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Abstract: We used machine-learning algorithms to evaluate demographic and clinical data in an
administrative data set to identify relevant predictors of mortality due to Listeria monocytogenes
infection. We used the Spanish Minimum Basic Data Set at Hospitalization (MBDS-H) to estimate the
impacts of several predictors on mortality. The MBDS-H is a mandatory registry of clinical discharge
reports. Data were coded with International Classification of Diseases, either Ninth or Tenth Revisions,
codes. Diagnoses and clinical conditions were defined using recorded data from these codes or a
combination of them. We used two different statistical approaches to produce two predictive models.
The first was logistic regression, a classic statistical approach that uses data science to preprocess data
and measure performance. The second was a random forest algorithm, a strategy based on machine
learning and feature selection. We compared the performance of the two models using predictive
accuracy and the area under the curve. Between 2001 and 2016, a total of 5603 hospitalized patients
were identified as having any clinical form of listeriosis. Most patients were adults (94.9%). Among
all hospitalized individuals, there were 2318 women (41.4%). We recorded 301 pregnant women
and 287 newborns with listeriosis. The mortality rate was 0.13 patients per 100,000 population. The
performance of the model produced by logistic regression after intense preprocessing was similar
to that of the model produced by the random forest algorithm. Predictive accuracy was 0.83, and
the area under the receiver operating characteristic curve was 0.74 in both models. Sepsis, age, and
malignancy were the most relevant features related to mortality. Our combined use of data science,
preprocessing, conventional statistics, and machine learning provides insights into mortality due to
Listeria-related infection. These methods are not mutually exclusive. The combined use of several
methods would allow researchers to better explain results and understand data related to Listeria
monocytogenes infection.

Keywords: Listeria monocytogenes; electronic health records; machine learning; logistic regression;
random forest

1. Introduction
1.1. Listeriosis

Infection by Listeria monocytogenes is also known as listeriosis. This microorgan-
ism, a gram-positive rod, can cause a wide spectrum of clinical syndromes in humans,
from neonatal to neuroinvasive disease. These clinical syndromes are uncommon in hu-
mans, because Listeria infection is more commonly seen in ruminants [1,2]. Among the
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genus Listeria, L. monocytogenes regularly affects humans, whereas L. ivanovii is more fre-
quently seen in ruminants. Immunosuppression, the presence of solid or hematologic
malignancy, extreme age (young or old), and pregnancy are the main risk factors for severe
syndromes. Regarding pregnancy, L. monocytogenes often targets placental tissue, can pro-
duce chorioamnionitis and bacteremia in pregnant women, and can penetrate the placenta
to infect the fetus [3]. Healthy individuals can also be affected, usually in the form of febrile
gastroenteritis. Although the prognosis for pregnant women is usually good, listeriosis
during pregnancy can cause spontaneous abortion, premature delivery, fetal mortality,
and severe neonatal morbidity [4,5]. Meningitis, meningoencephalitis, and brain abscess
are the most severe forms of listeriosis and are also risk factors for morbidity and mortality.
A diagnosis of listeriosis is usually made upon positive isolation of the pathogen in blood
cultures, in some types of tissue (e.g., placental tissue), or in cerebrospinal fluid (CSF) in
the case of neuroinvasive infection. If available, polymerase chain reaction (PCR) should
be performed in all patients clinically suspected of listeriosis of the central nervous system
(CNS). A definitive diagnosis of neurolisteriosis can be made when CSF cultures or PCR
are positive for Listeria [3,6,7].

1.2. Statistical Approaches to Predicting Outcomes from Electronic Health Records (EHR)

Early detection of severe listeriosis makes it possible to change the natural course
of the disease, as it can help physicians individualize care for a given patient to better
manage the condition or to avoid morbidity [8]. When a data set, such as an EHR, has
many features, or relationships between these features and a given outcome are nonlinear,
selecting a good predictive model is not easy. The most common solution is to rely on
classic, well-known methods, such as logistic regression (LR). An alternative is to use other
methods, such as machine learning, to produce well-fitting models and to select relevant
and interpretable features.

Chi-square and LR are conventional modeling methods in analytical biomedical
studies with binary (yes/no) outcomes. They are based on 2 × 2 or contingency tables. LR
provides a simple, straightforward interpretation of the effect of independent variables on
a proposed outcome by allowing researchers to calculate an odds ratio (OR) to evaluate
the final predictive model. However, this approach can have limitations. For example,
if one of the cells in the 2 × 2 table is zero, the standard errors will be too large, the model
will be biased, mathematical convergence will not be achieved, and the whole model
will be unreliable [9]. Also, in health care it is critical to improve predictive accuracy by
finding statistical patterns. Although these patterns are often overlooked, or do not always
correspond to an identifiable metabolic, physiological, or underlying biological pathway,
they can still help physicians gain insight into the mechanisms of disease [10,11].

Machine learning has been suggested to address the limitations of conventional mod-
eling [8,10,12] and can be an alternative approach used in medical investigations. Using
machine learning in clinical research allows clinicians to recognize patterns in health-related
data sets that could otherwise be overlooked. This enables them to better understand and
explain data and to obtain better insights from them [10,12].

