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Abstract: To examine the plasma-assisted combustion of a scramjet, a microwave-enhanced gliding
arc plasma method was proposed in this study, and the flame structure and combustion instability
were observed. The mechanism of plasma-assisted combustion was obtained via a Bunsen experiment,
and then the influence on supersonic combustion was obtained on a direct-connected scramjet.
The active species of the flame was determined via optical emission spectroscopy, and the flame
temperature was measured with a thermocouple. The luminous intensity of the OH radicals in the
flame increased ninefold when the flame temperature was increased to 1573 K, but the luminous
intensity of CH* and C2 was not obviously changed with the excitation of arc plasma. Moreover,
the DC arc plasma had no effect on the rotation and the vibration temperature of OH radicals under
these experimental conditions. In the range of microwave energy less than 800 W, there was no
typical change in the intensity of the radicals; however, when the microwave power was up to
1000 W, the effect became obvious. When plasma was applied to the scramjet, the plasma caused
the pre-combustion shock train to move forward, and the initial and stable position of the flame was
transferred from the cavity shear layer to the front of the fuel jet. These results clearly show that
plasma free radical mechanisms cause changes to combustion modes.

Keywords: scramjet; combustion; plasma; microwave

1. Introduction

Ignition and flame stabilization is challenging work in a scramjet [1–3]. The residence
time of air in a combustor (tflow ≈ 0.5 ms) is even shorter than the typical self-ignition time
of fuel (tig ≈ 1–2 ms) [4–6]. Traditional passive flame stabilization methods (such as cavity
and plate flame stabilization) stabilize a flame in a vortex structure to achieve the purpose
of stable combustion, which is dominated by supersonic inflow and formed passively.
The interaction between the instability of the inflow and the combustion affects the flame
structure [7–11]. Especially in the process of acceleration, it has been pointed out that
the combustor inlet flow acceleration will lead to the transition of the flame mode [12,13].
Therefore, a more effective flame stabilization method is needed in order to stabilize flames
actively so that the flame structure can be accurately controlled.

Plasma is an important way to assist combustion, which can improve cycle efficiency
in internal combustion engines and turbines [14–16]. Since plasma produces heat, elec-
trons, long-lifetime intermediate species, radicals, ions, excited molecules, fuel fragments,
ionic wind, a large density gradient, and Coulomb and Lorentz forces, it mainly affects
combustion via three different pathways: thermal, kinetic, and transport (including aerody-
namic) [17–19]. In fact, the three effects often exist at the same time. Recent studies using
torch plasma, filamentary discharge, microwave discharge, low-frequency arc discharge,
streamer high-frequency (HF) discharges, surface discharges, and nanosecond pulsed dis-
charges (NSDs) [20] have shown that plasma can enhance ignition, flame stabilization, and
fuel/air mixing via chemical, thermal, and plasma-induced aerodynamic effects [21–24].
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In 2013, Yu et al. [25] successfully used 1.5 kW torch plasma to ignite liquid kerosene
in a scramjet, with a Mach number of 1.8 and a total temperature of 950 K. Sun et al. [26]
studied flame stabilization with a spark discharge. Li et al. [27] achieved scramjet ignition
and flame stabilization by using a gliding arc in a cavity, and extended the lean ignition
limit by 17%.

However, a plasma torch or arc plasma can only generate plasma in a single position,
and cannot form the effect with full-field combustion. Compared with the plasma formed by
a high-voltage discharge, the process of microwaves forming plasma is more complicated.
The electric and magnetic fields of microwaves accelerate the electrons, and the microwaves
also increase the vibrational energy of the chemical bonds of molecules. The influence
of microwaves is regional, so it may be more efficient to use microwaves to enhance
combustion kinetics.

Jaggers et al. [28] explained the mechanism of using an electric field to increase the
premixed flame velocity. An electric field acts on the free electrons in a flame, causing
the combustion reaction rate to increase. Shinohara et al. [29] used 2.45 GHz microwaves
to increase the flame velocity, and determined that the microwave electromagnetic field
enhanced the non-equilibrium plasma concentration.

