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Abstract: This study investigated the variation of the osculating orbit elements of a spacecraft
propelled by photonic laser propulsion (PLP) under the two-body problem assumption. The PLP
thrusting system can produce continuous and constant thrust. This paper first reviewed its basics
and then studied its influences on the variation of osculating orbit elements given a small PLP
thrust. Gauss’s equations, perturbation theory, and normalization were introduced to investigate
this problem. Our work approached the problem by studying the influences of small planar and
out-of-plane PLP thrusts, respectively. Bounds on the variation of orbit elements were derived, and
a sufficient condition that traps the mission spacecraft in the vicinity of the mother ship was also
found. Numerical simulations are also presented to verify our results, including the bounds and the
sufficient conditions. The results obtained in this paper are directly applicable to the usage of PLP
thrust, a new type of thrusting system, in the future, and are potentially helpful to various space
missions, especially interplanetary travel.

Keywords: photonic laser propulsion; Gauss equations; perturbation theory; osculating orbit
elements; interplanetary travel

1. Introduction

This paper studied the trajectory variation of spacecraft propelled by a low-thrust
photonic laser propulsion (PLP) system under the two-body problem environment. In
the past few decades, many researchers have shown great interest in the photon thruster
and its applications to interplanetary travel, because of its highly efficient and continuous
thrusting properties [1–5]. In 2002, Thomas R. Meyer et al. [6] studied the idea of the laser
elevator by momentum transfer using an optical resonator. Young K. Bae [7] proposed the
concept of photonic laser propulsion in 2008. In that study, the PLP thruster was modeled
as a continuous, low-thrust, and high-specific-impulse (Isp) engine. A potential application
of the PLP-driven missions proposed by these studies is interplanetary travel. A journey to
the Alpha Centauri star system was even proposed in 2016 by the Breakthrough Starshot
project by Yuri Milner, Stephen Hawking, and Mark Zuckerberg [8].

However, these research works focused more on the PLP thruster itself, and less on
the influence on the trajectory. A common assumption is seen in these research works:
since the laser continuously pushes and accelerates the mission spacecraft, the mission
spacecraft will eventually reach a very high speed, and interplanetary or interstellar travel
can be accomplished in a very short traveling time, regardless of the practical problems
of the aiming and the relativity effects. It was not until 2011 that Wang and Hsiao [9]
investigated the trajectory of the PLP spacecraft under the two-body-problem assumption.
Wang and Hsiao realized that some constraints still exist in the applications of PLP thrust [9].
Equilibrium points exist in the planet–mother ship–mission spacecraft system. The mission
spacecraft will be trapped in the vicinity of the mother ship if the PLP force is smaller than
a threshold, as proposed in [9].

On the other hand, much attention has been focused on a continuous, low-thrust
engine, the efficiency of which was proven in the Deep Space 1 mission by NASA [10]
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and in a lunar mission by the European Space Agency (ESA) [11]. Several interplanetary
missions demonstrated the feasibility of using a low-thrust engine, such as by electric
propulsion, as the main propulsion system of the spacecraft. The idea of using the power
of light has been studied for decades. Many space missions using light propulsion have
been implemented using solar sails. The drawbacks of solar light are that it is passive
and its magnitude is inversely proportional to the square of the distance. As a result,
the propulsive force decays sharply as long as the spacecraft is far away from the Sun. A
continuous and constant PLP force will suppress these drawbacks.

This article is a continuation of the work of [9]. As mentioned earlier, a criterion is
imposed on the magnitude of the PLP thrust for practical applications. We were interested
more in the influences of a small PLP thrust on the trajectory, because in the current
technology, it is infeasible to generate a very large laser power from a space-borne base.
By studying the spacecraft trajectory driven by a small PLP thrust, we are able to propose
a reasonable laser power criterion for the application of PLP thrust for interplanetary or
interstellar travel.

A preliminary work was presented in [12]. The results described here, as an extension
of the preliminary work, derived more bounds on the variation of the planar orbit elements,
adding a full section discussing the out-of-plane cases and providing many more numerical
simulations for its verification. First, this paper briefly reviewed some facts and theories
regarding the PLP system. The Gauss equations were employed to understand the variation
of the osculating orbit elements. Normalization was also employed to generalize the results.
Perturbation theory was applied to study the zeroth- and first-order approximations pro-
vided that the mission spacecraft is driven by a small PLP thrust. With certain assumptions,
we were able to obtain bounds on the variation of the osculating orbit elements. Numerical
simulations are provided to verify the proposed algorithms.

The paper is arranged as follows: Section 2 reviews some facts about PLP thrust;
Section 3 reviews the assumptions of the investigated system and the normalization process;
Section 4 briefly reviews the Gauss equations and perturbation theory; Section 5 and
Section 6 study the variation of the osculating orbit elements by applying planar and
out-of-plane thrusting forces, respectively; Section 7 provides some numerical simulations
to verity the proposed algorithms; the last section of the paper concludes our work.

2. Photonic Laser Propulsion

Many scientists have discussed the concept of using a laser to provide thrust. However,
lasers are very inefficient at generating thrust. Although photonic engines have a larger
specific impulse compared to conventional ones, they have a smaller thrust-to-power
ratio [7]. The specific impulse is approximately Isp = 3.06× 107 s, whereas the thrust-to-
power ratio is approximately T/P = 3.34× 10−9 N/W.

Bae proposed an active resonant optical cavity between two space platforms. In this
design, the photon thrust F produced on each mirror is given by [7]:

F =
E
ct

, (1)

where E is the energy of each photon, c is the speed of light, and t is the interaction time.
By some manipulations, the thrust can be expressed as [7]:

F =
2PRmS

c
, (2)

where Rm is the mirror reflectance and S is the apparent photon-thrust-amplification factor,
defined as the ratio of the intracavity laser power to the extracavity laser power P. The term
S is approximated by:

S =
1

1− Rm
. (3)
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The roof-of-concept demonstration can be found in [7]. Figure 1 presents some experi-
mental data. According to Equations (2) and (3), the thrust is a continuous and stable force.
Even though the force is very small, the continuous force keeps driving the spacecraft until
it reaches the desired velocity. Figure 2 illustrates the application of PLP to a spacecraft.
The launching process starts with a mother ship, which emits a laser beam at the mission
ship to generate thrust. Because of the conservation of momentum, however, the mother
ship moves in the opposite direction of the mission ship. Thus, a conventional thruster
installed on the mission ship must act against the momentum caused by PLP to prevent the
mother ship from falling out of orbit.
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Figure 1. Photon thrust data obtained with an output coupler mirror with a reflectance of 0.99967 [7].