One of the benefits of machine learning is that it can produce interpretable, compre-
hensive, non-complex models whose simple, parsimonious structures allow clinicians to
understand their intrinsic workings. Another important advantage of machine learning has
to do with feature selection. Given a subset of features or predictors, any clinician can easily
address a medical condition. When irrelevant or redundant features are included in a data
set, this noise can affect the effectiveness of the predictive model [13]. In clinical research,
certain features are often highly correlated with other features. If two features are perfectly
correlated, only one of them should be included in the final model, because one alone is
sufficient to describe the data. Including extra features does not provide further information
but rather introduces noise into the final model. Dropping irrelevant, redundant features
improves both the predictive model and computation time. Algorithms such as random
forest (RF) can accurately deal with feature selection.
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An exhaustive literature review is beyond the scope of this research, but it is worth
noting some publications on the use of machine learning in several clinical scenarios.
Parikh et al. [14] applied RF and gradient boosting algorithms to a data set based on
structured EHR to accurately identify oncology patients at risk for mortality. In that study,
machine-learning algorithms outperformed conventional modeling. Recent studies on mor-
bidity and mortality in patients with heart failure [15,16] have shown the high predictive
accuracy of algorithms such as RF or support vector machines. In another study, a RF
model was the best of several algorithms compared for predicting mortality in patients in
intensive care units [17]. Regarding infectious diseases, such as the recognition of temporal
patterns in dengue [18] or early diagnosis of HIV [19,20], RF provided the best results
in terms of predictive accuracy. These studies demonstrate the usefulness of modeling
approaches for predicting early diagnosis and mortality in several clinical scenarios.

Better performance, better understanding, and better insights are the main benefits of
applying machine learning to clinical research. Therefore, our aim in this study was not
only to describe and analyze demographic and clinical features of L. monocytogenes infection
but also to determine the features most associated with mortality due to Listeria-related
infections to improve insight into these infections. Our study aims to predict mortality,
giving clinicians the opportunity to change the natural course of listeriosis.

2. Materials and Methods
2.1. Data Collection

We conducted a retrospective nationwide cohort study to describe and analyze demo-
graphic and clinical features of patients with listeriosis and to describe the burden borne
by hospitals due to L. monocytogenes infection between 2001 and 2016. We included data
from the Spanish Minimum Basic Data Set at Hospitalization (MBDS-H), a mandatory
administrative registry of hospital discharges covering more than 95% of hospitals in the
National Spanish Health System and private hospitals. Therefore, nearly 97% of total
hospital discharges are covered [21]. The MBDS-H is built from discharge reports. Patient
data included, among other data, sex, age, date of admission and date of discharge, type
of discharge, primary and secondary diagnoses at discharge, length of stay, and surgical
or obstetric procedures. Other administrative data were recorded by default, such as the
province where the hospitalization occurred, place of residence, and cost of hospitalization.
Data were obtained from the statistical site of the Spanish National Health System [22].
Data were deidentified to ensure patient privacy: no names or personal information were
recorded by default.

2.2. Feature Engineering and the Building of the Data Set

Feature engineering is a preprocessing procedure that allows researchers to use data
to define features that enable both statistical and machine-learning algorithms to work
properly. We were provided with two data sets. The first one was coded using the
International Classification of Diseases, Ninth Revision (ICD-9), which covered 2001 to 2015.
The second set used the International Classification of Diseases, Tenth Revision, Clinical
Modification (ICD-10-CM) and covered 2016 [23]. Because diagnoses and procedures were
coded differently, both data sets were preprocessed separately and then merged into one
data set.

All diagnoses and medical conditions were coded yes/no (yes = 1, no = 0). In this
procedure, called one hot encoding, categorical variables are converted into a form that can
be provided to machine-learning algorithms to do a better job at prediction. Although LR
and RF can work directly with categorical data depending on their implementation, some
functions require input variables to be integers, or numeric in value. This means that any
categorical data must be mapped to integers. In both of our data sets, one hot encoding was
used to prepare the data for the proposed algorithms and improve prediction. Using one
hot encoding, we converted each categorical value (e.g., diabetes) into a new categorical
column and assigned a binary value of 1 or 0 (1 = yes, 0 = no) to this column.
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We used death as the outcome or response variable, which was a binary variable
(yes/no). We also used several predictors: age, sex, pregnancy, newborn, sepsis/septic
shock, bacteremia, endocarditis, invasive infection of the central nervous system, peri-
tonitis, febrile gastroenteritis, malignancy, chronic kidney disease (CKD), cirrhosis of the
liver, and immunosuppression. These clinical conditions were extracted from main or sec-
ondary diagnoses established in medical discharge summaries, coded with either the ICD-9
or ICD-10-CM.

2.3. Definitions of Variables: ICD-9 Codes

Listeriosis was coded as 027.0 in either the main diagnosis or secondary diagnosis field.
Age, sex, main and secondary diagnoses, date of admission, and date of discharge were
also collected. Other demographic variables, such as insurance/billing data or hospital
features, were excluded from our research. Data collected in the MBDS-H are listed in
Table 1. Critical data that may be potentially used to identify patients are coded with a
hash function, so a hash value was returned instead of the critical value (patient or hospital
unique identifiers). Nevertheless, we dropped any columns other than the aforementioned
medical conditions.

Table 1. Data collected in the MBDS-H.

