2000 [28] 2000 4 0.50 Stack+Control+Case+Fan+Li-po battery

Intelligent Energy IE-Soar 650 [29] 650 1.19 0.55 Stack+Control+Case+Fan+Li-po battery
Intelligent Energy IE-Soar 800 [29] 800 1.38 0.58 Stack+Control+Case+Fan+Li-po battery

Intelligent Energy IE-Soar 2.4kW [29] 2400 5.62 0.43 Stack+Control+Case+Fan+Li-po battery
Doosan DM/DP15 Powerpack [30] 1250 2.9 0.43 Stack+Control+Fan+Li-po battery

Using this data, a regression model for the weight according to the rated power of the
HFC applied to the UAV can be generated as shown in Figure 9a and Equation (21).

MHFC = 0.423 × 10−3 × P2
req + 1.08 × Preq + 451.651 (21)

Figure 9. (a) Regression model for HFC sizing. The accuracy of the model was measured by the
R-squared error, and the accuracy was high at 0.98. The unit of rated power is expressed in watts (W),
and the mass of the HFC in grams (g). (b) Examples of a polarization curve and power curve.

Using the regression model of Equation (21), it is possible to predict the weight
reflecting the current technology level for the HFC applied to the UAV having the same
configuration as in Table 5. However, since not all HFCs have the above configuration, in
this paper, another method for sizing the HFC based on the single-cell performance of the
HFC is presented.

The polarization curve is a curve showing the trend of current density and voltage of
a single HFC cell and is used to test the performance of that single cell. If the polarization
curve is used, sizing can be performed based on the performance of the HFC to be applied
to the UAV. The method of generating the polarization curve has been suggested through
various references, and it can be generated in various ways [2,7,31]. Figure 9b is an example
of a polarization curve of the HES AEROSTAK 200W model [2,28].

In Figure 9b, the power curve is a curve showing the trend in power density, which is
multiplied by the current density and voltage. When the polarization curve is prepared,
the number of cells constituting the HFC stack can be predicted as in Equation (22):

ncell =
Vdesign

Vcell
(22)
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Here, Vdesign is the voltage of the HFC given in the design requirements, and Vcell is
the voltage of a single cell that maximizes the power density of the cell. If the number
of cells in the HFC is determined, the electrode area of a single cell can be determined as
in Equation (23). The electrode area means the area where the actual chemical reaction
takes place.

Acell =
Preq

pcellncell
(23)

Here, pcell is the power density of a single cell. The weight of the HFC can be predicted
as in Equation (24) using the previously calculated information of the single cell [7].

MHFC =
ncellkAρcell Acell

1 − ηOW
(1 + fBOP) (24)

Here, ρcell is the area density of a single cell, and Wanyi NG recommends 1.57 kg/m2 [7].
kA is the ratio of the cross-sectional area to the electrode area of a single cell, and four
is used as a conservative value. ηOW is 0.3 as the overhead fraction for gaskets, seals,
connectors, endplates, etc., constituting the HFC stack [7]. fBOP is the ratio of the BOP
weight to the HFC weight, and this value is different depending on the HFC configuration.
In this paper, 0.2 was used in the case study.

One of the important parameters for prediction in HFC sizing is the efficiency of the
HFC. At the current technology level, the efficiency of the PEMFC is approximately 40–50%,
and if there is no information about the polarization curve of a single cell, this value can be
used for sizing [14]. However, when the polarization curve is defined, the efficiency of the
HFC can be calculated as in Equation (25) [32]:

ηHFC =
2F ∗ Preq

∆H ∗ iFC
(25)

Here, F is a Faraday constant of 96,485.4 C/mol, and ∆H is a chemical reaction energy
of 284,000 J/mol. Preq is the electrical power required by the mission operated by the HFC,
and the efficiency of the HFC decreases as the required power increases.

6. Mission Analysis
6.1. Required Power Analysis

Mission analysis is the stage of predicting the amount and weight of fuel that enables
the UAV to perform the mission given in the mission profile and analysis of transition
segment. For this, it is first necessary to define the power required for each mission segment.
However, this was defined in the form of PL = f (WL) or PL = f (DL) in the MCA stage,
and it can be transformed into a formula that defines the actual power. Therefore, the power
required for each mission segment can be defined through the power loading constraints
defined by the MCA and MTOW given for each iteration in the multi-mode sizing loop.

