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Abstract: Visual simultaneous localization and mapping (v-SLAM) and navigation of unmanned
aerial vehicles (UAVs) are receiving increasing attention in both research and education. However,
extensive physical testing can be expensive and time-consuming due to safety precautions, battery
constraints, and the complexity of hardware setups. For the efficient development of navigation
algorithms and autonomous systems, as well as for education purposes, the ROS-Gazebo-PX4
simulator was customized in-depth, integrated into our previous released research works, and
provided as an end-to-end simulation (E2ES) solution for UAV, v-SLAM, and navigation applications.
Unlike most other similar works, which can only stimulate certain parts of the navigation algorithms,
the E2ES platform simulates all of the localization, mapping, and path-planning kits in one simulator.
The navigation stack performs well in the E2ES test bench with the absolute pose errors of 0.3 m
(translation) and 0.9 degree (rotation), respectively, for an 83 m length trajectory. Moreover, the E2ES
provides an out-of-box, click-and-fly autonomy in UAV navigation. The project source code is opened
for the benefit of the research community.

Keywords: UAV; robotic simulation; stereo camera; SLAM; path planning

1. Introduction

With the advent of modern artificial intelligence algorithms, multi-rotor unmanned
aerial vehicles (UAVs) have become smart agents that can navigate in unknown environ-
ments. Given a target destination, UAVs can perceive the environment, reconstruct the
environment map, and dynamically plan a trajectory to the target destination. Three types
of tool kits have been applied in such scenarios: localization, mapping, and planning. The
localization (or named pose estimation) kit utilizes onboard sensor information, such as
that provided by a stereo camera, to estimate the vehicle’s six degrees of freedom (DoF)
pose in real time. The pose feeds into the flight control unit (FCU) to achieve position–level
control. Using the UAV’s pose and sensor inputs (e.g., point cloud input), the mapping kit
reconstructs the environment throughout the mission. Typically, the environment is pre-
sented by a three-dimensional (3D) occupancy voxel map with Euclidean signed distance
information [1]. The path-planning kit identifies the lowest-cost path to the destination,
avoids obstacles, and generates a trajectory. That trajectory is then sent to the FCU as part
of the time sequence used to navigate the UAV.

Verifying such UAV navigation systems under realistic scenarios can be effort-intensive,
and failures during testing may damage the UAVs. To overcome these issues, simulators
that provide simulated hardware components, such as perception sensors can be used, as
they ease reconfiguration and enhance the flexibility of the environmental setup. Although
various UAV simulation tools are currently available, most do not focus on a specific task.
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For example, flight-dynamic-oriented simulation ignores all environmental information.
The simulation used in the visual simultaneous localization and mapping (vSLAM) study
simplified the dynamic model of the UAV; the navigation-oriented simulation environment
contained 3D information about the environment, but it neglected the features of 3D objects.
Some simulation tools [2,3] achieve autonomous navigation to a certain degree, but their
flexibility is limited, and their source codes have not been released. Thus, the motivation
of this work is to construct an end-to-end simulation (E2ES) environment for research
and education purposes. Throughout this paper, ’end-to-end’ refers to the capability of
verifying the perception, reaction, and control algorithms in one simulator (Figure 1).

Figure 1. System overview of the proposed end-to-end simulator, ’E2ES’.

Based on the widely used ROS-Gazebo-PX4 toolchain, we made several improvements
to the UAV model, environment, and function plugins to meet the requirement of UAV
v-SLAM and navigation (Figure 2). These improvements include: (a) the construction of a
simulated world, (b) the customization of UAV models, (c) the addition of a stereo camera
model, and (d) the configuration of a vision-based control setup. At the end of this paper,
we describe an E2ES for UAV navigation (Figure 3). In summary, the contributions of this
work are as follows:

• Customization of the ROS-Gazebo-PX4 simulator in terms of the support of stereo
inertial vision estimation, vision feedback control, and ground-truth level evaluation.

• Integration of functions, including localization, mapping, and planning, into tool kits.
• Achievement of click-and-fly level autonomy in the simulation environment.
• Release of the simulation setup, together with the localization kit, mapping kit, and

planning kit as open-source tools for the research community (Supplementary Materials).

Figure 2. The UAV in the simulator; the right-hand side images are the real time color and depth
image from the on-board cameras.