Variable Type

Patient hospital medical record number (hash) integer
Patient identifier (hash) integer
Department categorical
Date of birth date
Date of admission date
Date of discharge date
Type of discharge categorical
Main diagnosis + 14 secondary diagnoses (if applicable) categorical
Main procedure + 20 secondary procedures (if applicable) categorical
Type of admission (urgent/scheduled) categorical
Hospital (hash) integer
Postal code categorical
Billing/insurance type categorical
Date of surgical intervention date

On the basis of 027.0 as the code for listeriosis, we identified patients with meningitis or
meningoencephalitis (code 320.7), encephalomyelitis (code 323.0), intracranial abscess (code
324.0), bacterial endocarditis (code 421), febrile gastroenteritis (codes 008, 009, and 558),
and sepsis and septic shock (codes 995 and 785) [24]. Other medical conditions analyzed
as predictors were also collected: type 1 and type 2 diabetes mellitus (code 255), solid and
hematologic malignancy (codes 140–239), immunosuppression (codes 042, 200–208, 279,
288, 289, 795, 140–199, 209, 235–239, 996, V42, 135, 277, 340, 341, 357, 422, 446, 495.9, 516,
555–558, 695, 710–714, 720, and 725), CKD (codes 585 and 403), chronic liver disease (codes
571 and 572), and chronic obstructive pulmonary disease (codes 490–496).

2.4. Definitions of Variables: ICD-10-CM Codes

Regarding the ICD-10-CM, diagnoses were defined by code A32 (listeriosis) in primary
diagnosis and then sorted according to the following codes in primary and/or secondary
diagnoses: A32.1 (listerial meningitis and meningoencephalitis), A32.11 (listerial menin-
gitis), A32.12 (listerial meningoencephalitis), A32.7 (listerial sepsis), A32.8 (other forms
of listeriosis), A32.81 (oculoglandular listeriosis), A32.82 (listerial endocarditis), A32.89
(other forms of listeriosis), and A32.9 (listeriosis, unspecified). We also included patients
with code P37.2 (neonatal or congenital disseminated listeriosis), which applies only to
newborns and should not appear on the maternal record.
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In line with the ICD-10-CM, pregnancy in our data set was coded along a continuum
from O03 to O99, although only codes O03, O30, O36, O41, O42, O63, O68, O75, O98,
and O99 were present in the data. Newborns were coded as P07, P55, or Q03. Sepsis and
septic shock were registered as R65, J96, or A41. Bacteremia was recorded as A32.82 or R78.
Endocarditis was coded as I33 or A32.82. Invasive CNS infection was a composite predictor
(meningitis, meningoencephalitis, and brain abscess) coded as A32.1, A32.11, A32.12, A87,
G00, G01, G03, G04, G05, G06, or G91. Peritonitis was recorded as K35, K61, K65, K80,
or K83. Febrile gastroenteritis was coded as K52 or R50. Malignancy was registered as C15,
C16, C34, C50, C61, C64, C67, C7A, C77, C78, C85, C90, C91, or C92. CKD was recorded as
N18. Cirrhosis of the liver was coded as F10, K70, K71, K72, or K74. Immunosuppression
was registered as D61, D70, G35, K51, B20, B55, or M46 [25].

2.5. Statistical Analyses
2.5.1. Descriptive Analyses and Bivariate Analyses

We used descriptive statistics to summarize means and standard deviations, medians
and interquartile ranges, or percentages when appropriate. p ≤ 0.05 was considered statis-
tically significant. Statistical analyses were performed with R version 3.5.2 (20 December
2018) [26] and Python 3.7.3 using scikit-learn [27]. The Mann–Whitney–Wilcoxon U test was
used to evaluate the correlation between age and mortality (the only continuous variable),
whereas the chi-square test was used on the rest of features (categorical variables).

2.5.2. Multivariate Analysis Using LR

Our first approach was a standard statistical approach used in the medical sciences
that covers bivariate analyses, chi-square and Mann–Whitney–Wilcoxon U tests, also called
filter methods. These methods select features based on the association between explanatory
features and the response feature. These classic approaches are often used as screeners:
unrelated features are excluded when a multivariate analysis such as LR is performed in a
second stage. After an exploratory descriptive analysis, a subset of selected features is used
to build a predictive model using LR.

LR is widely used in health care and medical research and can control for the con-
founding of multiple predictors simultaneously when the outcome is binary (i.e., yes/no).
The goal of LR is to create a mathematical model to evaluate the likelihood of an event
occurring. LR is a classic method used in medical research to solve classification problems,
and medical researchers often use it to obtain an OR to better understand and explain a
model. An OR represents the odds that an outcome will occur given the presence of a
predictor compared to the odds of that outcome occurring in the absence of that predictor.
Clinicians like to use the OR because it can reveal whether a given feature can predict a par-
ticular outcome and because it provides a magnitude against which to compare predictors.

2.5.3. Feature Selection Using RF

RF is a classifier based on decision trees [28–30]. We used the RF implementation in
the R package randomForest [31]. Several biomedical publications, such as ones on steato-
hepatitis, have shown that RF is an excellent, reliable, stable, and robust nonlinear classifier
compared to other machine-learning classifiers [32–34]. RF works by building many deci-
sion trees in which features predict a categorical outcome (e.g., mortality). In the current
study, 5000 decision trees were randomly and independently generated. Then these deci-
sion trees were combined to generate a single output. We also used the package caret [35] to
fine-tune the hyperparameters used by RF by means of resampling. Although several meth-
ods are available, such as bootstrapping or leave-one-out, we used 10-fold cross-validation
for resampling.