6.2. Transition Analysis

The purpose of transition analysis is to predict the power and time required for tran-
sition for sizing a battery or hydrogen tank. The transition time of a multi-mode UAV is
relatively short compared to other missions and consumes less fuel, so it may not be sensi-
tive to battery or hydrogen tank sizing. However, since the transition time and transition
stability act as important design requirements, they should be considered from the early
design stage. The lift+cruise-type UAV’s transition mechanism is relatively simple com-
pared to the tilting mechanism, but calculating the transition time and power required still
requires complex analysis. Therefore, sizing simplifies this process with a few assumptions.
These assumptions must be logical and ensure the transition stability of the UAV. The tran-
sition method can take various strategies, such as maintaining the altitude, transitioning
by accelerating through gliding at the beginning of the transition, or transitioning while
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climbing. This paper deals with the transition method while maintaining the altitude. The
assumptions for transition analysis in this paper are as follows:

1. During the transition, all control of the UAV is handled by the flight control computer
(FCC) automatically;

2. During the transition, the altitude is kept constant by the FCC that maintains the
sum of the lift generated from the wing and the thrust generated from the VTOL
propulsion system to be the same as the weight;

3. For transition stability, the UAV starts the transition after maintaining the hovering
state for a few seconds;

4. For transition stability, the UAV terminates the transition when the forward flight
speed reaches 1.2 times the stall speed, and at the end of the transition, the UAV
maintains the trim;

5. For transition stability, FCC provides a guide control in which the lift sharing between
the wing and VTOL thrust can be switched smoothly;

6. For transition stability, the transition time should be minimized by holding the FF
throttle at 100% until forward flight speed reaches stall speed.

These assumptions make it possible to perform a transition analysis using the pa-
rameters given in the sizing step, while ensuring the stability of the transition. Through
the above assumptions, the conditions for the start and end of the transition mode can be
summarized as shown in Table 6.

Table 6. Starting and terminal condition of the transition mode of multi-mode UAVs.

Parameter Starting Condition Terminal Condition

V∞ 0 m/s 1.2 × Vstall
Lwing 0 N W
TFF 0 N D

TVTOL W 0 N
Li f t Sharing 100% 0%

For transition analysis, force equilibrium should be defined during transition, and free
body diagrams are used for this. Figure 10 shows the free body diagram of UAVs during
the transition mode.

Figure 10. Lift+cruise UAV’s free body diagram during transition mode.

Here, Lwing is lift generated by the wing of the UAV, D is the drag, W is the weight
of the UAV, α is angle of attack of the UAV, TFF is the thrust which is generated by the
forward flight propulsion system, and TVTOL is thrust which is generated by the VTOL
propulsion system. Since the forward speed is low during transition, sufficient lift can be
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obtained considering the angle of attack of the UAV, and the lift coefficient according to the
angle of attack can be predicted through the lift curve of the airfoil. Through the second
assumption for transition analysis and the free body diagram, the z-direction force can be
calculated as in Equation (26):

∑FZ = W − Lwing − TFF × sin(α)− TVTOL × cos(α) = 0 (26)

In addition, through the free body diagram, the x-direction force and forward acceler-
ation are calculated as in Equation (27):

ax =
Fx

m
=

TFF × cos(α)− D − TVTOL × sin(α)
m

(27)

The lift from the wing in Equation (26) can be calculated from the fifth assumption
for transition analysis. The guide control of lift sharing can be defined according to the
operating conditions, and in this paper, it is defined in the form of a simple sine curve as
shown in Equation (28):

d =
(W−Lwing)

W =
(W−q∞CLreq Swing)

W
= 0.5

(
sin
(

π
1.2×Vstall

× V∞ − 3π
2

)
+ 1
) (28)

Here, d is lift sharing and is expressed as a percentage of W, and CLreq is required
lift at that time. Since the forward speed is small at the beginning of the transition, a lift
coefficient higher than the lift coefficient at the stall angle of attack may be required to
generate the lift required by the guide control. In this case, CLreq can be replaced by CLmax

at the stall angle of attack of UAV and the guide control should be modified. According
to the sixth assumption for transition analysis, the forward flight thrust is maintained as
the maximum thrust before the stall speed and decreases linearly to match the drag force
from the stall speed until the transition is terminated. Figure 11a shows an example of
lift sharing according to the forward velocity of a UAV during the transition mode. The
blue line shows the original guide control of lift sharing, and the yellow line shows the
modified lift sharing profile due to the insufficient forward speed at the beginning of the
transition. In addition, Figure 11b shows the example of forward thrust according to the
forward velocity of a UAV during transition mode.