The remainder of this work is organized as follows. Section 2 describes related
works. Section 3 introduces the customized simulation framework, and Section 4 shows
the integrated vSLAM and navigation kits. Section 5 shows the simulation results and
performance analysis. Finally, Section 6 concludes the paper.
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Figure 3. Click-and-fly navigation in the unknown environment (the blue path is the traveled path,
and the red path is global planned path from the current position to the destination).

2. Related Works
2.1. UAV Simulators

Depending on the scope of simulation, UAV simulators can be classified into two
categories: flight dynamics simulators and environment-integrated simulators. The first
type focuses on simulating the dynamics of different UAV platforms, and all environmental
information is neglected except for the force of gravity. For example, based on Simulink in
MATLAB, Quad-Sim [4] was demonstrated to be suitable to test flight-control algorithms for
different dynamic models. Sun et al. [5] developed another Simulink-based simulator that
includes a comprehensive aerodynamic model of the tail-sitter vertical take-off and landing
UAV. The second type, the environment-integrated simulator (also known as the perception-
supported simulator), includes perception sensors and environmental information. Users
can access the simulated sensor outputs, such as camera images and the point cloud from
the Lidar sensor [6]. For example, Schmittle et al. [7] developed an easy-access web-based
UAV testbed for education and research. By applying the containers as a service technology,
this simulator is deployed in the cloud; thus, the user does not need a high-performance
computer to execute the simulation. Xiao et al. [8] developed a simulation platform called
XTDrone. Comparing E2ES with XTDrone, both are based on ROS-Gazebo-PX4 toolchains,
which means they have a similar kinetic model and flight controller. However, these two
projects focus on solving different problems. XTDrone is focused on providing a general
solution for UAV simulation, while the E2ES simulator is focused on providing an out-
of-box solution for UAV SLAM and navigation. E2ES is more accessible for achieving
full-stack navigation in the loop using its default localization, mapping, and planning tools
or customized packages developed by users.

2.2. The UAV vSLAM and Navigation System

Typically, the v-SLAM and the navigation system consist of localization, mapping,
and planning modules. The related works are reviewed in sequence.

2.2.1. Localization

The goal of localization is to achieve real-time pose estimations with the onboard
computer and sensors. A wide range of methods has been pursued to solve this problem.
Most preliminary methods use LiDAR [9–11] or cameras to perceive the environment.
The LiDAR sensors have a wide detection range and can directly provide high-precision
depth information. However, they are also expensive, heavy, and large, which limits the
application scenarios of LiDAR on the UAV platform. In contrast, the camera has simple
structure, light weight, and cheap price. These features make it very suitable for UAV
applications, especially for the limited payload of quadcopter UAVs.

Visual localization (or visual pose estimation) can be realized using either monocular
or stereo camera solutions. The monocular solution has the advantages of a simple structure
and low weight. However, recovering the scale correctly is a challenge with such a system.
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Researchers have integrated IMU information [12] or predefined the object pattern [13,14]
of the environment to eliminate this problem. Nowadays, stereo camera solutions are
available off the shelf. As depth information can be directly extracted from every frame, the
accuracy and robustness of this system is better than those of the monocular setup at the
cost of a larger stereo data stream. Nevertheless, the use of powerful onboard computers
can compensate for this issue.

In the UAV application, visual information is usually fused with the IMU data through
either a filter-based framework or an optimization-based framework. Under the filter-
based framework, the pose and the landmark are in the system states. IMU inputs prop-
agate the pose states and the relevant con-variance matrices [15,16]. In the optimization-
based framework, the IMU engaged through a pre-integration edge [17]. According to
Delmerico et al. [18], the optimization-based approach outperforms the filter-based ap-
proach in terms of accuracy but requires more computational resources.

2.2.2. Mapping

The mapping system, which provides a foundation for onboard motion planning, is an
essential component in the perception–planning–control pipeline. A mapping system needs
to optimally trade-off measurement accuracy and the storage overhead. Three types of map
have been successfully used in UAV navigation applications: the point cloud map [19], the
occupancy map [20], and Euclidean Signed Distance Fields (ESDFs) [21] map.