Stockman [30–32] and Khodataev [33] suggested that the subcritical discharge char-
acteristics of microwaves in high-pressure gas could be applied to a scramjet combustor.
The microwave critical discharge zone could be used as a flame holder without a cavity or
other geometric flame-stabilizing structure to avoid the problem of high heat flux [34–37].

However, there is a wall effect in microwave critical discharge that is detrimental
to combustion and wall cooling. A new full-field plasma-assisted combustion method is
required. The composite plasma can discharge in a large area, which is an ideal method of
combustion assistance, such as for a double-pulse laser [38], microwave-enhanced laser, or
spark plasma [39].

Michael et al. [39] used microwaves to enhance laser plasma, and achieved dynamic
characteristics that showed that microwaves had an expanding effect on the plasma and
could produce a larger volume of plasma. Ikeda et al. [40,41] developed a microwave-
enhanced spark-discharge plasma generation method, and the microwaves expanded the
spark plasma. Elsabbagh et al. [42] suggested that microwaves could enhance the rotation
temperature of N2 excited in the plasma and increase the number of ion groups in the
plasma significantly. At present, microwave-enhanced spark-discharge plasma ignition has
been widely studied in internal combustion engines [2].

In this study, a method of microwave-enhanced gliding-arc-plasma-assisted combus-
tion was proposed and applied to a scramjet. Gliding arc plasma is a kind of arc that
is extended and elongated with the action of air flow, and it has the characteristics of a
mixture of equilibrium and non-equilibrium gas [43]. Compared with spark-discharge
and laser plasma, it has the advantage of a larger area, and is easy to achieve. After mi-
crowave expansion, a gliding arc can achieve plasma distribution in a larger volume to
assist combustion.

2. Materials and Methods

The experiment included two parts: a Bunsen experiment and a scramjet experiment,
corresponding to mechanism verification and the application of assisted supersonic com-
bustion, respectively. The first part was carried out using a Bunsen burner, and the second
part was carried out on a direct-connected scramjet model.

2.1. Experimental Setup on a Bunsen Burner

Figures 1 and 2 display a schematic diagram and the real setup of the experiment,
respectively. The premixed gas contained ethylene and air with a suitable equivalence
ratio, precisely controlled by calibrated “Ω” float flowmeters, while the pipelines and mix
chamber ensured that the gases were sufficiently mixed.
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Figure 2. Real setup of the Bunsen experimental system: (a) Bunsen burner; (b) microwave source;
(c) high-voltage power supply; (d) high-speed camera; (e) optical emission spectroscopy.

The high voltage (HV) used for discharging was supplied by an HV DC supplier
with a maximum power of 10.0 kW, a maximum voltage of 10.0 kV, and a maximum
current of 1.0 A, and the arc discharge was monitored by an HV probe combined with a
digitizing oscilloscope.

The microwaves were produced by a microwave source. The maximum continuous
output power of the microwave source was 1000 W, and the maximum peak pulse output
power was 2000 W, while the maximum duty cycle was 50%. The microwaves were emitted
by the horn antenna and acted directly on the flame. The microwave source and the antenna
were connected by a coaxial line. The working mode of the arc and that of the microwaves
were set to work separately, and not to be turned on at the same time.

The Bunsen burners used in this study are shown in Figure 1A,B. Bunsen burner A
(Figure 1A) was a ceramic tube with an internal diameter of 5 mm, and corresponded to
the experiment Case HV in Table 1. The two tungsten electrode needles (diameter of 1 mm)
were arranged 2 mm inside the tube outlet (Figure 1A). The Bunsen burner was isolated
from the environment. Between the HV DC supply and the Bunsen burner were protection
resistors that protected the power supplier. Bunsen burner B (Figure 1B) was a metal tube
with an internal diameter of 1/2 inch, corresponding to experiment Case MW in Table 2.
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Table 1. Experimental parameters of HV (high voltage).