Machine-learning models are often considered black boxes because of their complex
inner workings [36]. This phenomenon is typical of accurate nonlinear algorithms such as
RF. Greater accuracy often comes at the expense of interpretability, which is key for medical
decision making, for instance. Merely building a machine-learning model is not enough,
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because in certain cases, such as in the biomedical sciences, it is necessary to interpret the
output of the model. Moreover, researchers must often explain the predictions of a model
to people who do not understand much about machine learning. There are multiple tools
to help explain both models and predictions [37,38]. Thus, it is important to understand a
given machine-learning model on a global scale (global interpretation) and also to focus
predictions on a single observation to derive local explanations (local interpretation).

From among the available tools, we chose feature importance from the RF implemen-
tation for global interpretation and local interpretable model-agnostic explanations (LIME)
for local interpretation [39]. Although LR can yield a subset of relevant features, and the
impact on mortality based on the magnitude of the OR, RF can be used even if nonlinear
relationships are present among variables. As mentioned, it can also produce a feature
importance analysis, which can be used to identify the most important features when a
classification process is computed. With LIME, our aim was to understand the impact of
risk factors around a single instance of interest (i.e., a single patient)–that is, to understand
the local behavior of a complex model such as RF on a given patient.

As part of the preprocessing stage, we addressed class imbalance [40,41]. Working with
health-related data can be challenging. When there are unequal instances for the positive
class, there are usually more survivors than death cases. In our data set, the “survivor”
class outweighed the “death” class 6 to 1. This phenomenon, called data imbalance,
can have a great impact in evaluation metrics, which can be quite poor in the case of
imbalanced classes, as most predictions would belong to the majority class. However,
there are techniques for dealing with this and improving predictive performance. We used
the synthetic minority over-sampling technique (SMOTE) to address imbalanced data by
oversampling the minority class [42,43]. SMOTE was applied before we ran either LR or RF.

Correctly interpreting a well-fitting model is just as important as building one. Pre-
dictions may be accurate, but most of the time researchers need to know which features
are the most predictive. Here we present several approaches for making a model more
interpretable. One is to calculate ORs, as mentioned previously. Another is to select features
using RF. Feature importance is one of the most useful interpretation tools in RF. More-
over, feature importance will be reliable only if the model has been trained with suitable
hyperparameters. We used an RF implementation called permutation importance [44,45].
This approach was introduced by Breiman and Cutler [29,30]. After the baseline accuracy
is refolded by passing a testing set through the model, a single column (i.e., one single
feature) is permuted, the testing samples are passed back through the model, and accuracy
is recomputed. The importance of the permuted feature is the difference between the base-
line accuracy and the accuracy computed after the column is permuted. This permutation
strategy is computationally expensive, but the results are acceptably reliable.

2.5.4. Data Splitting and Performance Metrics

Once SMOTE was applied, we split the whole merged data set into two samples to test
the performance of the model. A training sample with 70% of the observations and a testing
sample with 30% of the observations were created. Then we fit LR and RF models on the
training set and measured their performance on the testing set. As a metric of the models
we used mathematical accuracy, expressed as the number of correctly classified individuals
(both true positives and true negatives) among the total number of cases. We also used the
area under the receiver operating characteristic curve as a performance metric to evaluate
both classification models and then plotted the curve. Figure 1 shows the workflow we
used to assess our data. A final dataset with 5603 observations was produced.
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Figure 1. Workflow of the modeling approach used for our dataset.

3. Results
3.1. Descriptive Analyses

A total of 5603 patients were admitted to Spanish hospitals and registered using the
MBDS-H between 2001 and 2016. Table 2 summarizes the descriptive results. Most of the
hospitalized patients were adults (94.9%), and 2318 were women (41.4%). Age had a skewed
distribution (Figure 2), so medians and interquartile ranges were calculated. The median
age of the whole cohort was 65 years, but it was 67 years when we excluded newborns.
Most of the patients were discharged alive, either to home or to a convalescent institution.
We calculated mortality among both hospitalized patients and the global population. Case
mortality among hospitalized patients was 16.8% but varied by year. Mean mortality per
100,000 population over the observation period was 0.13.

We display the trend in hospitalizations in Figure 3, with a rising incidence over
the later years of the observation period, and the trend in mortality in Figures 4 and 5.
Figures 6 and 7 show incidence and mortality trends per 100,000 population, respectively,
compared to the general population. Table 3 summarizes the data on incidence and
mortality by year.
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Table 2. Main characteristics of our cohort.