Figure 11. (a) An example of lift sharing guide control according to the forward velocity of a UAV
during transition mode. (b) An example of forward thrust and drag according to the forward velocity
of a UAV during transition mode.

Through the above process, the force acting on the UAV, the change in forward speed,
and the transition time in the transition segment can be calculated, and the required power
can be calculated and used for battery sizing. The re-transition process from the FF mode
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to the VTOL mode can also be analyzed by applying the starting and terminal conditions
in reverse through the above assumptions.

6.3. Li-po Battery Sizing

In the case of Li-po batteries for eVTOL UAVs, the battery’s capacity and rated voltage
have the most sensitivity on the battery’s weight. Therefore, the battery sizing technique
considering the capacity and rated voltage guarantees an accurate estimation of the battery
weight. Batteries with the rated voltage of 6S–12S (22.2–44.4 V) are most commonly used.
Therefore, there are many 3S (11.1 V), 4S (14.8 V), and 6S (22.2 V) battery products on the
market, and a higher rated voltage can be produced through their series connection. A
regression model for battery sizing was created from the data of 3S, 4S, and 6S batteries.
The capacity (mAh) of the battery must be determined to provide the energy required for
the mission performed by the UAV. Using the power required for each mission segment
defined through the method presented in Section 6.1 and the mission time presented in the
mission profile, the required capacity of the battery can be calculated using Equation (29):

Creq =

(
∑

nseg
i=1

Preq.i
ηmot

× ti

)
Uratedηbatt fusable

(29)

Here, fusable is a factor to prevent voltage drop when the battery is discharged for a
long time, and approximately 0.85 is usually used, and Urated is the Li-po battery’s rated
voltage. In this process, depending on the decision of the designer, it is also possible to
calculate the required energy by giving a margin from the total mission time given in the
mission profile. After the required energy of the battery is defined, the weight of the battery
can be predicted using the regression model in Figure 12 [33].

Figure 12. Regression model of a Li-po battery. The accuracy of the model was measured by the
R-squared error, and the accuracy was high at 0.98, 0.97, and 0.99. The unit of capacity of the battery
is expressed in mAh, and mass of the battery in grams (g).

The regression model for 3S, 4S, and 6S Li-po battery sizing is as in Equation (30):
3S(11.1V) : Mbatt = −0.019 × 10−4C2

req + 0.08Creq + 7.864
4S(14.8V) : Mbatt = 0.83 × 10−7C2

req + 0.083Creq + 45.352
6S(22.2V) : Mbatt = −0.116 +×10−5C2

req + 0.147Creq + 27.827
(30)

6.4. Hydrogen Tank Sizing

Hydrogen tank sizing starts with defining the required electrical power for each
mission segment, the same as battery sizing. However, the difference from battery sizing is
that the efficiency of the fuel cell according to the power required in the mission segment is
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included in the sizing. The method of calculating the fuel cell efficiency has already been
described in Equation (25). When the required power for each mission section and the fuel
cell efficiency are calculated, the hydrogen consumption (HC) can be calculated as shown
in Equation (31):

HC =
Preq

LHV × η f c
(31)

Here, the unit for HC is g/h, which indicates the amount of hydrogen consumption
per unit time, and LHV is the low heating value of hydrogen, which is 33.3 Wh/g. If the
hydrogen consumption for each mission segment is calculated, the amount of hydrogen
required for the entire mission is calculated according to Equation (32) through the mission
time given in the mission profile.

mH2 =

nseg

∑
i=1

HCi × ti (32)

A regression model that can estimate the weight and volume of a hydrogen tank
based on the amount of hydrogen required was generated as shown in Figure 13. The
regression model was constructed based on the data of Type 3 and 4 tanks [29], and this
can be expressed as Equations (33) and (34).