The point cloud map can be easily obtained by measuring point stitching. However,
this type of map is only suitable for high-precision sensors in static environments, because
sensor noise and dynamic objects cannot be accessed and modified. Occupancy maps, such
as OctoMap [20], store occupancy probabilities in a hierarchical octree structure. The main
restrictions of these approaches is their fixed-size voxel grid, which requires a known map size
in advance and cannot be dynamically changed [21]. In recent years, ESDF maps have gained
popularity [22]. This type of map is suitable for dynamically growing maps and is advantageous
in that it can evaluate distance and gradient information with relation to obstacles.

2.2.3. Planning

For UAV route planning, algorithms can be classified into two main categories:
sampling-based algorithms [23] and optimization-based algorithms [24]. The rapidly
exploring random tree (RRT) algorithm [23] is representative of sampling-based algorithms.
In this method, samples are drawn randomly from the configuration space to guide the
tree to grow toward the target [25]. The rapidly exploring random graph system [26] is
an extension of the RRT algorithm and is asymptotically optimal. Although the sampling-
based method is suitable for identifying safe paths, it is not easy for the UAV to follow. The
minimum-snap algorithm [24] can be applied to generate a smooth trajectory. It formulates
the trajectory generation problem as a quadratic programming problem. By instantly mini-
mizing the cost function, the trajectory can be represented using piece-wise polynomial
functions. The cost function includes two terms: the penalty for the trajectory with the
potential of collision and the smoothness of the trajectory itself. With optimization-based
methods, another way to add constraints to the optimization problem is to first obtain
a series of waypoints using a sample search or a grid search and to then optimize the
motion primitives to generate a smooth trajectory through the waypoints under the UAV’s
dynamic constraints [27]. This approach combines the advantages of the two categories,
and its computation efficiency is higher than those of pure optimization-based algorithms.
However, the safe radius and other parameters must be tuned carefully.

2.3. UAV SLAM and Navigation Simulations

Some UAV SLAM and navigation simulations have previously been proposed.
Zhang et al. [2] proposed a quadrotor UAV simulator integrated with a hierarchical
navigation system. Under this approach, the UAV is equipped with two laser scanners
and one monocular camera. One laser scanner is mounted on the bottom for altitude
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control and 3D map construction, while the other is attached to the top for navigation
purposes. The monocular camera is attached to a tilting mechanism for target detection and
visual guidance. The fused data are then constructed into OctoMap and used to facilitate
a trajectory from an A* global path planner. In this approach, the environmental setup is
quite simple and does not include visual features, and the navigation is based on Laser
SLAM. In Alzugaray et al. [3], a point-to-point planner algorithm was designed to work
with the SLAM estimation of a monocular-inertial system. In the simulator, the UAV was
flown around the building to reconstruct the environment. However, as the UAV was flown
outside the building, obstacle avoidance was not considered in their work.

3. Simulation Platform
3.1. Overview

The proposed simulation platform is based on the ROS-Gazebo-PX4 toolchain. In the field
of robotics, the robot operating system (ROS) [28] is the most convenient platform, because
it provides powerful developer tools and software packages from drivers to state-of-the-art
algorithms. Moreover, many navigation kits contain the ROS-version package, and it can be
integrated conveniently. Moreover, Gazebo [29], which is an open-source robotics simulator,
is the most widely used simulator used for ROSs. We selected the widely used open-source
UAV autopilot stack, PX4 [30], which supports software in the loop (SITL) simulations.

As shown in Figure 4, the upper part of our simulation is the Gazebo SITL simulator. It
has an environmental map, also called "the world", and a simulated UAV model, which sup-
ports the dynamic simulation and a series of onboard sensors, including a global positioning
system, IMU, barometer, and custom-defined-depth camera sensors. All of these sensors are
attached to the UAV through Gazebo plugins. The bottom panel of Figure 4 shows the naviga-
tion system. All components are coordinated and communicated through different ROS topics.
The communication between the navigation system and PX4 is conducted through MAVROS
(http://wiki.ros.org/mavros, accessed on 18 December 2021). In the simulator, PX4 commu-
nicates with Gazebo by receiving sensor data from the simulated world and sending motor
and actuator commands to the UAV. The extended Kalman Filter-based state estimator and
the motion control module run on the PX4 stack.

Figure 4. Framework of simulation.