LASER

Mission spacecraft
Mothership

Ground Mirror Sail Mirror

Figure 2. Diagram of the photonic laser propulsion system on a spacecraft [6].

3. Equations of Motion

Figure 3 shows the relative locations of the central body, mother ship, and mission
spacecraft. Let r be the position vector of the mission spacecraft, R the position vector of
the mother ship, and r− R be the relative position of the spacecraft with respect to the
mother ship. Assume the masses of the mother ship and the spacecraft are negligibly small
so that they do not produce any gravitational force. According to Newton’s gravitation law
and Newton’s second law of motion, the equations of motion (EOMs) of the mother ship
and spacecraft are given by:

R̈ = − µ

R3 R, (4)

r̈ = − µ

r3 r + FL̂, (5)

where µ is the gravitational parameter of the central body, L = r− R, L̂ = L/|L|, and F is
the PLP force given by Equation (2). Note that Equations (4) and (5) are described in the
inertial frame (IF).
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Figure 3. Relative positions between the central body, mother ship, and mission spacecraft.

Two coordinate systems were introduced in the inertial frame in the study. First of
all, the J2000 Coordinate System, represented by (I, J, K), was introduced to specify the
orbit elements. In this system, I points toward the vernal equinox, K points toward the
North Pole of the Earth, and J completes the triad by the right-hand rule. Although J2000
is defined by the Earth, it is also widely used in the exploration of other celestial bodies.
The other coordinate system is represented by (i, j, k). In this system, i points toward the
initial position of the mother ship, k points toward the angular momentum of the mother
ship, and J = k× i.

This study did not consider the reaction force by the PLP on the mother ship because
in practical applications, we assumed that this reaction is counteracted by a traditional
propulsion system. Moreover, this study also assumed that F is constant and acts along the
relative position of the mission spacecraft and the mother ship.

4. Variation of Osculating Orbit Elements and Perturbation Theory
4.1. Osculating Orbit Elements and Normalized Gauss Equations

The motion described by Equation (5) is Keplerian if F ≡ 0. A Keplerian trajectory can
be described by six canonical orbit elements: a the semi-major axis, e the eccentricity, i the
inclination, Ω the longitude of ascending node, ω the argument of periapsis, and M the
mean anomaly. These elements are functions of the spacecraft position r(t) and velocity
v(t) in the IF. Without external perturbation forces, the orbit elements remain constant
over time.

When an external force is exerted on a spacecraft, the variation of its osculating orbit
elements is described by the Gauss-type planetary equations [13]. Moreover, normalization
is helpful to generalize applications. In this paper, the only perturbation results from the
PLP thrust between the mother ship and the mission ship. Hence, it is natural to normalize
this system with the mother ship’s parameters.

Assume a spacecraft is suffering from a continuous force F = Fr êr + Ff ê f + Fhêh, where
êr and êh are the unit vectors along the position and angular momentum, respectively,
and ê f = êh× êr. Define nR =

√
µ/R3 to be the mean motion of the mother ship, and some

fundamental parameters are normalized as follows:
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r̃ =
r
R

, (6)

τ = nRt, (7)

F̃ = F
R2

µ
= Fr

R2

µ
êr + Ff

R2

µ
ê f + Fh

R2

µ
êh

= F̃r êr + F̃f ê f + F̃hêh, (8)

ã =
a
R

, (9)

ñ =
n

nR
=

√
1
ã3 . (10)

Since ñ =
√

µ̃/ã3, we conclude that µ̃ = 1. The elements e, i, ω, Ω, and f are already
dimensionless. Hence, ẽ = e, ĩ = i, and so on. Moreover, the derivative of a differential
function X(t) with respect to dimensionless time τ can by found by the chain rule, given by,

dX
dτ

=
dX
dt

dt
dτ

=
1

nR

dX
dt

. (11)

According to these definitions, the normalized parameters and elements of the mother
ship are determined as follows:

R̃(t) =
R(t)

R
= R̂(t), (12)

Ṽ(t) =
dR̃
dτ

=
1

nRR
dR
dt

=
V(t)

V
. (13)

Consequently, R̃(t) = êr, Ṽ(t) = ê f , and µ̃ = 1, and the values of the following parameters
can be found by:

Ẽm =
1
2

Ṽ2 − µ̃

R̃
= −1

2
, (14)

ãm =
am

R
= 1, (15)

ñm =
nR
nR

= 1, (16)

where the subscript m denotes the mother ship. Moreover, em = 0, im = i0, Ωm = Ω0,
and ωm = ω0. Without lost of generality, we set fm = 0 for the mother ship at t = 0.

Accordingly, the normalized Gauss equations are given as follows:

dΩ
dτ

=
ñãr̃√
1− e2

F̃h sin u csc i, (17)

di
dτ

=
ñãr̃√
1− e2

F̃h cos u, (18)

de
dτ

= ñã2
√

1− e2
{

F̃r sin f + F̃f (cos f + cos E)
}

, (19)

dω

dτ
=

ñã2

e

√
1− e2

{
−F̃r cos f + F̃f

(
1 +

r̃
p̃

sin f
)}
− cos i

dΩ
dτ

, (20)

dã
dτ

= 2ñã2

{
F̃r

ãe√
1− e2

sin f + F̃f
ã2
√

1− e2

r̃

}
, (21)

dñ
dτ

= −3
2

ñ
ã

dã
dτ

. (22)

where f is the true anomaly and u = f + ω.
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The remaining part of the paper focuses on the normalized Gauss equations. To sim-
plify future derivations, the tilde signs in Equations (17) to (22) are dropped in the following
part of the paper.

Notable, perturbations may cause osculating or non-osculating orbits, depending
on the types of perturbations [14,15]. In the problem discussed in this article, orbits are
osculating because the PLP thrust is not velocity dependent. Consequently, the term “orbit
elements” refers to “osculating orbit elements” in the remainder of this paper.

4.2. Review of Perturbation Theory

This paper focused on the influence of small PLP thrust. Hence, perturbation theory
can be employed to understand and approximate the variation of the orbit elements. The
following is a brief review of perturbation theory.