Mtank = 19.068 × m0.8215
H2

(33)

Vtank = 4.63 × m2
H2

+ 45.782 × mH2 + 0.102 (34)

Figure 13. Hydrogen tank regression model: (a) hydrogen tank weight regression model; (b) hydro-
gen tank volume regression. The accuracy of the model was measured by the R-squared error, and
the accuracy was high at 0.97 and 0.99, respectively. The unit of mass for the hydrogen and the tank
is in kg, and volume of the tank is in L.

7. Total Mass Calculation

The MTOW of the UAV is the most important parameter among the results of sizing
and is calculated by adding up the weights of the components comprising the UAV calcu-
lated in the previous section. The total mass calculation was calculated through fixed point
iteration, which is iteratively calculated until the MTOW converges below a predefined
tolerance. The first iteration uses the initial MTOW given in the design requirement. For
those of the components constituting the UAV that can be calculated, the actual value was
added to the total weight through the methods presented above, and the remainder was
calculated as the mass fraction, which is the ratio of the total weight [13]. The items for
which the mass fraction should be assumed are the air frame, avionics, and subsystem.
For the air frame weight, it is recommended to use a mass fraction of 25–35% for the FF
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UAV as an initial estimation in sizing and 5% for the avionics [34]. The mass fraction of the
subsystem varies depending on the operation type of the UAV, which is 5–7% for UAVs
designed for delivery and 15% for advanced surveillance equipment [13]. The total weight
of the multi-mode HFC eVTOL UAV was calculated as in Equation (35):

MTOW =
MFF

propulsion + MVTOL
propulsion + MFC.sys + Mbatt + Mpayload

1 − (MFf rame + MFsubsys + MFavionics)
(35)

Here, MFC.sys is the weight of the entire hydrogen system, including the previously
calculated HFC, tank, regulator, and control board. The calculated MTOW is used as a
value for fixed-point iteration in the multi-mode sizing loop, and the multi-mode sizing
loop is repeatedly calculated until the MTOW converges.

8. Optimization

Since the design point selected in the MCA was selected within the design space that
satisfied the performance constraints of the UAV, it is not known whether it satisfies the
design requirements other than the performance constraints. Previous sizing techniques
used graphical techniques, such as carpet plots, to obtain results that satisfy the design
requirements. However, it is difficult to quantitatively and efficiently find the optimal
point. Therefore, in this paper, a method for defining a design point that satisfies the design
requirements through a numerical optimization algorithm was developed. The objective
function of the optimization is to minimize the MTOW of the UAV, and the constraint
is a design requirement including the performance constraint defined in the MCA. The
design variables are wing loading, FF/VTOL power loading, disk loading, and AR, which
are key parameters for multi-mode UAV sizing. Table 7 is an example of an optimization
formulation. The optimization algorithm used in this paper was Python’s SciPy SLSQP [22].
It is suitable for solving nonlinear optimization problems with constraints, and for sizing
problems in the early design stage, because the computation time is shorter than other
global optimization algorithms.

Table 7. Example of sizing optimization formulation.

Variable Value

Minimize: MTOW
Subject to: Maximum FF speed ≥ 30 m/s

Maximum RoC ≥ 6 m/s
Stall speed ≤ 18 m/s

VTOL ceiling ≥ 1000 m
Maximum take-off speed ≥ 10 m/s

Hydrogen fuel system mass ≤ 10 kg
Wingspan ≤ 3.5 m

FF propeller diameter ≤ 30 inches
VTOL propeller diameter ≤ 30 inches

Transition time ≤ 30 s

9. Case Study

The sizing methodology proposed in this paper was implemented in the 25 kg hy-
drogen fuel cell UAV design project. The quantitative goals were an MTOW under 25 kg,
endurance up to 6 h, a hydrogen system mass under 10 kg (40% mass fraction), and con-
tinuous power of the HFC up to 2 kW. As a design process before sizing, requirements
analysis and concept selection were performed. Table 8 shows the design requirements
derived through the requirements analysis, and the concept of operation for this UAV was
surveillance. Figure 14 shows the mission profile of the surveillance HFC UAV.
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Table 8. The 25 kg hydrogen fuel cell UAV design requirements.