Feature Patients (n = 5603)

Sex (female) 2318 (41.4%)
Adult 5316 (94.9%)
Newborn 287 (5.1%)
Age (all patients) 65.0 (IQR: 28.0)
Age (excluding newborns) 67.0 (IQR: 25.0)
Hospital discharge

Discharged alive 4662 (83.2%)
Deaths 941 (16.8%)

Clinical presentation
Pregnancy 301 (5.4%)
Neonatal form 296 (5.3%)
Sepsis/septic shock 625 (11.2%)
Bacteremia 963 (17.2%)
Endocarditis 48 (0.9%)
Meningitis 2388 (42.6%)
Brain abscess 97 (1.7%)
Peritonitis 194 (3.5%)
Febrile gastroenteritis 221 (3.9%)

Comorbidity
Malignancy 1401 (25.0%)
Chronic kidney disease 473 (8.4%)
Cirrhosis of the liver 725 (12.9%)
Immunosuppression 2232 (39.8%)

Age is expressed as median and interquartile range (IQR). The rest of the variables are expressed as frequencies
and percentages.
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Figure 2. Age distribution among patients with listeriosis.
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Table 3. Incidence and mortality per 100,000 population.

Year Hospitalizations Deaths Total Population Incidence Mortality

2001 194 40 40,670,000 0.48 0.1
2002 159 27 41,040,000 0.39 0.07
2003 252 45 41,830,000 0.6 0.11
2004 333 69 42,547,454 0.78 0.16
2005 299 50 43,296,335 0.69 0.12
2006 327 60 44,009,969 0.74 0.14
2007 347 60 44,784,659 0.77 0.13
2008 340 51 45,668,938 0.74 0.11
2009 389 77 46,239,271 0.84 0.17
2010 390 72 46,486,621 0.84 0.15
2011 407 74 46,667,175 0.87 0.16
2012 395 73 46,818,216 0.84 0.16
2013 472 61 46,727,890 1.01 0.13
2014 428 50 46,512,199 0.92 0.11
2015 448 70 46,449,565 0.96 0.15
2016 423 62 46,440,099 0.91 0.13

Both incidence and mortality are calculated per 100,000 inhabitants, based on the population of Spain in the
observation period.
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Figure 3. Distribution of hospitalizations across the observation period. Blue line represents the
rising trend of hospitalizations, whereas bars represent the number of patients.

Our cohort included 301 pregnant women (5.4%). Regarding clinical presentation,
296 newborns presented with listeriosis. Meningitis was the most common clinical presenta-
tion, with 2,388 cases (42.6%). One quarter of all patients presented with malignancy, either
solid tumor or hematologic disease, as a comorbidity (1401 cases), but immunosuppression
was the most common (39.8% of all patients).
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Figure 4. Mortality rate among hospitalized patients (I). Yellow portion of the bars represents deaths
among individuals during the observation period, whereas blue portion of the bar shows patients
that were discharged alive.
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Figure 5. Mortality rate among hospitalized patients (II). Both lines show the trend of survival
patients (red line) and deaths (blue line). Both lines are decoupling along time, which suggests
mortality rate decreased in recent years.

3.2. Bivariate Analyses and LR

Table 4 summarizes the variables included in bivariate analyses of mortality. Only
sex, endocarditis, and peritonitis were not associated with mortality. Given that age had a
skewed distribution, we repeated the bivariate analyses of age categorizing this continuous
variable into ranges, as shown in Table 5.

According to Table 5, the age ranges 51–60 and greater than 70 were associated with
increased mortality. However, certain ranges were associated with greater survival, such as
the range from <10 years old to <50 years old.
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Figure 6. Incidence per 100,000 population.

Before performing LR and plotting the receiver operating characteristic curve, we
first applied the SMOTE strategy and then split the whole data set, as described in the
Methods section. We fit the model using the training set and tested its performance
on the testing set. Regarding multivariate analysis, we decided to perform LR on the
subset of features associated with mortality in Table 4 and all age ranges in Table 5. We
performed both forward and backward stepwise selection to produce a subset of variables
significantly associated with mortality, shown in Table 6. Finally, we plotted a receiver
operating characteristic curve, which gave us an area under the curve of 0.740 (see Figure 8).
The fitted model had a diagnostic accuracy of 0.832.
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Figure 7. Mortality per 100,000 population.
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Table 4. Bivariate analyses of clinical variables associated with mortality.

Variable Survivors (n = 4662) Deaths (n = 941) p

Sex (female) 1940 (41.6%) 378 (40.2%) 0.433
Age (IQR) 63.0 (31.0) 73.0 (19.0) <0.001
Pregnancy 301 (6.5%) 0 (0.0%) <0.001
Newborn 273 (5.9%) 23 (2.4%) <0.001
Sepsis/septic shock 409 (8.8%) 216 (23.0%) <0.001
Bacteremia 839 (18.0%) 124 (13.2%) <0.001
Endocarditis 38 (0.8%) 10 (1.1%) 0.577
CNS 1988 (42.6%) 465 (49.4%) <0.001
Peritonitis 153 (3.3%) 41 (4.4%) 0.122
Febrile gastroenteritis 199 (4.3%) 22 (2.3%) 0.7
Malignancy 1054 (22.6%) 347 (36.9%) <0.001
CKD 364 (7.8%) 109 (11.6%) <0.001
Cirrhosis of the liver 581 (12.5%) 144 (15.3%) 0.21
Immunosuppression 1764 (37.8%) 468 (49.7%) <0.001

CKD: Chronic kidney disease. CNS: Central nervous system. IQR: Interquartile range. CNS is a composite of
meningitis and brain abscess.

Table 5. Bivariate analyses for mortality with age as a categorical variable.