Consider a differentiable function x(t) that satisfies the following differential equation:

dx
dt

= ε f (x), (23)

where ε� 1. Suppose the solution to the differential equation is:

x(t) = x(0)(t) + εx(1)(t) + ε2x(2)(t) +O(ε3), (24)

where x(0)(t), x(1)(t), x(2)(t), etc., are assumed differential.
Substituting Equation (24) into Equation (23) yields:

ẋ(0) + εẋ(1) + ε2 ẋ(2) + · · · = ε f (x(0) + εx(1) + ε2x(2) + · · · )

= ε

{
f (x(0)) +

∂ f
∂ε

∣∣∣∣
ε=0

ε + · · ·
}

. (25)

Comparing the coefficients between two sides leads to:

dx(0)

dt
= 0, (26)

dεx(1)

dt
= ε f (x(0)), (27)

...

Equation (26) determines a constant x(0), and εx(1) can be found by:

εx(1) =
∫

ε f (x(0))dt. (28)

If ε is small enough, the solution x(t) can be approached by the first-order approximation
as follows:

x(t) ≈ x(0) + εx(1)(t). (29)

Note that the notations for the zeroth-order approximation are changed to x̄ in the following
derivations to make the equations neat, that is,

x(t) ≈ x̄(t) + εx(1)(t). (30)

5. Influence of Planar PLP Thrust

If the PLP force is planar, i.e., F = Fr êr + Ff ê f , it is apparent that dΩ/dτ = 0 and
di/dτ = 0. The remaining equations to solve are Equations (19)–(22). Notably, dΩ/dτ in
Equation (20) equals zero.
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5.1. Zeroth-Order Approximation

The geometric parameters of the mother ship and mission spacecraft are depicted
in Figure 4. As determined in Equation (26), the zeroth-order approximation is the un-
perturbed orbital elements of the mission spacecraft. Here, we assumed that the mission
spacecraft deviates from the mother ship by a normalized offset ||L(0)|| = l0 � 1, but keeps
a velocity identical to the mother ship, i.e., v = V = j at t = 0. A potential scenario to
implement this assumption is that the mother ship holds the mission spacecraft with robotic
arms to place it at the launch site in the vicinity of the mother ship. When the laser beam is
initiated, the robotic arms release and the spacecraft is driven away.

Central Body

Mother ship

Mission ship

Potential trajectory of mission ship

Potential trajectory of mother ship

fR

f

φ

lr

R

i

j

Figure 4. Parameters of the mother mother ship and mission spacecraft. All parameters are normal-
ized in this figure.

5.1.1. Semi-Major Axis

The zeroth-order approximation of semi-major axis ā can be obtained from the ini-
tial energy. According to the assumption, the initial energy of the mission spacecraft is
obtained by:

E =
1
2
× 12 − 1

r
. (31)

Since 1− l0 ≤ r ≤ 1 + l0, it is conclusive that:

Emin =
1
2
− 1

1− l0
=

1
2
− (1− l0)−1

≈ 1
2
− (1 + l0) = −

1
2
− l0. (32)

Similarly, Emax ≈ −1/2 + l0. As a result,

āmin =
−1

2Emin

= −(−1− 2l0)−1 ≈ 1− 2l0. (33)

Similarly, āmax = 1 + 2l0. Consequently, we conclude that ā ≤ 1 + 2l0.
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5.1.2. Eccentricity

To find the initial eccentricity of the mission spacecraft, we had to compute the
initial angular momentum. Let ψ be the angle between L and R. Figure 4 indicates
that r = (1 + l0 cos ψ)i + l0 sin ψj and v = j and:

h = ||r× v|| = 1 + l0 cos ψ, (34)

and r =
√

1 + 2l0 cos ψ + l2
0 . The eccentricity is computed by:

e =

√
1 +

2Eh2

µ2

=

√
1 + 2

(
1
2
− 1

r

)
(1 + l0 cos ψ)2

=
√

1 +
[
1− 2(1 + 2l0 cos ψ + l2

0)
(−1/2)

]
(1 + l0 cos ψ)2

≈
√

l2
0 + k1l3

0 + k2l4
0

≈ l0, (35)

where k1 = 2 cos ψ − 4 cos3 ψ, k2 = cos2 ψ − 3 cos4 ψ, and the approximation of 1/r is
detailed in Appendix A. As a result, ē = l0.

5.1.3. Longitude of the Ascending Node and Argument of Periapsis

Subject to an initial planar offset, only the magnitude of the angular momentum of
the mission spacecraft may change, but the axis of the angular momentum will not. This
indicates that the longitude of ascension remains identical to the mother ship, i.e., Ω̄ = Ωm.

However, the initial offset of the mission spacecraft may cause the shift of the eccen-
tricity axis. Since the argument of periapsis is defined as the angle between the eccentricity
axis and the axis of the ascending node, the zeroth-order of the argument of periapsis
may change. An easier approach is to find the angle difference from the mother ship,
i.e., ω̄ = ωm + ∆ω, where ∆ω satisfies:

e · R = e cos ∆ω. (36)

Recall that r = (1 + l0 cos ψ))i + l0 sin ψj and h = r× v = (1 + l0 cos ψ))k. Then,

e = (v× h)/µ− r̂

= (1 + l0 cos ψ)i− (1 + l0 cos ψ)i + l0 sin ψj√
1 + l2

0 + 2l0 cos ψ
. (37)

Consequently,

e · R = (1 + l0 cos ψ)− 1 + l0 cos ψ√
1 + l2

0 + 2l0 cos ψ

= (1 + l0 cos ψ)

1− 1√
1 + l2

0 + 2l0 cos ψ


≈ 2l0 cos ψ(1 + l0 cos ψ) ≈ 2l0 cos ψ. (38)

Since ē ≈ l0, we conclude that:

∆ω = cos−1(2 cos ψ). (39)
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5.1.4. Mean Motion

The mean motion is a function of the semi-major axis, given by n =
√

µ/a3. In the
normalized system,

n =

√
1
a3 = a−

3
2 (40)

Then, the zeroth-order approximation can be found by:

n̄ = ā−
3
2 = (1 + ∆a)−

3
2

≈ 1− 3
2

∆a (41)

Since ā ∈ [1− 2l0, 1 + 2l0], we conclude that:

1− 3l0 ≤ n̄ ≤ 1 + 3l0 (42)

5.2. First-Order Approximation and Bounds of Elements under Small Thrust

Suppose the PLP force is small enough so that the right-hand-side functions in
Equations (17) to (22) are very small. The perturbation theory can be applied to approxi-
mate the solutions. We only consider the influence on planar motion in this section.