Case C2H4 Flow
(L/min)

Air Flow
(L/min)

Equivalence
Ratio Arc Power (W)

HV 0.05 7.2 1

off
32.85
37.93
42.89
49.52
56.27
70.85

Table 2. Experimental parameters of MW (Microwave).

Case Flow Velocity
(m/s) Flow (L/min) Equivalence

Ratio
Microwave
Power (W)

MW 0.5 3.80 0.6

off
100
300
500
800
1000

Optical emission spectroscopy (Avantes, Apeldoorn, the Netherlands) measurement
was employed to determine the active species of the flame. The Avantes spectrometer
probes were placed at a fixed distance from the flame to capture the entire flame emission.
The K-type thermocouple was used to measure the temperature of the flame. The thermo-
couple was inserted into a fixed position of the flame, as shown in Figure 1. Temperature
and spectral measurements were taken at different times for the same operating conditions.

The HV experiment case is shown in Table 1; Case HV included seven arc power
cases. The MW experiment case is shown in Table 2; Case MW included six microwave
power cases.

2.2. Discharge Characteristics of the DC Arc in the Bunsen Burner

This section gives the characteristics of the arc in the flame. As shown in Figure 3,
the flame temperature rose significantly after the arc was added, but it did not always
increase with the increase in the arc power, and did increase with the arc current I. The
power represented the heat release of the arc, and the current represented the transport
rate of charged particles in the arc. Since plasma-assisted combustion has both thermal and
non-equilibrium effects, it could be concluded that the influence of the DC arc resulted in
thermal and ionic enhancement.

2.3. Experimental Setup of the Scramjet Experiment

Plasma-assisted supersonic combustion experiments were conducted on the direct-
connected supersonic combustor, as shown in Figure 4. The heater combusted air, hydrogen,
and oxygen, and after combustion, the oxygen molar fraction was 21%. The combustor
inlet’s total temperature and flowrate were controlled by the hydrogen, oxygen, and air
flowrates. The data were acquired using an automated control and data acquisition system.
For this study, the Mach number of the combustor inlet flow was 2.5, the total temperature
was 1249 K, the total pressure was 1.55 MPa, and the total flowrate was 1.77 kg/s.

The experimental combustor model had a rectangular cross-section with one side
expansion, an expansion angle of 2◦, an inlet height of 40 mm, and a width of 80 mm. A
single cavity was used to stabilize the flame. On the opposite side of the cavity, a horn
antenna was used to feed 2.45 GHz microwaves. The structure of the model is shown
in Figure 5a.
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There were two sets of electrodes in the combustion chamber that were located in the
front of the cavity, as shown in Figure 5b. The electrode was powered by a high-voltage
power supply with a maximum voltage of 10.0 kV and a current of 1.0 A. Protective resistors
with resistance of 15 kΩ were installed between the power supply and the electrode.

The wall pressure was measured on the upper walls of the combustor using a DTC Ini-
tium ESP-32HD electronic pressure scanning module with a 100 psi range. High-frequency
pressure-measuring points were arranged at the pressure-measuring points CH02 and
CH03 using a KULITE XTEL high-frequency pressure sensor, as shown in Figure 5b.

The CH* observation windows were placed at the cavity. A high-speed camera was
used in the experiment. The image of the 431 nm band could be captured directly by the
high-speed camera with a filter; that is, the luminous intensity of CH* in the combustion
area. The wavelength of the filter was 430 ± 15 nm and the peak transmittance was
0.882. We used a Phantom V1612 high-speed camera in the experiment, with a maximum
resolution of 1280 × 800 and an actual use resolution of 512 × 256, and the experimental
exposure time was 10 µs.

Figure 6 shows the time sequence of the experiment. The effective experimental time
was from 2 s to 4 s. The heater preparation time was before 0 s, and the ignition time was
from 0 s to 2 s. The experimental case of the scramjet is shown in Table 3.
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Table 3. Experimental parameters.