Requirements Value Remarks

MTOW <25 kg
Endurance >6 h

HFC system mass <10 kg
Payload mass 1.25 kg Camera for surveillance

HFC maximum continuous power >2 kW
Wingspan <3.5 m Market analysis

Cruise altitude 150 m FAA requirement 400 ft
Maximum speed >35 m/s Market analysis

Cruise speed 25 m/s Market analysis
Stall speed <18 m/s Market analysis

Maximum RoC >6 m/s Market analysis
Maximum take-off speed >10 m/s Market analysis

VTOL service ceiling 1000 m Market analysis
FF propeller diameter <30 inches Available size for regression

VTOL propeller diameter <30 inches Available size for regression
Transition time <30 s Market analysis

Figure 14. The 25 kg multi-mode surveillance HFC UAV mission profile.

The results of the sizing are compared with the conceptual design results of the UAV
to validate the accuracy of the methodology. An integrated analysis and configuration
optimization of the UAV were performed with the Konkuk University in-house program
ADSP (Aircraft Design and Synthesis Program). ADSP can perform multi-disciplinary
analyses and optimizations of UAVs as well as very light aircrafts (VLAs), UCAVs, and
electric aircrafts, and its accuracy and efficiency have been verified [35–37]. In addition,
CFD for high-fidelity aerodynamic analysis and wind tunnel experiments for obtaining
high-fidelity electric propulsion system performance data were performed to construct
high-fidelity analysis data and, thus, the design results are very accurate. The HFC stack
and BOP were designed by Nexcoms Co., Ltd., and the HFC sizing result was verified
through the data of the developed product [38]. The conceptual design process through
ADSP proceeded as shown in Figure 15. Based on the sizing result, the propulsion system
was selected, components placement performed, and then the conceptual design was
carried out through multi-disciplinary integrated analysis and optimization.
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Figure 15. Conceptual design process through ADSP.

9.1. Optimum Sizing Result

Table 9 shows a comparison between the sizing result and the conceptual design result.
Initial sizing refers to the sizing result at the initial design point selected by the designer
before optimization, and optimum sizing refers to a design point that satisfies the design
requirements through optimization.

Table 9. Comparison of initial point, sizing results, and conceptual design results.

Parameter Unit Initial Point Sizing Results Conceptual Design Results Error (%)

MTOW kg 40.923 24.909 24.990 0.325
Wing loading N/m2 277.842 259.226 252.890 2.505

FF power loading N/W 0.099 0.102 0.095 7.447
VTOL power loading N/W 0.035 0.035 0.032 9.078

Disk loading N/m2 360.777 250.749 249.904 0.338
AR . 10.0 13.0 12.295 2.795

Wing area m2 1.444 0.942 0.969 2.795
Wingspan m 3.801 3.5 3.452 1.379
Endurance hours 6.0 6.0 6.062 1.023

FF propeller diameter inch 20.864 19.621 20.0 1.895
VTOL propeller diameter inch 25.405 21.924 22.0 0.346

Airframe mass fraction . 0.35 0.35 0.359 2.507
Fuel cell system mass kg 22.826 9.403 9.950 5.497

HFC mass kg 5.516 3.254 3.0 8.483
Cylinder mass kg 9.789 5.599 5.4 3.677
Battery mass kg 1.876 1.115 1.15 3.039

FF propulsion system mass kg 1.374 0.804 0.87 7.563
VTOL propulsion system mass kg 3.102 2.078 2.287 9.168

FF maximum power W 4062.159 2396.397 2584.2 7.267
VTOL maximum power W 11,322.224 7038.022 7704.0 8.645

Transition time s 22.720 23.160 24.272 4.581

When comparing the error between the sizing result and the conceptual design result,
the error for all parameters was within 10%. Table 9 shows that the initial sizing result did
not satisfy the design requirements. This is because, as mentioned above, the initial point
was determined in a design space that satisfied only the performance requirements defined
by MCA. On the contrary, the sizing result satisfied all the design requirements. Figure 16
shows the initial point and the optimum point.
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Figure 16. Initial point and optimum point in the design space defined by MCA. (a) is the initial point
to minimize the wing span and FF/VTOL required power; (b) is the optimal point that minimize
MTOW of UAV and satisfied all design requirements.