Variable Survivors (n = 4662) Deaths (n = 941) p

Newborn 276 (5.9%) 23 (2.4%) <0.001
1–10 34 (0.7%) 1 (0.1%) 0.47
11–20 55 (1.2%) 5 (0.5%) 0.112
21–30 223 (4.8%) 5 (0.5%) <0.001
31–40 428 (9.2%) 24 (2.6%) <0.001
41–50 399 (8.6%) 58 (6.2%) 0.17
51–60 675 (14.5%) 111 (11.8%) 0.35
61–70 958 (20.5%) 182 (19.3%) 0.426
71–80 1054 (22.6%) 308 (32.7%) <0.001
>81 560 (12.0%) 224 (23.8%) <0.001

Table 6. Multivariate analyses for mortality with age as a categorical variable.

Variable OR 2.5% 97.5% p

(Intercept) 0.05 0.04 0.06 <0.001
Malignancy 1.94 1.58 2.4 <0.001
Sepsis/septic shock 3.31 2.72 4.02 <0.001
Chronic liver disease 1.68 1.36 2.07 <0.001
Immunosuppression 1.4 1.15 1.7 <0.001
CKD 1.44 1.12 1.84 <0.001
CNS 1.72 1.46 2.02 <0.001
61–70 1.46 1.17 1.81 <0.001
71–80 2.48 2.04 3.01 <0.001
>80 years 3.98 3.19 4.96 <0.001

OR: Odds ratio. CKD: Chronic kidney disease. CNS: Central nervous system. CNS is a composite of meningitis
and brain abscess.

3.3. RF-Based Analyses and Interpretation

As mentioned in the Methods section, we addressed the problem of imbalanced data
using SMOTE prior to running the RF algorithm. Then we used 10-fold cross-validation
as a resampling strategy to fine-tune hyperparameters for RF. Although all variables were
included in the RF algorithm, only the most important features are shown and plotted
in Figure 9, which shows the importance of variables. The area under the curve of the
model was 0.741 (Figure 10), and the diagnostic accuracy was 0.831. We used feature
importance to understand the model from a global perspective and LIME to produce a
local interpretation to explain why an individual prediction was made for a given patient
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or observation. Instead of providing a numerical value such as an OR, RF ranks features in
a plot (Figure 9) that shows the impact of a given variable in the model. In line with the
results of LR, sepsis/septic shock was the clinical feature most linked to the occurrence of
death. Plots such as the one in Figure 9 give clinicians an easy way to evaluate visually the
importance of clinical conditions. Features are ranked in terms of importance on the y-axis
(features of highest importance at the top). X-axis means the impact in mean accuracy of
dropping a certain variable from the random forest model. Mean decrease accuracy shows
how much the accuracy decreases when in the model without that feature. Features of
high importance are key to the outcome, and their values have a significant impact on
mortality. By contrast, features of low importance are omitted from the final model, which
makes it simpler and faster to fit and predict. For example, the age range 61–70, which
was considered a risk factor in LR, had little impact when the results from RF were plotted.
The remaining variables were not plotted, as they had no impact on the final model.

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Specificity

S
en

si
tiv

ity

ROC Curve (AUC = 0.74)

Figure 8. Receiver operating characteristic (ROC) curve for mortality for the logistic regression model.
AUC, area under the curve.

To illustrate local interpretation and LIME, we plotted results for two observations
(patients) to find the justifications of such interpretations. In both cases, “1” means that
the patient has a condition, whereas “0” means that the patient has not that condition.
The length of the bars in Figure 11 indicates the magnitude of the impact (y-axis), whereas
the color indicates the sign of the estimated coefficient (red for negative, blue for posi-
tive). We plotted the 10 most influential variables and whether the variable increased the
probability (“supports”) or decreased it (“contradicts”). This plot also revealed the model
fit (i.e., how well the model explained mortality or survival in the patient). For the first
case (patient 5), our proposed model predicted the probability of death with 88% accuracy
and an explanation fit of 93%. Sepsis, age 71–80, and CKD were the three variables that
most influenced the high probability. Lack of malignancy, lack of immunosuppression, and
age <80 had little impact on the final probability. In contrast, patient 14 had a 96% probabil-
ity of surviving because that individual had no sepsis, no malignancy, no immunosuppres-
sion, and no chronic disease.
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Figure 9. The importance of features based on permutation in a parsimonious model with nine
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Case: 5
Label: Dead
Probability: 0.88
Explanation Fit: 0.93

Case: 14
Label: Survivor
Probability: 0.96
Explanation Fit: 0.93
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Figure 11. Local interpretation for two individual patients.

4. Discussion

The first aim of this study was to describe and analyze demographic and clinical
features of listeriosis over a 16-year observation period. The second objective was to
identify relevant predictors of mortality due to Listeria-related infection. The main finding
is that a combination of LR and RF models produced a high predictive value and selected
the most relevant subset of features related to mortality due to infection by L. monocytogenes.
Sepsis, malignancy, and age >70 were the main risk factors. Other medical conditions,
such as immunosuppression, CKD, and CNS-related infections, also had a great impact
on mortality. This feature selection provides better insight into the prognosis for Listeria-
related infection.