3.2. The UAV Dynamic Model

The dynamic model in the simulator follows the conventional quadcopter dynamic
model, which can be found in general papers on dynamics and control, such as [31–33].
The UAV is modeled as a six-DoF rigid body (three DoF in position and three DoF in
rotation). The position of the UAV’s center of gravity in the inertial frame is defined by

http://wiki.ros.org/mavros
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ξξξ = [X Y Z]T ∈ R3; the orientation of the UAV is denoted by the rotation matrix from
the body frame (B) to the inertial frame (I) RI

B ∈ SO(3). The velocity, as the derivative of
position, in the inertial frame is described by v = [Ẋ Ẏ Ż]T ∈ R3, and the angular velocity
is denoted by ωωω. The kinematics and dynamics of the position and attitude are denoted by:

ξ̇ξξ = v,

mv̇ = RI
BFB,

ṘI
B = RI

Bωωω×,

Iω̇ωω = −ωωω× (Iωωω) + MB,

(1)

where m denotes the mass, I denotes the inertia matrix of the vehicle, and ωωω× denotes the
skew-symmetric matrix, such that ωωω×v = ωωω× v for any vector v ∈ R3. FB and MB are the
total force and moment acting on the body frame, respectively. The dynamic simulation of
the UAV is achieved by the model in Gazebo. The PX4 SITL simulator handles the inner
loop attitude, velocity, and position control. The user commands the UAV in the off-board
control mode by sending the target position or velocity command through MAVROS.

3.3. On-Board Sensors

To improve the 3DR-IRIS model provided by the original PX4 firmware, we added a
depth camera and customized the IMU sensor to support the visual–inertial pose estimator.
To do this, we introduced the camera and IMU models. The coordinate definition of the
body and the IMU are shown in Figure 5.

Figure 5. Modified 3DR-IRIS model and the installation geometry of the vision sensor and IMU (the
X–Y–Z axes in the reference frame are colored in red, green, and blue, respectively. The on-board
vision sensor consist of four cameras. C0 and C1 are a stereo pair with the baseline of 5 cm. Cc and Cd
are color and depth cameras, respectively. In the modified model, C0, Cc and Cd are installed at the
same position).

3.3.1. The Visual Sensor

The visual sensor is based on librealsense_gazebo_plugin (https://github.com/pal-
robotics/realsense_gazebo_plugin, accessed on 17 December 2021). The visual sensor in the
simulator consists of two gray-scale cameras (C0 and C1), a color camera (Cc), and a depth
camera (Cd). All of these cameras are based on the non-distortion pinhole camera model.
The output of the sensors includes two gray-scale images, a color image, a depth image,
and a point cloud. All of these outputs are temporally synchronized. The horizon field of
view (HFOV) and resolution (width× height) define the intrinsic camera parameters ( fx,
fy, cx, cy) as follows:

fx = fy =
width

2 · tan(HFOV/2)
(2)

cx = cx =
width

2
; cy =

height
2

. (3)

The installation geometry in the SDFormat (Simulation Description Format) file defines
the extrinsic parameters. For convenience, the color camera, the depth camera, and the left

https://github.com/pal-robotics/realsense_gazebo_plugin
https://github.com/pal-robotics/realsense_gazebo_plugin
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pinhole camera were installed in the same link, which means the color image, depth image,
left gray-scale image, and point cloud were all aligned.

3.3.2. The IMU

In the simulator, the IMU consists of a three-axis accelerometer and a three-axis
gyroscope. The measured angular velocity and acceleration can be described using the
following models:

ωm = ωreal + bω + nω (4)

am = areal + ba + na (5)

nω ∼ N (0, σ2
ω); na ∼ N (0, σ2

a) (6)

ḃω ∼ N (0, σ2
ωb
); ḃa ∼ N (0, σ2

ab
), (7)

where nω and na refer to the intrinsic noise of the sensor, which follows the Gaussian
distribution. Biases, including ωb and ab, are affected by the temperature and change
over time. Slow variations in the sensor biases are modeled using random walk noise in
discrete time. That is, the time derivatives of the biases (i.e., ḃω and ḃa) follow the Gaussian
distribution. Furthermore, in the IRIS model provided by PX4 firmware, the update rate of
the IMU is constrained by the MAVROS. To cross the speed limit, we added another IMU
plugin, which publishes IMU information at a rate of 200 Hz.

3.4. The Simulation World Setup

First, we added obstacles, such as walls and boxes, into a 20× 20 m empty world. Then,
to meet the requirements of v-SLAM simulation, we furnished all of these items and the ground
plane with various wallpaper, which contained rich visual features, as shown in Figure 6.