Figure 16 shows that the optimum point shifted to a point that could minimize the
MTOW while satisfying the design requirements within the design space defined by MCA
through the optimization process. Figure 17 shows the configuration change in each stage
of the concept sketch, sizing, and conceptual design. In the sizing result, only the AR, area,
and span of the wing are given, so it is a rectangular wing shape. In the conceptual design
stage, ADSP is used to optimize geometry parameters such as the sweep angle and taper
ratio of the wing.

Figure 17. Configuration change of each design stage: (a) concept sketch of multi-mode UAV [39]; (b)
sizing results that include tail sizing results; (c) optimum configuration optimized by ADSP.

9.2. EPS Sizing Result

For the sizing result of the EPS, the accuracy of the sizing was analyzed by comparing
the mass of the motor, ESC, and propeller applied to the actual UAV and the HFC data,
which was developed by Nexcoms. Table 10 shows the comparison of the motor, ESC, and
propeller sizing results with the actual mass data.

In the conceptual design process, the FF motor was selected according to the maximum
power required in the FF mode, motor weight, and Kv predicted in sizing, and the VTOL
motor was selected according to the maximum power required in the VTOL mode and
the motor weight. After that, the appropriate ESC and propeller for the motor were
selected. In the process of selecting a motor with the most similar Kv while satisfying the
maximum required power for each flight mode and motor weight calculated from the
sizing result, it may not be possible to find a motor that satisfies them all, and an error
occurs in this process. Errors may occur in other components as well. However, the error
for all components between the actual data and the sizing result was within 10%, which
means that the accuracy of the sizing method through the regression model developed in
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this paper was high and the parameters constituting the regression model were appropriate.
For the HFC, the data of the HFC developed by Nexcoms in Figure 18a and the sizing result
were compared.

Table 10. Comparison of motor, ESC, propeller sizing results, and actual data.

Unit Sizing Results Actual Data Error (%) Remarks

FF motor kg 0.544 0.555 1.982 T-Motor AT7215 KV245 [21]
FF motor Kv 258.97 245.0 5.702 T-Motor AT7215 KV245 [21]

FF ESC kg 0.068 0.074 8.284 T-Motor Flame 60A HV [21]
FF propeller kg 0.097 0.096 0.531 APC 20*10e [26]
VTOL motor kg 0.371 0.355 4.555 T-Motor V605 KV210 [21]
VTOL ESC kg 0.071 0.074 4.054 T-Motor Flame 60A HV [21]

VTOL propeller kg 0.045 0.048 6.583 T-Motor V 22*74 [21]

Figure 18. (a) Nexcoms HFC [38] and the (b) efficiency of HFCs according to the HFC’s operating
power, which is one of the results of sizing.

Table 11 shows the comparison of the HFC sizing results and Nexcoms’ HFC’s actual
data. The HFC sizing was based on the single-cell polarization curve of the Nexcoms
HFC, and the error is under 10% for all parameters, which means that the HFC sizing
methodology proposed in this paper is very accurate. Figure 18b is one of the results of
HFC sizing, which is a graph showing the efficiency according to the operating power of
the HFC. It is used for hydrogen tank sizing in mission analysis. Since the efficiency of a
hydrogen fuel cell decreases as the power required increases, as shown in Figure 18b, two
HFCs were therefore used to lower the power requirement and increase the efficiency in
this project.

Table 11. Comparison of HFC sizing results and actual data that was developed by Nexcoms [38].

Unit Sizing Results Actual Data Error (%)

HFC mass kg 1.627 1.5 8.483
Stack mass kg 1.313 1.2 9.417

Cooling fan mass kg 0.314 0.3 4.747
Control board mass kg 0.25 0.25 N/A

9.3. Mission Analysis and Transition Analysis Result

As for the result of the mission analysis, the accuracy of the methodology was verified
by comparing the sizing result of the required power for each mission segment with the
mission analysis result through ADSP. Figure 19 shows the sizing result for the required
power for each mission segment and the mission analysis result through ADSP.
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Figure 19. Required power of each mission segment: (a) the required power from vertical take-off to
cruising; (b) the required power from cruising to vertical landing.

The ADSP mission analysis is highly accurate because it uses the results of aerody-
namic analysis through the CFD and wind tunnel test results of the electric propulsion
system. In addition, because the maximum error in each mission segment was calculated to
be approximately 15%, this means that the sizing result was relatively accurate. Figure 20
shows the results of the transition analysis.