5.2.1. Semi-Major Axis

According to the conclusion in Section 4.2, the evolution of the semi-major axis can be
approximated as:

a ≈ ā + εa(1) + · · · , (43)

where ā is the solution of the unperturbed system. Section 5.1.1 concluded that ā ∈
[1− 2l0, 1 + 2l0], depending on the initial offset of the mission spacecraft.

The first-order approximation εa(1) can be found by:

εa(1) =
∫

ε f (ā, ē, n̄)dτ

=
∫

2n̄ā2

{
Fr

āē√
1− ē2

sin f + Ff
ā2
√

1− ē2

r

}
dτ (44)

The integration in the time domain is very complicated. Instead, we integrated this system
in the eccentric-anomaly domain. According to Kepler’s law, nτ = E− e sin E. We can
change the variables by:

ndτ = (1− e cos E)dE (45)

Moreover, the following identities were employed:

r =
a(1− e2)

1 + e cos f
= a(1− e cos E) (46)

cos f =
cos E− e

1− e cos E
(47)

sin f =

√
1− e2 sin E

1− e cos E
(48)

Then, the integration can be rewritten as:

εa(1) =
∫ E

0
2ā3
(

Fr ē sin E + Ff

√
1− ē2

)
dE, (49)
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where E ≥ 0. The assumption of E ≥ 0 holds for the whole article.
As shown in Figure 4, Fr = F cos φ and Ff = F sin φ, where φ satisfies:

l2 + r2 − 2lr cos φ = 1 (50)

Moreover,

1
sin φ

=
l

sin( f − τ)
(51)

r =
a(1− e2)

1 + e cos f
(52)

Solving Equations (50) to (52) yields φ as a function of f , i.e., φ = φ( f ). Since the true
anomaly f is a function of E, described in Equations (47) and (48), by the change of variables,
we eventually obtained φ = φ(E).

The integration can be written as:

εa(1) =
∫ E

0
2ā3F

(
ē cos φ sin E + sin φ

√
1− ē2

)
dE. (53)

Define:

cos αa =
ē sin E√

ē2 sin2 E + 1− ē2
=

ē sin E√
1− ē2 cos2 E

(54)

sin αa =

√
1− ē2

√
1− ē2 cos2 E

(55)

Then, Equation (53) can be rewritten as:

εa(1) =
∫ E

0
2ā3F

√
1− ē2 cos2 E cos(φ− αa)dE (56)

Since
√

1− ē2 cos2 E ≤ 1 and −1 ≤ cos(φ− αa) ≤ 1, the integration satisfies,

εa(1) =
∫ E

0
2ā3F

√
1− ē2 cos2 E cos(φ− αa)dE

≤
∫ E

0
2ā3FdE

= 2EFā3 (57)

If we integrate over one period, i.e., E = 2π, then εa(1) ≤ 4πFā3. Accordingly,

a ≤ 1± 2l0 + 4πF(1± 2l0)3

≈ 1± 2l0 + 4πF(1± 6l0)

= (1 + 4πF)± (2± 24πF)l0 (58)

However, Equation (58) holds only if the PLP force is small enough. In other words,
εa(1) � ā. A reasonable assumption is that:

εa(1) ≤ 4πFā3 ≤ 0.1ā (59)

Then, we conclude:

F ≤ 1
40πā2

≈ 1
40π

(1∓ 4l0) ≈ 0.008 (60)



Aerospace 2022, 9, 75 11 of 28

Equation (60) provides a sufficient condition. If F is smaller than 0.008, the trajectory
will not leave the vicinity of the mother ship for a while. Actually, approximations and
assumptions were made during the derivation. The upper bound of F for a small perturba-
tion can be larger. The result also agrees with the upper bound found in Hsiao’s paper [9],
where a more rigorous bound was applied by F ≤ l0/16.

5.2.2. Eccentricity

A similar procedure can be applied to analyze the evolution of eccentricity. With
the change of variables, Equation (19) can be rewritten as:

εe(1) =
∫ E

0
ā2
√

1− ē2
(

Fr
√

1− ē2 sin E + Ff (2 cos E− ē− ē cos2 E)
)

dE (61)

Defining Ke =
√

1− ē2 and applying the identity cos2 E = (1 + cos 2E)/2 yield:

εe(1) =
∫ E

0
ā2Ke

(
FrKe sin E + Ff

(
2 cos E− 3ē

2
− ē cos 2E

2

))
dE

=
∫ E

0
ā2FKe

(
cos φKe sin E + sin φ

(
2 cos E− 3ē

2
− ē cos 2E

2

))
dE (62)

Define

K = (Ke sin E)2 +

(
2 cos E− 3ē

2
− ē cos 2E

2

)2

= ē2 cos4 E− 4ē cos3 E + (−ē4 + 4ē2 + 3) cos2 E

−4ē cos E + (−ē2 + 1 + ē4) ≥ 0 (63)

cos αe =
Ke sin E√

K
(64)

sin αe =
2 cos E− 3ē/2− ē cos 2E/2√

K
(65)

Equation (62) becomes:

εe(1) =
∫ E

0
ā2FKe

√
K cos(φ− αe)dE (66)

The parameter K in Equation (63) is a function of ē and cos E. The mission spacecraft
is assumed to launch very close to the mother ship. It is reasonable to assume 0 ≤ ē� 1.
Moreover, −1 ≤ cos E ≤ 1.

Figure 5 gives the simulation of the maximum value versus different ē’s. We can see
that, over all possible ē’s,

√
K ≤ 2. As a result, we conclude that Equation (62) leads to:

εe(1) =
∫ E

0
ā2FKe

√
K cos(φ− αe)dE

≤
∫ E

0
2ā2FKe cos(φ− αe)dE

≤ 2Eā2FKe (67)
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Figure 5. The maximum value of
√

K over E in Equation (63) as a function of eccentricity ē.