Figure 6. The 20× 20 m simulation world with obstacles (wall paper contain rich visual features to
support the visual tracking).

4. MAV Navigation Framework
4.1. Localization

For localization, a stereo visual-inertial pose estimator, FLVIS [34], which was de-
veloped by our group, was integrated as the localization kit in the proposed simulation
platform (Figure 7). Compared with other monocular v-SLAM solutions, the stereo visual-
inertial pose estimator has the advantages of robustness, accuracy, and scale consistency.
Robustness means that the pose between consecutive visual frames can be estimated by the
IMU when visual tracking is lost. Accuracy means that more measurements are fused in
the pose estimation process to achieve better accuracy. Scale consistency means that the
depth information can be extracted directly from stereo images without any motion. FLVIS
uses feedback/feedforward loops to fuse the data from the IMU and stereo/RGB-D camera
and to achieve high accuracy in the resource-limited computation platform.
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Figure 7. FLVIS in the simulation (the markers in the image refer to the landmarks; the different
colors refer to the distance between the landmarks and the camera).

4.2. Mapping

A global-local mapping kit “glmapping” (https://github.com/HKPolyU-UAV/glmapping,
accessed on 18 December 2021), which was developed by our group, was integrated into the
simulator, as shown in Figure 8. This mapping kit is a 3D occupancy voxel map that was
designed for MAV or mobile robot navigation applications. In the global map, the color
(blue-purple) refers to the height of the obstacle, the ESFD map color (red-yellow-green)
refers to the signed distance value, and the highlighted white spheres refer to the local
map. Currently, most navigation strategies combine global planning and local planning
algorithms. Global planning focuses on finding the lowest-cost path from the current posi-
tion to the target destination. Furthermore, local planning is used to re-plan and optimize
the trajectory to ensure smoothness and to avoid dynamic obstacles. This mapping kit
processes perception information separately. The global map on a Cartesian coordinate
system is a probability occupancy map, and the local map on a cylindrical coordinate
system has excellent dynamic performance. The mapping kit also supports the projected
two-dimensional (2D) occupancy grid map and the ESDF map output. The generated map
can satisfy the requirements of both path-planning and environment visualization.

Figure 8. Visualization of the generated Global/Local/ESFDs map in Rviz.

4.3. Path Planning and Obstacle Avoidance

The fuxi-Planner [27,35] was further integrated as the default path-planning kit. The
planner is composed of a global path planner and a local planner and appears as an
asynchronous parallel framework. The global planner works on a 2D global grid map to
identify the shortest 2D path and to output the local goal of the local planner. The local
planner works directly on the point cloud to avoid potential collisions with obstacles and to
plan a kinematically feasible trajectory to the local goal. Algorithm 1 and Figure 9 illustrate
the planning process. The local planner’s core component is a sample-based waypoint

https://github.com/HKPolyU-UAV/glmapping
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search method called the ’discrete angular search method’. The engagement of the global
planner prevents the local planner from failing into the kidnap situation. The global planner
uses the jump point search algorithm [36] to output a serial of waypoints, which represent
the shortest path on the projected 2D grid map. The waypoints are then transformed and
used as the control points to draw a Bézier curve. The local motion planner’s goal is to
locate one sample point from the Bézier curve.

Figure 9. Graphic description of the fuxi-Planner used in the simulation platform. (The light gray
broken line connecting the current vehicle position, pn, and the goal, pg, is the result of the JPS
algorithm, and the blue curve is a second-order B-spline generated from the JPS path. The local
planner chooses one sample point from the B-spline, which keeps a constant distance to pn, to obtain
the initial search direction, Ag0. The red dashed circle and arrows are for the horizontal plane, while
green is for the vertical plane).

The initial search direction for the discrete angular search progress starts from Ag0,
which consists of the horizontal and vertical direction angles from the drone’s position pn
to the sample point. As shown in Figure 9, a group of line segments spread out from the
initial search direction Ag0, and these line segments have a common start point pn and the
same length duse. duse is the point cloud distance threshold, the points whose distances from
pn further than duse are not considered in the collision check. The two arrows of symmetry
about Ag0 on the plane parallel to the ground plane are first checked to see if they collide
with obstacles. If they will collide, the two lines in the vertical plane will be checked. These
four lines have the same angle difference from Ag0. If the minimal distance between the line
and the obstacles is smaller than the pre-assigned safety radius, it is treated as a collision.
Figure 9 shows when the first round of the search has failed (arrows in the black dashed
circle), another round with greater angle of difference is conducted until a collision-free
direction, −−→pn pdi, is found. Finally, the motion optimization problem is solved, taking point
wp(n) as the endpoint constraint and generating the final motion primitives controlling
the drone through wp(n) and respecting the kinodynamic limits. wp(n) is on −−→pn pdi, and
|pnwp(n)| should satisfy the safety analysis in [35]. Although the global planner’s outer
loop frequency is relatively low, the local planner’s inner loop still maintains a high update
rate and can continuously command the UAV.
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Algorithm 1 fuxi-Planner