Figure 20. Transition analysis result. This result shows the forces acting on the UAV during its
transition. The transition time calculated through analysis satisfied the design requirement as 23.16 s.

Through the transition analysis results, the methodology proposed in Section 6.2
satisfies all the assumptions for transition, and it is possible to predict the transition end
time and required power during transition for battery and hydrogen tank sizing. The
transition end time was predicted to be 23.16 s. And Figure 21 shows the change in lift
sharing, speed, and angle of attack during the transition of the UAV as one of the results of
transition analysis.

As mentioned in Section 6.2, the lift presented by the guide control of lift sharing could
not be generated at the beginning of the transition due to the insufficient forward speed.
Therefore, the angle of attack was maintained at the maximum as shown in Figure 21c,
and the lift sharing was performed as Figure 21a. After the forward speed was sufficiently
increased, the UAV generated the lift force presented by the guide control, and the angle
of attack decreased accordingly and converged to the trim angle of attack in the terminal
condition. Table 12 shows the comparison of the battery and hydrogen tank sizing results
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and the battery and hydrogen tank data applied to the actual UAV through the calculation
of the required power for each mission segment.

Figure 21. Transition analysis results: (a) shows the comparison of the guide control of lift sharing
and actual lift sharing; (b) shows the speed change of the UAV during transition; (c) shows the angle
of attack change of the UAV during transition.

Table 12. Comparison of battery and hydrogen tank sizing results and actual data.

Unit Sizing Results Actual Data Error (%)

Battery mass kg 0.558 0.575 3.039
Battery capacity mAh 3725.581 3800.0 1.958

Hydrogen tank mass kg 5.599 5.3 5.633
Hydrogen mass g 244.990 268.2 8.654

Hydrogen tank volume L 11.839 13 8.928

The battery applied to the UAV was two packs of the EP Power 22.2 V 3800 mAh 55C
model [33], and the hydrogen tank was the CTS Ultralight 13 L Type 4 model [40]. The error
between the sizing results and actual data of the battery and hydrogen tank was under 10%
for all parameters, which means that the battery and hydrogen tank sizing methodology
based on the regression model proposed in this paper was accurate.

10. Conclusions

This research presented an improved sizing methodology for a multi-mode eVTOL
UAV using a hydrogen fuel cell and Li-po battery. Sizing involved five major procedures.
First, the MCA added the performance requirements of the VTOL mode through disk
loading so that it can be applied to the multi-mode eVTOL in the existing constraints
analysis. Second, for EPS sizing, a sophisticated regression model with an R-squared error
of 0.9 or more was built through the data of the existing UAV propulsion component.
Through this, the motor, ESC, and propeller sizing methodology was presented, and
in the case of the HFC, a sizing technique using the polarization curve of a single cell
was presented. Third, mission analysis presented a method of sizing the capacity and
weight of the Li-po battery and the weight and volume of the hydrogen tank through the
required power defined for each mission segment, and it also presented a new analysis
method for the transition mode. The fourth total mass calculation calculated the MTOW
of the UAV and performed fixed-point iteration until the MTOW converged. Finally, an
optimization method for optimizing the wing loading, power loading, disk loading, and
AR was presented so that the sizing result satisfied all the design requirements.

To verify the accuracy of the sizing methodology presented in this paper, the sizing of
a 25 kg hydrogen fuel cell UAV was performed. The accuracy of the sizing was verified
through comparison with the conceptual design results performed using ADSP based on
the sizing results. As a result of the sizing, the MTOW was minimized at 24.91 kg while
satisfying all the design requirements. Since the propulsion system selects the product with
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the closest performance based on the parameters calculated in sizing during the conceptual
design process, errors may occur in the sizing result. In addition, because the geometry
data of the UAV wing uses the sizing result as the initial configuration in the conceptual
design process and is optimized in consideration of stability, errors may occur with the
sizing result. Nevertheless, all the parameters had an error of less than 10% compared with
the conceptual design results, which means that the sizing methodology presented in this
paper is very accurate and sufficient to be used as initial design data. Therefore, the sizing
methodology presented in this paper is a useful tool in the design of UAVs using hydrogen
fuel cells and batteries, and if the regression model is replaced with one on a larger scale, it
can be usefully for the sizing of urban air mobility (UAM) vehicles.
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