4.1. Descriptive Analyses

Our work extends the Spanish study by Herrador et al. [46], who performed an epi-
demiological investigation of incidence and mortality of listeriosis based on MBDS-H data
from 1997 to 2015. Those authors demonstrated an increasing trend in hospitalization
in the observation period, highlighting the need for awareness of this emergent public
health problem. They used nationwide electronic records based on the ICD-9 and explored
several medical conditions. Our contribution is to identify risk factors by using a com-
bination of data science, conventional statistics, and machine learning beyond a merely
exploratory analysis.

From 2001 to 2016, the annual incidence of listeriosis increased. In 2016, the last year
recorded in our data set, the incidence was 0.9 patients per 100,000 inhabitants in Spain,
greater than the reported 0.47 patients per 100,000 population in the European Union [47].
It is worth noting that there is actually a certain degree of underreporting because in Spain
and Belgium it is not mandatory to report cases of listeriosis. The mean death rate in our
study was 0.13 patients per 100,000 population but 16.8% among hospitalized patients,
similar to the rest of the European Union but far below the 25% rate reported elsewhere [48].

In line with other studies [49], we found that in Spain listeriosis is rare, but it may be
responsible for severe clinical syndromes and death in certain populations. We replicated
the findings by Herrador et al. [46], whose epidemiological study demonstrated popu-
lation demographics identified three main clinical groups: newborns, pregnant women,
and remaining adults. Also, we demonstrated that sepsis/septic shock and invasive CNS
listeriosis (either meningitis or brain abscess) were the most frequent and severe forms of
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infection, but malignancy, old age, and immunosuppression were the comorbidities most
associated with mortality [50].

4.2. Statistics and Machine Learning

Regarding correlation analyses, bivariate tests such as the chi-square test rely on linear
relationships between two variables [51]. However, a strong relationship can be over-
looked if the correlation is nonlinear. These approaches perform an evaluation function,
in which general characteristics are analyzed without the involvement of a learning algo-
rithm. The benefit of this simple structure is that the insights are comprehensive and easy
for researchers to understand. The main disadvantage is that they cannot handle nonlinear-
ity [52]. Some results derived from bivariate analyses can be misleading, because although
they show statistically significant differences in certain variables (bacteremia, pregnancy,
gastroenteritis), these features cannot be considered to be associated with an increased risk
for mortality. Likewise, a data analyst might have overlooked the role of age. In our study,
age required deeper analyses, as its real impact on mortality was only revealed when the
variable was categorized.

In contrast, combining preprocessing data, classic LR, and machine-learning algo-
rithms such as RF can yield reliable models and select relevant features. We consider RF
an excellent, reliable, stable, and robust nonlinear classifier compared to conventional
approaches. RF can address nonlinearity, as has been demonstrated previously [34,53].
In our study, RF not only performed fairly well but also selected some interesting features
as most relevant to Listeria-related mortality. RF uses built-in methods to select and validate
important features as part of the fitting process. It then optimizes this subset of features by
assigning them weights in the final model. In our study, sepsis and age were key features
predicting mortality in the RF model. The LR and RF models performed similarly, and we
cannot claim that one is better than the other. However, the subsets of selected features
differed slightly by method.

As mentioned previously, in our study we used RF not only as a classifier but also as a
method of evaluating the importance of individual features, which is essentially a measure
of how well the model would perform if these features were not included. RF was used not
only to accurately predict mortality but also to optimize the identification of features most
important for predicting death among our patients.

It is worth mentioning that LR can be considered both a conventional statistical method
and a machine-learning algorithm. When used as a conventional method, it provides an OR,
a metric commonly used by medical researchers. In our study we used LR to calculate ORs,
but by splitting the whole data set into two samples, fitting the LR model on a training set,
and then measuring its performance on a testing set, we also used it as a machine-learning
algorithm. Generally speaking, LR is the first classifier a data analyst should run if machine
learning is used on a new data set.

4.3. Relevant Features of Listeria-Related Mortality

Healthy middle-age patients are less prone to die, whereas the elderly and patients
with any kind of malignancy or immunosuppression are more prone to have a bad outcome.
Recent publications [46,49] have found that malignancy, either solid organ neoplasm or
hematologic disease, and immunosuppression are the most frequently recorded comorbidi-
ties in non-pregnant patients and have a great impact on mortality and clinical sequelae.
The MONALISA study found that patients with CNS infection, along with immunosuppres-
sion and malignancy, had threefold higher mortality [49]. Other studies have found that
patients with no underlying conditions usually have a good prognosis [7,54,55]. However,
these studies could not establish a relationship between mortality and age. One explanation
for this could be the nonlinear relationship between age and mortality. Previous studies
may have overlooked this relationship because the correlation between these variables
is nonlinear, as revealed by our research. Therefore, clinicians should not consider age a
linear function, as doing so provides only partial support for a predictive model for mor-
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tality. However, nonlinearity can be properly handled with machine-learning algorithms.
Although far from perfect, there was a reasonably coherent relationship between age and
mortality in this study.

A concern may arise regarding age as a confounding factor, and this deserves to be
discussed. Several factors may affect the trend in mortality at critical ages, such as among
newborns or the elderly. These include underlying vulnerabilities and medical factors
associated with critical ages, such as hypertension, cholesterol, diabetes, or the vulnerability
of newborn infants. However, our research found that newborns are not at high risk despite
their critical age. Future studies should further explore the impact of and interactions
between underlying conditions, age, and other medical factors when developing models
to predict outcomes of listeriosis. More knowledge of these processes will increase our
understanding of severity in listeriosis.