1: while goal not reached: do
2: Receive a global 3D voxel map Pclm, and its projecttion on the ground (Map1) as the

2D pixel map for path finding
3: Cut off blank edge of Map1 and apply obstacle inflation on Map1, output Map2
4: Find the shortest Path1 to goal
5: Calculate the optimal local goal by the Bezier curve
6: end while
7: while goal not reached: do
8: Receive the local goal
9: Find the next waypoint Nk by heuristic angular search

10: if f ounda f easiblewaypoint : then
11: Run the minimum acceleration motion planner to get motion primitives
12: else
13: Run the backup plan for safety, then go to 5
14: end if
15: Send the motion primitives to the UAV flight controller
16: end while

5. Simulation Results and Performance Analysis

In this section, we report two experiments conducted to demonstrate the performance
of the proposed simulator. In the first experiment, the vehicle was manually flown in the
simulation world using the keyboard to verify the performance of the localization and mapping
kits. In the second experiment, click-and-fly autonomous navigation was used.

The accuracy of the v-SLAM localization is presented by the absolute pose error (APE)
of translation and rotation [37]. The definitions of APE is:

Eape,n = Tgt
n
−1

STest
n , (8)

where Tgt
n is the transformation of the ground truth of frame n, Test

n is the transformation
estimate of frame n, and S is the least-squares estimation of transformation between the esti-
mated trajectory Test

1:m and the ground truth trajectory Tgt
1:m by Umeyama’s method [38]. The

alignment transformation has six degrees of freedom (S ∈ SE(3)). In detail, the translation
and rotation errors are defined by the root mean square error (RMSE) of APE, using:

APEtrans = RMSE(Eape,1:m)

=

√
1
m

m

∑
n=1
‖trans(EAPE,n)‖2 (9)

APErot = RMSE(E1:m)

=

√
1
m

m

∑
n=1
‖rot(EAPE,n)− I3x3‖2.

(10)

The mapping kit will generate an reconstructed map. The agreement of this recon-
structed map and the simulation world can also represent the accuracy of the localization
kit and the overall performance of the mapping kit.

5.1. Manual Exploration
5.1.1. A 20 m × 20 m Room Environment

In this experiment, the localization and mapping kits were integrated. Using the
first-person view from the color camera and the real-time reconstructed map view, the UAV
was controlled to explore the 20 m × 20 m unknown environment. The exploration mission
took 7 min and 24 s, and the UAV traveled 82 m in the simulation world.



Aerospace 2022, 9, 48 11 of 16

The excellent agreement between the ground truth path and the estimated path of the
localization kit is shown in Figure 10. A tool from Michael Grupp [37] was also used to
evaluate the accuracy of the localization kit. The APEtrans and APErot of the trajectory was
0.3 m and 0.9 degree.

Figure 10. Comparison of the ground truth and the estimated pose from the localization kit.

Images of the simulated world and the reconstructed map were captured from different
viewpoints. Good agreement between them and the detail of the map can be observed in
Figures 11 and 12. The voxel size of the map was 0.2× 0.2× 0.2 m.

Figure 11. Top-down view of the simulation world (left) and the projected 2D occupancy grid map
generated by the mapping kit (right).

Figure 12. Oblique view of the simulation world (left) and oblique view of the reconstructed map by the
mapping kit (right).
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5.1.2. An 8 m × 40 m Corridor Environment

Another manual exploration experiment was carried out in an 8 m × 40 m unknown
environment; this kind of environment setup represents the typical scenarios of flying in
the jungle or a long corridor. Figure 13 shows the comparison of the ground truth and
the estimated trajectory. The length of the trajectory was 100.4 m and the APEtrans and
APErot of the trajectory were 0.3 m and 0.9 degree, respectively. Figure 14 shows the good
agreement of the simulation world and the reconstructed map.