Case Equivalence Ratio
Microwave Power

Gliding Arc
Peak Repeated Frequency Duty Cycle

A1 0.15 Off Off

A2 0.15 500 W Off 100% Off
A3 0.15 700 W Off 100% Off

B1 0.15 1 kW 10 kHz 10% 8 kV

B2 0.18 Off Off

B3 0.18 1 kW 10 kHz 10% 8 kV

2.4. Microwave Feed Design and Intensity Calculation

In order to characterize the distribution and the propagation characteristics of the elec-
tromagnetic field in the combustion chamber after the addition of microwaves, HFSS simu-
lation software was used to simulate the electromagnetic field inside the scramjet model.

Figure 7 shows the structure of the microwave computing domain. The green part
in Figure 7 represents the quartz glass. The upper side of the glass was the horn antenna.
The ideal conductor boundary condition was used on the wall, the radiation boundary
condition was used at the entrance and the exit, and the microwave feed position was
above the cavity. The frequency-domain finite element analysis method was used in the
calculation. The main excitation frequency was 2.45 GHz.
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Figure 7. HFSS simulation model.

Figure 8 shows the calculation results of electric field intensity distribution at the
dominant frequency of 2.45 GHz. It can be seen that the electric field was mainly distributed
in the cavity area of the combustion chamber. In other words, after the 2.45 GHz microwaves
were applied, the power was not transferred to both ends but, rather, gathered in the
combustor, which was beneficial for improving the electric field energy in the local area.
Based on the distribution of the electric field, a concentrated high-electric-field area was
formed in the center of the flow channel, and the maximum intensity was no more than
1000 V/m, which was lower than the breakdown voltage. The electric field intensity had a
polarization direction that was perpendicular to the flow direction and pointed to one of
the side walls.
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2.5. Discharge Characteristics of the Gliding Arc in Supersonic Flow

When the voltage acted on the electrode, it was broken down at the nearest position of
the two electrodes to form an arc. Then, due to the effect of the air flow, the arc glided and
elongated along the electrode to form a gliding arc. When the current could not support the
length of the arc, the arc broke and, at the same time, another arc reformed at the starting
position, so the cycle repeated. Additionally, because the length of the arc changed the arc
resistance, the periodic law of voltage appeared at the electrodes. The cycle characteristics
of the gliding arc can be found in reference [44].

As shown in Figure 5b, the supersonic flow direction was from left to right, and
the starting position of the gliding arc was on the left side of the electrodes, followed by
expansion. When the current could not support the arc length, the arc broke and formed
again on the left side of the electrode. Figure 9 shows the periodic characteristics of the
voltage and current of the electrodes. In Figure 9, the high and low points of the voltage
represent the generation and expansion of the gliding arc, respectively, and the current
was opposite to the voltage trend. The voltage period was ~8 µs, and the frequency was
~125 kHz. The average arc power was ~102.8 W, the maximum instantaneous power was
3934.9 W, and the minimum was 0 W.



Aerospace 2022, 9, 73 8 of 19

Aerospace 2022, 9, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 8. Simulation result of the cavity electric field. 

2.5. Discharge Characteristics of the Gliding Arc in Supersonic Flow 
When the voltage acted on the electrode, it was broken down at the nearest position 

of the two electrodes to form an arc. Then, due to the effect of the air flow, the arc glided 
and elongated along the electrode to form a gliding arc. When the current could not 
support the length of the arc, the arc broke and, at the same time, another arc reformed at 
the starting position, so the cycle repeated. Additionally, because the length of the arc 
changed the arc resistance, the periodic law of voltage appeared at the electrodes. The 
cycle characteristics of the gliding arc can be found in reference [44]. 

As shown in Figure 5b, the supersonic flow direction was from left to right, and the 
starting position of the gliding arc was on the left side of the electrodes, followed by ex-
pansion. When the current could not support the arc length, the arc broke and formed 
again on the left side of the electrode. Figure 9 shows the periodic characteristics of the 
voltage and current of the electrodes. In Figure 9, the high and low points of the voltage 
represent the generation and expansion of the gliding arc, respectively, and the current 
was opposite to the voltage trend. The voltage period was ~8 μs, and the frequency was 
~125 kHz. The average arc power was ~102.8 W, the maximum instantaneous power was 
3934.9 W, and the minimum was 0 W. 