Several studies have highlighted the importance of neurological syndromes for the
severity of listeriosis. Arslan et al. [6] found that CNS infections were an independent
risk factor for mortality, and parenchymal involvement in neuroimaging was an indepen-
dent risk factor for severe infection. Brouwer et al. [56] found a mortality rate of 17%,
with immunocompromised status as the main risk factor for mortality. Goulet et al. [57]
reported that more than 50% of their patients developed severe sepsis, with 20–25% having
neurological infections. Although they have a great impact, we could not demonstrate that
immunosuppression or neuroinvasive listeriosis are the risk factors most associated with
an increased risk of mortality. We believe that the low mortality rate among our patients
made it difficult to establish prognostic factors. Another reason for the lack of findings is
discussed below as a limitation of our study.

4.4. Limitations: The Reliability of Administrative Data

The main limitation of this study is that it was based on administrative data. Al-
though EHR have improved the collection and availability of data, a major limitation of
clinical research is that clinical data are not readily available. Furthermore, EHR usually
contain administrative data, which are focused on economic management rather than clini-
cal relevance [58–60]. In the current study, we used administrative data from the MBDS-H.
One of its objectives is to facilitate clinical research. Its main advantage is that it covers
more than 95% of Spanish hospitals. However, the validity of the data set relies on accurate
medical discharge reports and on correct recording of variables. Primary and secondary
diagnoses can be provisional, incorrect, or incomplete; some clinical conditions can be
either excluded from diagnoses or redundant. Moreover, the data may have been collected
by administrative staff with no medical training. The reliability of the MBDS-H may not be
guaranteed [61].

We identified some issues in our data set regarding the coding of certain clinical
conditions, as many conditions were recorded unevenly or not included as diagnoses. We
could not assess some comorbidities, types of solid tumors or hematologic malignancy,
immunosuppressive drugs, types of pathogen isolation, antibiotic therapies, neuroimaging
techniques, or surgical treatments, as they were not recorded. This undercoding may
explain the lack of significance of certain features. This misclassification is inherent to the
MBDS-H because of the nature of the coding process.

A key factor in the diagnosis of listeriosis is the positive isolation of L. monocytogenes
in blood, CSF, or tissue. We could not report positive isolations of L. monocytogenes in
CSF or tissue, simply because they were not recorded. Isolation of the microorganism in
blood cultures was indirect data, collected through, for instance, ICD-10-CM codes A32.82
(listerial endocarditis) and R78 (findings of drugs and other substances, not normally found
in blood). Thus, bacteremia was inferred based on unreliable data. In our study, bacteremia
was not a relevant predictor and did not provide any new knowledge of the disease, either
because it was incorrectly recorded or because finding this microorganism in blood has no
clinical value.
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This discrepancy between clinically correct diagnoses established by clinicians and in-
correct diagnoses recorded in the MBDS-H is a major limitation of our study. Demographic
and administrative data, such as age, sex, hospital stay, and type of discharge, can be easily
collected, but data on clinical conditions rely on the accuracy of diagnoses (both primary
and secondary). However, although a certain amount of misclassification is expected, relia-
bility could be improved with strategies such as examining secondary diagnoses [62,63].
Some have argued that the MBDS-H provides sufficiently valid information and can be a
useful tool in epidemiological and clinical studies [64,65]; nevertheless, researchers should
take these limitations into account.

The main strength of our study is that we obtained useful insights into Listeria-related
infection using administrative data and machine-learning approaches. Both administrative
data sets and machine-learning analyses have proven to be efficient tools in clinical and
epidemiological studies of infectious diseases.

5. Conclusions

Mortality due to listeriosis is lower in Spain than in the European Union, but it remains
at a high level. Aging, sepsis, malignancy, chronic diseases such as liver or kidney disease,
and immunosuppression are the most important predictors of mortality in patients with
listeriosis. The increasing trend in listeriosis observed in the past decade should prompt
health providers and state governments to combine the use of preventive actions and
sanitary food safety procedures, especially among populations at risk.

Regarding data analysis, combining LR and RF can help clinicians make a reliable
and accurate prognosis for mortality, as it makes it possible to identify critical ages and
other conditions associated with an increase in mortality. Both conventional statistics
and machine learning can be complementary methods of analyzing high-dimensional
EHR, and data analysts should not consider these methods mutually exclusive. In our
study we highlighted the use of complex machine-learning algorithms such as RF; several
strategies for preprocessing data prior to analyzing them; and several tools for interpreting,
understanding, and explaining results. We developed a reliable, comprehensive predictive
model, demonstrating the usefulness of some optimal techniques for analyzing the real data
of patients at high risk for mortality due to listeriosis. Performance (in terms of predictive
accuracy) and the area under the receiver operating characteristic curve can be considered
acceptable. Features considered most relevant were consistent with their physiological
roles. From a technical point of view, we consider our main contribution to have provided
a machine-learning strategy to make algorithms such as RF more interpretable and to
produce simple, well-fitting predictive models to identify populations at risk. Clinical
researchers can benefit from a framework in which data science, conventional statistics,
and machine learning are combined.
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