If the system is integrated over one period, i.e., E = 2π, we obtain:

εe(1) ≤ 4πā2F
√

1− ē2 (68)

To satisfy the assumption of small perturbation, we apply F ≤ (1/40π) and obtain:

εe(1) ≤ ā2
√

1− ē2

10
(69)

Thus,

e ≤ ē +
ā2
√

1− ē2

10

≈ l0 +
ā2

10
(70)

Since 1− 2l0 ≤ ā ≤ 1 + 2l0, the upper bound of e varies between:

l0 +
1
10

(1∓ 2l0)2 ≈ l0 +
1

10
(1∓ 4l0)

= 0.1 + 0.6l0 or 0.1 + 1.4l0 (71)

As a result, we conclude that e ≤ 0.1 + 1.4l0.

5.2.3. Argument of Periapsis

The first-order approximation of the argument of periapsis is governed by Equation (20).
In this case, only a planar PLP force is applied. It is conclusive that dΩ/dτ = 0, implying
that Fr and Ff are the only two terms that influence the variation of periapsis. The first-order
approximation is attainable by integrating Equation (20), given by:

εω(1) =
∫ 2π

0

n̄ā2

ē

√
1− ē2

{
−F̄r cos f + F̄f

(
1 +

r
p

sin f
)}

dτ

=
∫ 2π

0

ā3Ke

ē

{
−F̄r(cos E− e) + F̄f

(
1 +

1− e cos E
Ke

sin E
)}

dE (72)
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Recall that Fr = F cos φ and Ff = F sin φ. The integral can be further written as:

εω(1) =
ā3F

ē

∫ 2π

0
{K1(ē, E) cos φ + K2(ē, E) sin φ}dE (73)

where K1(ē, E) = −Ke(cos E− ē) and K2(ē, E) = Ke + sin E− ē sin E cos E. Define Kω =
K2

1 + K2
2, and:

sin αω =
K1

Kω
(74)

cos αω =
K2

Kω
(75)

The integration can be shortened as:

εω(1) =
ā3F

ē

∫ 2π

0

√
Kω sin(φ + αω)dE

≤ ā3F
ē

∫ 2π

0

√
KωdE, (76)

where Kω is a function of ē and E. Because Kω is highly nonlinear, it is difficult to integrate
Equation (76) analytically. Let Kωmax(ē) denote the maximum value of Kω(ē, E) over E =
[0, 2π] given ē. Then, the upper bound of Equation (76) can be found by:

εω(1) ≤ 2π
√

Kωmax(ē)
ā3F

ē
. (77)

The value of
√

Kωmax(ē) for a given ē is presented in Figure 6 numerically. One can
see that

√
Kω(ē, E) ≤ 2.1343 for all potential eccentricities. Since ē = l0, it is reasonable

to assume that ē ≤ 0.1 and
√

Kω ≤ 2.02 according to Figure 6. Moreover, to satisfy the
assumption of small perturbation, we let F ≤ 0.008, or equivalently, 4πā3F ≤ 0.1ā, as
in our previous discussion. This assumption leads to 2πā3F ≤ 0.05ā, and the first-order
approximation can be concluded as:

εω(1) ≤ 2.02 · 2πā3F
ē

= 0.1
ā
l0

= 0.1
1± 2l0

l0

≈ 0.1
l0
± 0.2 (78)

with l0 ≤ 0.1. Note that this result may have a large error for l0 ≈ 0.
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Figure 6. The maximum value of
√

Kω over E as a function of eccentricity ē.

5.2.4. Mean Motion

The evolution of mean motion is described in Equation (22). Similarly, under small per-
turbations, the mean motion can be approximated by n ≈ n̄ + εn(1) with (a, e) substituted
by their zeroth-order approximations.

By handingthe integration variable to E, Equation (22) is rewritten as:

dεn(1)

dE
= −3

2
n̄
ā

da
dE

= −3
2

n̄
ā

d(ā + εa(1))
dE

= −3
2

n̄
ā

dεa(1)

dE
(79)

Integrating the two sides over 2π, with the result of Equation (57), yields:

εn(1) = −3
2

n̄
ā

∫ dεa(1)

dE
dE

≥ −3
2

n̄
ā
(4πFā3) (80)

The lower bound of εn(1) depends on the value of 4πFā3. According to Equation (59), we
may let 4πFā3 = Kn ā with 0 ≤ Kn ≤ 0.1. Plugging the result into Equation (80) yields:

εn(1) ≥ −3Kn

2
n̄ (81)

Accordingly, the approximation of n is obtained by:

n = n̄ + εn(1)

≥
(

1− 3Kn

2

)
n̄ (82)

Moreover, 1− 3l0 ≤ n̄ ≤ 1 + 3l0, and the lower bound of the mean motion varies between:(
1− 3Kn

2

)
(1∓ 3l0) ≈ 1− 3Kn

2
∓ 3l0 (83)
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As a result, we conclude that n ≥ 1− 3Kn
2 − 3l0 with 0 ≤ Kn ≤ 0.1.

6. Influence of Out-of-Plane PLP Thrust

The out-of-plane PLP thrust applies along the direction perpendicular to the orbital
plane of the the mother ship initially. All parameters are shown in Figure 7. The initial
position offset is assumed L(0) = l0k. Hence, the position and velocity of the mission
spacecraft are, respectively, given by r = i + l0k and v = j.

i

k

j

r

R
L

Mother ship

Mission ship

Central body

Figure 7. Parameters of the mother ship and mission spacecraft subject to out-of-plane PLP thrust.
All parameters are normalized in this figure.

Although the out-of-plane cases were studied in this paper, in practice, a pure out-
of-plane PLP thrust for the whole mission is infeasible. When the mission spacecraft is
initially driven by an out-of-plane PLP thrust, in order to aim at the mission spacecraft,
the motion of the spacecraft will naturally cause planar components of the PLP force. As
a result, a practical motion subject to initial out-of-plane PLP thrust will eventually be
described by the combination of planar and out-of-plane effects.

6.1. Zeroth-Order Approximation
6.1.1. Semi-Major Axis, Eccentricity, and Mean Motion

According to Figure 7, it can be found that:

r =
√

1 + l2
0 ≈ 1 (84)

h = r× v = −l0i + k. (85)

Consequently, h = ||h|| =
√

1 + l2
0 ≈ 1. Moreover, the value of the mission ship

energy, with µ = 1, is computed as:

E =
1
2
× v2 − µ

r
= −1

2
(86)

The approximated semi-major axis is:

ā = − µ

2E = 1 (87)

The approximated eccentricity is:

ē =

√
1 +

2Eh2

µ2 = 0 (88)
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The mean motion n̄ is a function of semi-major axis ā. Since the semi-major axis does not
change in the zeroth-order approximation, the mean motion remains unchanged as well,
i.e., n̄ = 1.