 
Figure 9. Gliding arc voltage and current period characteristics. 

2.6. Method of OH Rotation and Vibration Temperature Analysis 

Figure 9. Gliding arc voltage and current period characteristics.

2.6. Method of OH Rotation and Vibration Temperature Analysis

The energy level transition produced the corresponding wavelength spectrum in a
diatomic molecule. The spectral intensity Iv′ J′

v′′ J′′ represents the energy emitted by the source
in a unit of time, as shown in Formula (1) [45].

Iv′ J′

v′′ J′′ =
64π4c·Pv′ J′

v′′ J′′ ·S
J′

J′′

(
vv′ J′

v′′ J′′

)4

3
N0g′e

QeQvQr
exp

(
− Ee

kTe

)
exp

(
− Ev

kTv

)
exp

(
− Er

kTr

)
(1)

where Pv′ J′

v′′ J′′ , SJ′

J′′ , vv′ J′

v′′ J′′ , g′e, Ee, Ev, and Er were determined by the molecular structure—that
is to say, they were known quantities for OH. Therefore, for certain molecules or radicals,
the spectral intensity Iv′ J′

v′′ J′′ was only related to the electron temperature Te, vibration
temperature Tv, and rotation temperature Tr. A detailed calculation method can be found
in reference [45].

For OH ( A2Σ+ → B2Πγ ), there were four spectral intensity peaks (G0, G1, G2, and
G3), corresponding to different energy level transitions, in the range of 305–312 nm. If the
peak intensity of G0 was defined as 1000, the peak intensities of G1, G2, and G3 gradually
increased with the increase in the rotation temperature and the vibration temperature,
which was an important judgment basis for the measurement of the rotational temperature
and the vibration temperature with the emission spectrum of the OH free radical electron
band ( A2Σ+ → B2Πγ ).

In this study, the rotational and vibrational temperatures of the OH radicals were mea-
sured by simulating the experimental spectra with LIFBASE software, while considering of
the collisional broadening and Doppler broadening in a Bunsen flame.

3. Results
3.1. Analysis of Flame Emission Spectra Influenced by Arc Plasma

As shown in Figures 10 and 11, from spectral emission lines in the UV–Vis wavelength
range, molecular radicals such as OH, N2, CH*, and C2 appeared in the flame, compared
with a flame without plasma. The line intensity of free radicals such as OH, N2, CH*, and
C2 increased with the increase in the arc power.
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In order to show the free radical luminescence intensity more clearly, Figure 11 displays
the radical emission bands. The relative intensity of the OH (309.1 nm, A2Σ+ → B2Πγ )
radical spectrum increased rapidly, and the maximum increased by more than 10-fold
compared to having the plasma off, while the other radicals (CH* 431 nm, C2 516.18 nm)
had a slow increase. The relative intensity of the OH (309.1 nm, A2Σ+ → B2Πγ ) radical
spectrum was weaker than that of the C2 Swan band (d3Πg → a3Πµ (∆υ = 0)) in the flame
without plasma, but it became much stronger when the plasma was on, as can be seen
from Figure 11d. The luminescence intensity could represent the amount of free radicals,
so the DC arc caused the combustion to produce more OH without generating more of
other free radicals, such as C2 and CH*, demonstrating that the combustion reaction path
was transitioned.

The arc discharge in the air could generate O (777.6 nm) atoms because of the electronic
collision [46], as shown in Figure 12.

e + O2 → O + O(1D) (2)

e + O+
2 → O + O (3)

H + O2 → OH + O (4)
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Figure 12. Infrared spectrum of arc discharge in the air.

The oxygen atoms could react directly with ethylene to produce CHxO.

C2H4 + O→ CHxO (5)

Therefore, the effect of arc plasma on the combustion was not only a thermal effect,
but also an ion dynamic effect.