Figure 13. Comparison of the ground truth and the estimated pose from the localization kit.

Figure 14. Oblique view of the simulation world (up) and the reconstructed map created by the
mapping kit (down).

5.2. Click-and-Fly Level Autonomy

In this case, the path-planning kit was further integrated into the simulation platform.
Only the target destination was provided to the UAV on the map. Following this, the UAV
planned a path to avoid the obstacles and to automatically fly to the target destination. As
shown in Figure 15, six waypoints were set during the mission. The UAV perceived the
environment and planned a path to automatically visit these waypoints in sequence. The
UAV kept a safe distance from the nearest obstacle to avoid collision.

Figure 15. Click-and-fly navigation (the blue path is the traveled path, and the white marks in the
image are the way points provided to the UAV).
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Figure 16 displays the position, velocity, and attitude plots of the simulation. The
velocity was well controlled under the speed limit (1 m/s). Moreover, the position curves
are fluent and pass all of the six goal points in a stable manner. The pitch and roll angles
are small, suggesting that the vision localization kit had good performance.

Figure 16. The record of position, velocity, and attitude in click-and-fly navigation.

5.3. The Processing Speed of Simulation

The navigation system was configured as follows. In the localization kit, the input im-
age resolution was 640× 360; in the mapping kit, the voxel size was 0.2 m × 0.2 m × 0.2 m;
and the map contained 181,500 (110× 110× 15) voxels. The simulation was verified on two
different computers. The processing times are listed in Table 1. The average time factor
refers to the ratio of the actual time over the simulation time. A time factor value of 1 means
that the simulation was run in real time.

Table 1. Processing Time of the Navigation System and the Simulation Time Factor.

Kits Computer 1 Computer 2

Localization (with out-loop closure) 28 ms 22 ms

Mapping
Global map 26 ms 18 ms
Local map 4 ms 4 ms
Projected ESDFs map 70 ms 64 ms

Planning
Global planning 90 ms 65 ms
Local planning 20 ms 16 ms

Simulator Average time factor 0.6 0.92
Note: Computer 1: i5-8250u CPU, 8 GB RAM, GeForce MX150 graphic card; Computer 2: i7-8550u CPU, 16 GB
RAM, GeForce MX150 graphic card.

5.4. Discussions

The main features of commonly used UAV simulators are listed in Table 2. The
AirSim [39] and FlightGoggles [40] have more realistic visual effects, since they adopt
game engines to render the scenes. The E2ES and XTDrone are based on the gazebo-PX4
toolchain, which means the algorithm can directly port to command the PX4 flight-control
unit. Compared to other simulation frameworks, E2ES provides a full-stack solution.
However, as this work focused on providing an out-of-box, end-to-end v-SLAM and
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navigation simulation, extended types of UAV models (airplanes, helicopters, etc.) and
multi-vehicle simulation will be supported in the later versions.

Table 2. Features of Several UAV Simulation Platforms.

Features E2ES XTDrone [8] AirSim [39] FlightGoggles [40]

Rendering
Engine OpenGL OpenGL Unreal Engine Unity

Dynamics Gazebo Gazebo PhysX User Define

Localization Support Support Support Support

Planning Support Support Support Support

Full Stack
Solution Support Not Support Not Support Not Support

Multiple
Vehicles

Not
Support Support Support Not Support

6. Conclusions and Future Works

In this study, an end-to-end UAV simulation platform for SLAM, navigation research,
and applications was introduced, including the detailed simulator setup and an out-of-
box localization, mapping, and navigation system. The click-and-fly level autonomy
navigation used by the simulator was also demonstrated. The flight results show that
the simulator could provide a trustworthy data stream and versatile interfaces for the
development of UAV autonomous function. We have offered all the kits for public access
to promote further research and development of the autonomous UAV system based on
this framework. Future work will focus on two aspects. One is to support more notable
open-source navigation-related kits and, moreover, to design the benchmark scenario in
the simulator to evaluate the performance of these kits. Another aspect is to expand the
current simulator to encompass more perception sensors, more UAV models, and more
challenging environments for a variety of potential tasks.

Supplementary Materials: The following are available online: video: https://youtu.be/sKkA5f62P6
g; source code: https://github.com/HKPolyU-UAV/E2ES.
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