6.1.2. Inclination

The inclination of the mission spacecraft is influenced by the orbital elements of
the mother ship. Let im, ωm, and Ωm denote the inclination, argument of periapsis, and
longitude of the ascending node of the mother ship, respectively. The transformation of the
orbit reference to the J2000 coordinate system is given by [13]:

pJ = Rx(− fm)Rz(−Ωm)Rx(−im)Rz(−ωm)pOR (89)

where pOR = xi + yj + zk is a vector with respect to the orbital reference and pJ =
XI + YJ + ZK is with respect to the J2000 system. Moreover, Rx(θ) and Rz(θ) are the
rotation matrices with respect to the i- and k-axis, respectively.

Recall that h = −l0i + k. Therefore,

cos ī =
h ·K
||h||

=
1√

1 + l2
0

(cos im − l0 sin im sin ωm) (90)

with fm assumed to be zero. The inclination of mission spacecraft can be found by:

ī = cos−1

cos im − l0 sin im sin ωm√
1 + l2

0


≈ cos−1(cos im) +

d cos−1(χ)

dχ

dχ

dl0

∣∣∣∣
l0=0

l0

= im −
1√

1− χ2
(−l0 sin im sin ωm)

≈ im +
sin im sin ωm

| sin im|
l0 (91)

where:

χ =
cos im − l0 sin im sin ωm√

1 + l2
0

(92)

Note that Equation (91) is applicable only if im 6= 0. Otherwise, this function is singular.
In the case that im = 0, we have to approach the problem in a different way. When im = 0,
Equation (90) degeneratesto:

cos ī =
1√

1 + l2
0

(93)

The Taylor expansion of cos ī is:

cos ī = 1− ī2

2!
+ · · · (94)
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The second-order approximation of the right-hand side gives:

1√
1 + l2

0

= (1 + l2
0)
−1/2

= 1− l2
0

2!
+ · · · (95)

Equating the two sides yields ī ≈ l0.

6.1.3. Longitude of Ascending Node and Argument of Periapsis

Recall that the angular momentum of the mission spacecraft is h = −l0i + k. As a
result, the ascending node n can be found by:

n =
K× h
||K× h||

=
nxI + nyJ√

n2
x + n2

y

, (96)

where:

nx = l0(sin Ωm cos ωm + cos Ωm cos im sin ωm) + cos Ωm sin im (97)

ny = −l0(cos Ωm cos ωm − sin Ωm cos im sin ωm) + sin Ωm sin im (98)

As a result, the zeroth-order approximation of the longitude of ascending node is ob-
tained by:

Ω̄ = tan−1
(

ny

nx

)
(99)

Given l0 = 0, Ω = Ωm.
The transverse of the node, denoted as n⊥, can be found by:

n⊥ =
h× n
||h× n||

=
n⊥x I + n⊥y J + n⊥z K√

n2
⊥x

+ n2
⊥y

+ n2
⊥z

(100)

where:

n⊥x = −
√

1 + l2
0 cos ī(sin Ωm sin im − l0 cos Ωm cos ωm+

l0 sin Ωm cos im sin ωm) (101)

n⊥y =
√

1 + l2
0 cos ī(cos Ωm sin im + l0 sin Ωm cos ωm+

l0 cos Ωm cos im sin ωm) (102)

n⊥z = l2
0(cos2 im − cos2 im cos2 ωm + cos2 ωm) +

2l0 cos im sin im sin ωm + sin2 im (103)

and the quantity
√

1 + l2
0 cos ī is presented in Equation (90). Consequently,

tan ω̄ =
r · n⊥
r · n

=
sin im sin ωm + l0 cos im

cos ωm sin im
(104)
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Given l0 = 0, ω = ωm.

6.2. First-Order Approximation
6.2.1. Inclination

The variation of inclination subject to a small continuous thrust is described in
Equation (18). Consider an out-of-plane, small PLP thrust F acting on the mission ship,
i.e., Fh = F. Integrating Equation (18) over 2π:

εi(1) =
∫ 2π

0

n̄ār̄√
1− ē2

F cos( f + ω̄)dτ (105)

The trigonometric function in the integrant can be further expanded using the identity
cos( f + ω̄) = cos f cos ω̄− sin f sin ω̄. Along with the change of variables in Equations (45)
to (48), the integral can be written as:

εi(1) =
∫ 2π

0

ār̄√
1− ē2

F
(
(cos E− ē) cos ω̄−

√
1− ē2 sin E sin ω̄

)
dE

= − ā2 ēF cos ω̄√
1− ē2

∫ 2π

0
cos2 EdE

= −πā2 ēF cos ω̄√
1− ē2

= 0 (106)

since ē = 0.

6.2.2. Longitude of Ascending Node

The variation of inclination subject to a small continuous thrust is described in
Equation (18). Consider an out-of-plane, small PLP thrust F acting on the mission ship,
i.e., Fh = F. Integrating Equation (18) over 2π:

εΩ(1) =
∫ 2π

0

(
n̄ār̄√
1− ē2

F sin( f + ω̄) csc ī
)

dτ (107)

Similarly, the trigonometric identity and the change of variable bring:

εΩ(1) =
∫ 2π

0

ār̄√
1− ē2

F
(√

1− ē2 sin E cos ω̄ + (cos E− ē) sin ω̄
)

csc īdE

= − ā2 ēF sin ω̄ csc ī√
1− ē2

∫ 2π

0
cos2 EdE

= −πā2 ēF sin ω̄ csc ī√
1− ē2

= 0 (108)

6.2.3. Argument of Periapsis

The variation of inclination subject to a small continuous thrust is described in
Equation (20). With an out-of-plane, small PLP force F acting on the mission ship, i.e.,
Fh = F, as the only thrust, the differential equation of the first-order term degenerates to:

dεω(1)

dτ
= − cos ī

dεΩ(1)

dτ

=
n̄ār̄√
1− ē2

F sin( f + ω̄) cot ī (109)
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It is obvious that the integral of Equation (109) over 2π is:

εω(1) =
∫ 2π

0

(
n̄ār̄√
1− ē2

F sin( f + ω̄) cot ī
)

dτ

=
πā2 ēF sin ω̄ cot ī√

1− ē2
= 0 (110)

7. Numerical Simulations

Figures 8–24 present numerical simulations of several selected cases. The numerical
simulations were performed to verify the algorithms and the results proposed in the
proceeding sections. Five types of simulations are presented here.