3.2. Analysis of OH Rotation and Vibration Temperature Influenced by Arc Plasma

After setting the OH ( A2Σ→ X2Π ) transition 0-0 band maximum intensity (G0) to
1000, the spectral structure was observed, as shown in Figure 13. There was no significant
difference between the OH with and without plasma, meaning that the plasma did not
change the rotation or vibration temperature of the OH radical, but did increase the
OH quantity.

The rotational and vibrational temperatures of the OH radicals were measured by
simulating the experimental spectra with LIFBASE software, with consideration of the
collisional broadening and the Doppler broadening in the Bunsen flame with 70.85 W
plasma, which showed Tvib = 5000 K and Trot = 3900 K.
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Figure 13. (a) OH spectrum with and without plasma; (b) OH rotation and vibration temperature
with 70.85 W plasma.

3.3. Spectral Analysis of Flames Affected by Microwaves

Figure 14 shows the spectra of near-ultraviolet and visible light with different mi-
crowave powers. It can be seen from the figures that there was no obvious change in the
types of main free radicals. OH (0-0), CH* (0-0), C2 (1-0), C2 (0-0), and C2 (0-1) were found
in the flame. In order to study the effect of the microwaves on different free radicals, each
group was observed separately in Figure 15.
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Figure 14. Microwave-influenced ethylene flame emission spectra.

Figure 15 shows the changes in the OH (a) and CH* (b) radical luminescence spectra
after adding microwaves. It can be seen that the OH spectral intensity became stronger after
adding microwaves. However, in the range of 100–800 W, the increase was not obvious, but
there was a large increase after the power went up to 1000 W. Additionally, the intensity of
CH* increased slightly after adding microwaves.

As shown in Figure 16, the C2 group had three emission bands in the visible range.
It was found that the intensity decreased with the increase in the microwave power, and
decreased significantly after the microwave power went up to 1000 W.
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Figure 15. Microwave-influenced ethylene flame emission spectra: OH and CH*, (a) OH luminescence
spectra, (b) CH* luminescence spectra.
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In order to show the free radical luminescence intensity trend more clearly, as shown
in Figure 17, the OH increased quasi-linearly below 800 W, and suddenly increased when
the power reached 1000 W. In contrast, the luminescence intensity of the C2 decreased
sharply. Obviously, after adding microwaves and reaching a certain power, the chemical
reaction path changed, showing that the power of 1000 W was the threshold of the influence
of microwaves on the flame. When the microwave power was lower than 1000 W or 800 W,
it could affect the flame, but not obviously; with the continuous increase in power, an
obvious effect was produced.
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3.4. Pressure Characteristics of Scramjet Influenced by Plasma

Figure 18 shows the pressure history (1 bar = 100 kPa) measured by the high-frequency
pressure sensor at the rear edge of the cavity (CH03 in Figure 5b).
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Figure 18. Cavity pressure history at different plasma powers.

There was almost no difference in pressure at the initial stable time of combustion. As
time went on, the pressure rose sharply in the case of plasma assistance, and the position of
the rising pressure point moved forward with the increase in the microwave power, such
as in cases A1–A3. In case B1, the combustion pressure was high at the initial time due to
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the microwave-enhanced gliding arc plasma, which indicated that the combined effect of
the plasma had a more significant combustion assistance effect.

The equivalence ratio was increased to 0.18, and attention was paid to the pressure
at CH02 (Figure 5), as shown in Figure 19. The shock train moved forward and crossed
the pressure-measuring point with the influence of the plasma, resulting in an increase in
the pressure at that position (CH02). In general, the pressure oscillated back and forth at
the CH02 measuring point, and the addition of plasma made it easier for the pressure to
stabilize upstream of the measuring point.
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The pressure not only represented combustion intensity, but also reflected the structure
and position of the flame. The combustion mode was defined as mode A with low pressure
and mode B after the increase in pressure.

Figure 20 shows the pressure along the path for different microwave powers at mode
B. It was found that the rising point of the mode B pressure in the isolator was in front of
that in mode A, and the pressure peak areas were relatively concentrated.
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3.5. Characteristics of Average Flame Structure Affected by Plasma

One hundred images were extracted from modes A or B for the gray average, as shown
in the left-hand side of Figure 21. The pseudo-color images are shown on the right-hand
side of the figure.
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(a) results of microwave experiments, (b) results of microwave enhanced gliding arc experiments.

The flame area could be divided into two combustion areas according to the distribu-
tion of the shear layer in the cavity. The lower side of the white dotted line in the figure
represents the main combustion area of the shear layer, while the upper side of the white
dotted line represents the jet flame stabilization area. The significance of this division is
mainly to analyze the changes in the flame structure caused by the plasma. After plasma
was added, the flame’s high-intensity region was transferred from the stable flame region
of the cavity to the jet flame stabilization region, and the flame extended forward towards
the front. The heat release area of the flame was larger, and the core of the strong heat
release zone became smaller and more concentrated in the jet flame’s stabilizing area, which
caused the wall pressure to rise.

Similarly, when the equivalence ratio was 0.18, the flame structure changed greatly
with the influence of plasma, as shown in Figure 22. The flame stabilized in two areas,
without plasma, as shown by the yellow and red ellipse marks in Figure 22. The yellow
marks could be regarded as the flame stabilization area formed by the jet, while the red
mark could be regarded as the flame stabilization area formed by the cavity. With the
influence of plasma, the two regions recombined, and almost all of the flame-stabilizing
region of the jet was transferred to the recirculation region in front of the jet.
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images (right).

In the supersonic flow, plasma was produced by the gliding arc, which was expanded
by the microwaves and then acted on the flame [47]. Figure 23 shows the interaction
between the plasma and the flame in the scramjet. Due to the effect of the plasma, the flame
in the cavity was pushed forward, which made the jet-stabilized flame region develop
forward, thus forming the flame structure shown in Figures 21 and 22.
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4. Discussion

For the cavity combustion of a scramjet, the combustion become unstable during the
modification process of scramjet mode and ramjet mode during aircraft acceleration or
deceleration [12]. In this study, a plasma-assisted supersonic combustion method was
proposed to modify the flame structure. The mechanism of microwave-extended gliding-
arc-plasma-assisted combustion was studied and applied to a scramjet. The following
conclusions can be drawn:

1. The arc plasma could increase the flame temperature in the power range of 0–70.85 W,
and the temperature was not proportional to the arc power but, rather, to the current;

2. With the increase in the flame temperature, the concentration of OH radicals in the
intermediate combustion increased ninefold at an arc power of 70.85 W, while the
concentrations of CH* and C2 did not change significantly;

3. The rotation temperature and vibration temperature of the OH radicals did not change
with the increase in the emission intensity, which was assisted by arc plasma;

4. The intensity of OH and CH* radical emission increased while the intensity of C2
emission decreased with the action of the microwaves. However, in the limited
energy range of the microwaves (<800 W), there was no typical change in the intensity
of the radicals. Nevertheless, when the microwave power reached a certain point
(800–1000 W), the effect became obvious. Therefore, the effect of the microwaves on
the flame was an integral effect, and only when a certain value was reached could the
microwaves play a significant role;

5. The microwave-enhanced gliding arc plasma changed the structure of the scramjet
flame sharply with low power. The integral effect explained the relationship between
the flame structure’s abrupt increasing position and microwave power.
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5. Conclusions

This study concentrated on the mechanism of plasma changing supersonic combustion
mode. The effects of an arc and microwave on flames were studied experimentally. The
current of the arc is the main parameter influencing combustion, as opposed to power.
Plasma mainly affects OH radicals in flames, showing that the plasma shifts the combustion
reaction path in the direction of OH participation. The effect of microwaves on the flame is
an integral effect, which explains the flame structure’s abrupt increase during the addition of
plasma. However, the experiments in the paper had flaws, such as the microwave addition
setup not being suitable, resulting in a waste of energy. In the future, the experimental
technology should be optimized to supplement the flame trend affected by microwaves.
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