First, a planar PLP thrust was applied to the mission spacecraft for an orbit period.
Since the original launching direction may be arbitrary in real missions, we present four
examples in this part, corresponding to four initial directions. Secondly, one of the afore-
mentioned four cases was selected to integrate over a longer time period. This simulation
was performed to qualitatively demonstrate that a PLP thrust smaller than the proposed
criteria is not powerful enough to expel a mission spacecraft for interplanetary travel, as con-
cluded in our algorithm. Thirdly, an out-of-plane example is presented to qualitatively
show the variation of the orbit elements. However, the results derived in the preceding
section cannot be applied to determine the bound of variation, because the motions in the
out-of-plane cases are always coupled with planar components. Fourthly, a dimensional
case is presented to show how our results can be applied. Finally, an interesting example
shows that a PLP thrust can control a spacecraft formation by the Clohessy–Wiltshire
(C-W) equations.

Throughout all the numerical simulations, the magnitude of the normalized PLP thrust
was set as F = 0.008. The normalized orbit elements of the mother ship were randomly
given as (am, em, im, Ωm, ωm) = (1, 0, 30◦, 40◦, 50◦). Since the mother ship is in a circular or-
bit, without lost of generality, the initial true anomaly can be set as zero, i.e., fm(0) = 0◦. All
trajectories that examine the variations of the orbit elements were obtained by integrating
Equations (4) and (5) directly and then converted to the osculating elements.

7.1. Verification of Bounds with a Planar PLP Thrust

In this section, the PLP force was assumed to be planar. The initial normalized offsets
of the mission spacecraft from the mother ship were given as L0 = 0.1 i, 0.1 j, −0.1 i,
and −0.1 j, respectively.

Figures 8–15 present the simulation results. All the bounds for orbit elements are
discussed in Section 5. In Figures 8 and 9, the initial excursion was set as L0 = 0.1 i.
The PLP force always aims along the line of sight of the mother ship and mission spacecraft.
In Figure 8, the trajectories of mother ship and mission spacecraft are presented with
respect to the inertial frame, respectively. In the right-most plot, the relative trajectory
of the mission spacecraft to the mother ship is provided, and it is also presented in the
inertial frame. Figure 9 shows the variation of orbit elements of the mission spacecraft.
Since the true anomaly has nothing to do with the variation of the orbit, it is not presented
in the figure. Every bound over one normalized orbit period is provided in the title of the
corresponded subplot and also presented as a dashed line. It was verified that the bounds
were well predicted by our algorithm. Similar results can also be observed in Figures 10–15,
corresponding to different initial conditions.
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Figure 8. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = 0.1 i.
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Figure 9. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.008 with
the initial excursion being L0 = 0.1 i. The units for (i, Ω, ω) are degrees, whereas a is dimensionless.

Figure 10. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = 0.1 j.
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Figure 11. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F =

0.008 with the initial excursion being L0 = 0.1 j. The units for (i, Ω, ω) are degrees, whereas a
is dimensionless.

Figure 12. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = −0.1 i.
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Figure 13. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F =

0.008 with the initial excursion being L0 = −0.1 i. The units for (i, Ω, ω) are degrees, whereas a
is dimensionless.
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Figure 14. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft;
(right) relative trajectory of mission spacecraft to the mother ship. The initial excursion is L0 = −0.1 j.
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Figure 15. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.008
with the initial excursion being L0 = −0.1 j. The units for (i, Ω, ω) are degrees, whereas a
is dimensionless.

7.2. Influence of a Small Planar PLP Thrust

This section verifies the sufficient condition of the lowest thrust required for interplan-
etary travel. According to the previous results, the mission spacecraft might be trapped in
the vicinity of the mother ship if the normalized thrust force is less than 0.008.

Figures 16 and 17 verify the result. In these two simulations, the initial excursion
L0 = −0.1 j was selected. The simulation was run for 200 normalized periods. It is obvious
that the mission spacecraft stayed in the vicinity of the mother ship, either from the relative
trajectory or the variation of the orbit elements. Notably, the bounds in the titles of Figure 17
are only valid for one normalized period.

Although the fourth case in the previous simulations was selected to demonstrate in
this section, similar results can be obtained using different initial offsets.

Figure 16. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = −0.1 j.
This simulation was run for 200 normalized periods.
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Figure 17. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.008
with the initial excursion being L0 = −0.1 j. This simulation was run for 200 normalized period.
The units for (i, Ω, ω) are degrees, whereas a is dimensionless. Notably, the bounds in the titles are
only valid for 1 normalized period.

A counter example is presented in Figures 18 and 19. In this simulation, all parameters
of the mission spacecraft were set identical to the previous simulation. There were only two
differences. First, the thrust level was set as twice the previous, i.e., F = 0.016. Secondly,
the simulation only ran for 25 normalized period because the trajectory diverged very fast
after that.

Figure 18. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = −0.1 j.
This simulation was run for 25 normalized periods. Notably, the bounds in the titles are only valid
for 1 normalized period.
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Figure 19. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.016
with the initial excursion being L0 = −0.1 j. This simulation was run for 25 normalized period.
The units for (i, Ω, ω) are degrees, whereas a is dimensionless.

7.3. Influence of a Small Out-of-Plane PLP Thrust

Figures 20 and 21 present the simulation results of an out-of-plane case. Most pa-
rameters were selected identical to the planar cases. The only difference was imposed on
the initial offset, setting it as L0 = 0.1 k. Notably, the results derived in Section 6 cannot
be employed to predict the simulation directly. Once the mission spacecraft is expelled
by an out-of-plane thrust, the motion will generate a planar component naturally. This
enforces the PLP force to have planar components, and the variation of orbit elements
should consider both planar and out-of-plane perturbations. As a result, the simulation in
this section only qualitatively demonstrates how a small out-of-plane PLP thrust influences
the orbit elements of the mission spacecraft. In the simulation, all parameters were identical
to the previous simulations.

Figure 20. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = 0.1 k.
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Figure 21. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.008
with the initial excursion being L0 = 0.1 k.

7.4. Practical Applications

This simulation, presented in Figures 22 and 23, was to verify the proposed algorithms
with full-dimensional parameters and study potential practical applications. In this simula-
tion, a mother ship was assumed to be placed in a circular orbit of altitude 400 km above
the Earth’s surface. Other orbit elements were identical to the previous simulations. As for
the PLP force, we had a laser of power 10 W, and the reflectance of the mirror installed
on the mission spacecraft was assumed to be Rm = 0.999998. The mass of the mission
spacecraft was assumed to be 1 kg. These three parameters were cited from our previous
investigation in [9]. Suppose the mission spacecraft is lifted by a robotic arm for launch.
The robotic arm was set as 17 m long, which was inspired by the Canadarm2 robotic arm
installed on the International Space Station.

According to these settings, the PLP thrust can be computed as:

FPLP =
2PRmS

c
= 0.0334 (N) (111)

The corresponded normalized force is given by:

F = FPLP
R2

m
µE

= 0.0334× 67781372

3.986× 1014 = 0.0038 (112)

Moreover, the initial offset was assumed to be 17 m, corresponding to a normalized offset of:

l0 =
17

6778137
= 2.5081× 10−9 (113)

The simulation was run for 200 orbit periods, where one period was:

T = 2π

√
67781373

3.986× 1014 = 5553.6 (s) (114)

It is obvious, from the simulation results, that the proposed algorithms provided a good
prediction on the variation of the orbit elements of the mission spacecraft.

One thing to note is that the bound of ω was unreasonably high. If we look back at
Equation (20), a singularity will exist in the variation equation of ω given e = 0, and large
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error might exist for e ≈ 0. In our simulation, ē = 2.5081× 10−9 ≈ 0, and the singularity
dominated the result. Hence, the bound of ω was actually meaningless in this case.

Figure 22. (Left) Trajectory of the mother ship; (middle) trajectory of the mission spacecraft; (right)
relative trajectory of the mission spacecraft to the mother ship. The initial excursion is L0 = 2.5081×
10−9 i. This simulation was run for 200 orbit period.
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Figure 23. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.0038
with the initial excursion being L0 = 2.5081× 10−9 i. This simulation was run for 200 orbit period.
The units for (i, Ω, ω) are degrees, whereas a is in kilometer. Notably, the bounds in the titles are only
valid for 1 orbit period.

7.5. Formation Control by C-W Equations

An interesting example presented in this section is to control a spacecraft formation
by the C-W equations using PLP thrust. The C-W equations are well known for the linearly
approximated relative trajectory to a nominal circular orbit in the rotational frame. Let
L = ζêr + ηêθ + ξ êh and L′ = ζ̇ êr + η̇êθ + ξ̇ êh be the relative velocity in the rotational
frame. The linearized equations of motion with small PLP thrust by the C-W equations are:

ζ̈ = 3n2
Rζ + 2nRη̇ + F

ζ

l
, (115)

η̈ = −2nR ζ̇ + F
η

l
, (116)

ξ̈ = −n2
Rξ + F

ξ

l
. (117)

In the normalized system, the equations look similar by setting nR = 1. The unperturbed
C-W equations have closed-form solutions. One of the famous special cases is linear drift,
which requires the initial conditions to be L0 = (ζ0, η0, 0) and L′0 = (0,−1.5ζ0, 0).

In order to test the robustness of our result, the linear drift case was selected. In the
simulation presented in Figure 24, the initial conditions were set as L0 = (0.1, 0, 0) and
L′0 = (0,−0.15, 0). The simulation was run for five orbit periods. It is clear in the figure that
an uncontrolled trajectory, presented by a dashed line, linearly drifts away. The controlled
trajectory presented by a solid curve, however, is confined within a small region. One
should realize that the controlled trajectory is not a closed curve, though it looks as an
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ellipse. This example verifies the proposed PLP trust threshold and implies that this type
of trust is potentially applicable to the formation flight of spacecraft.
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Figure 24. Variation of the orbit elements of the mission spacecraft subject to PLP thrust F = 0.008
with the initial excursion being L0 = 0.1 i. This simulation was run for 5 orbit period. ζ and η are in
normalized length.

8. Conclusions

This study investigated the variation of the orbit elements of a spacecraft propelled
by photonic laser propulsion (PLP) under the two-body problem assumption. This study
first reviewed some facts of PLP thrust and background knowledge of celestial mechanics.
Perturbation theory was also reviewed and introduced to investigate this problem. Since
PLP thrust is continuous and constant, the Gauss equations were introduced to study the
variation of osculating orbit elements. In order to generalize the study, all equations were
normalized based on the dynamics of the mother ship. The mission spacecraft subject to
planar and out-of-plane PLP thrusts was studied, respectively. One should note that in
practice, a pure out-of-plane PLP thrust for the whole mission is infeasible. The motion
of the spacecraft will naturally cause planar components of the PLP force. As a result,
a practical motion subject to initial out-of-plane PLP thrust will eventually be described by
the combination of planar and out-of-plane effects. In this study, bounds on the variation
of the orbit elements of the mission spacecraft were derived for both small planar and
out-of-plane thrusts by zeroth- and first-order approximations. A sufficient condition that
traps the mission spacecraft in the vicinity of the mother ship was also found. The study
suggested that it may take a very long time period for the mission spacecraft to leave the
mother ship if the normalized PLP thrust is less than 0.008. A similar, but more rigorous
criterion was proposed in [9]. Our new discovery pushes the bound higher. This threshold
was also verified by the linearized dynamics described by the Clohessy–Wiltshire equations.
All proposed results, including the bounds and the sufficient conditions, were verified by
numerical simulations. Our work presented in this paper is directly applicable to the usage
of PLP thrust in future space missions, such as the formation flight about a circular orbit or
interplanetary travel.
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Appendix A. Approximation of 1/r

As shown in Figure 4, r =
√

1 + 2l0 cos θ + l2
0 . Given θ = θ0, the approximation of a

function f (r) = f (l0) can be obtained through the Taylor expansion about the operation

point l0 = 0. Let f (r) = 1/r = 1/
√

1 + 2l0 cos θ0 + l2
0 = f (l0), and the function can be

approximated by:

f (l0) ≈ f (l0)|l0=0 +
∂ f
∂l0

∣∣∣∣
l0=0

l0 +
1
2!

∂2 f
∂l2

0

∣∣∣∣∣
l0=0

l2
0

≈ 1− l0 cos θ0 + (3 cos2 θ0 − 1)
l2
0
2

(A1)

Hence, the first-order approximation is found by 1/r ≈ 1− l0 cos θ0.
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