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Abstract: Poor academic performance of students is a concern in the educational sector, especially
if it leads to students being unable to meet minimum course requirements. However, with timely
prediction of students’ performance, educators can detect at-risk students, thereby enabling early
interventions for supporting these students in overcoming their learning difficulties. However, the
majority of studies have taken the approach of developing individual models that target a single
course while developing prediction models. These models are tailored to specific attributes of each
course amongst a very diverse set of possibilities. While this approach can yield accurate models in
some instances, this strategy is associated with limitations. In many cases, overfitting can take place
when course data is small or when new courses are devised. Additionally, maintaining a large suite
of models per course is a significant overhead. This issue can be tackled by developing a generic
and course-agnostic predictive model that captures more abstract patterns and is able to operate
across all courses, irrespective of their differences. This study demonstrates how a generic predictive
model can be developed that identifies at-risk students across a wide variety of courses. Experiments
were conducted using a range of algorithms, with the generic model producing an effective accuracy.
The findings showed that the CatBoost algorithm performed the best on our dataset across the
F-measure, ROC (receiver operating characteristic) curve and AUC scores; therefore, it is an excellent
candidate algorithm for providing solutions on this domain given its capabilities to seamlessly handle
categorical and missing data, which is frequently a feature in educational datasets.

Keywords: machine learning; early prediction; CatBoost; at-risk students; educational data mining

1. Introduction

In today’s competitive world, higher education (HE) institutions need to deliver
efficient and quality education to retain their students. The extensive blending of digital
technologies into HE teaching and learning environments has resulted in large amounts
of student data that can provide a longer-term picture of student learning behaviours. To
understand and assist student learning, HE providers are implementing learning analytics
(LA) systems; these systems provide data-driven insights about students to assist educators
in determining their overall academic progression. This technology is particularly being
leveraged to predict at-risk students and identify their learning problems at early stages,
with the purpose of initiating timely interventions and tailoring education [1–3] to each
student’s level of need.

LA approaches typically rely on educational data collected from various learning
activities provided via online learning platforms, such as learning management systems
(LMSs) [4]. LMSs are web-based learning systems that offer a virtual platform for facilitating
teaching and learning, such as providing students with online course content, tracking
student interactions, enabling peer communication over online forums, delivering course
assessments to students, or releasing assessment grades [5]. Various stakeholders have
different objectives for using an LMS. For instance, Romero and Ventura [6] suggest that
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students use an LMS to personalise their learning, such as review specific material or
engage in relevant discussions as they prepare for their exams. Meanwhile, teachers rely
on an LMS to deliver their course content and manage teaching resources in a relatively
simple and uniform manner [7] without worrying about pace, place or space constraints.
Irrespective of how an LMS is used, user interaction with the system generates significant
and detailed digital footprints that can be mined using LA tools.

The most widely used open source LMS is Moodle (i.e., Modular Object-Oriented
Dynamic Learning Environment). It facilitates instructors to create online lessons that can
be used in any of the three delivery modes: face-to-face, entirely online, or blended [5].
Moodle is mostly used as a communication platform for educators to communicate with
students, as well as to publish course materials and grade student assignments. Students
can therefore benefit from Moodle by having more interactions with their instructor and
their peers, as they engage with the course content. Every activity performed in Moodle is
captured in a database or system log, which can then be analysed to examine underlying
student learning behaviours via LA approaches. A deeper investigation may be conducted
if any indicators pertaining to at-risk students are identified [7]. A modelling process
translates these indicators (extracted from training data) into predictive insights, which can
be used on new data (or test data) to gauge student online behaviours. Teachers can then
support at-risk students in overcoming their learning difficulties [8].

Most of the research into predicting student performance and identifying at-risk
students has focused on developing tailor-made models for different courses. There are
multiple problems with this approach, such as the issue of scalability and overhead in
developing, optimising and maintaining custom models for each course within the HE
provider’s vast array of course offerings. This approach brings to the fore both human
resource and technical expenses. Even if these challenges can be overcome, course-specific
models are likely to perform poorly across numerous courses due to data insufficiency,
resulting in overfitting. This is a tendency for courses that may have small cohorts, or for
courses that have been newly set up and thus do not have historic data from which patterns
can be learned through machine learning.

An alternative approach is to develop generic predictive models that operate across all
of the disparate courses, though only a few works have attempted this strategy to date [9].
This is a technically more challenging approach due to the fact that more experimental
rigour is required in the feature engineering phase, whereby more generic and abstract
features that describe students’ learning patterns need to be devised in a way that they are
course-agnostic. The present study focuses on building a generic (or portable) model using
a machine learning algorithm to generate a classifier for predicting student final outcomes.

Therefore, the motivation of this study is to demonstrate how a generic, course-
agnostic predictive model can be developed that has strong portability attributes and can
thus be effective at predicting students’ final outcomes across disparate courses. Further-
more, this research demonstrates how an effective model can be built using a variety of
student attributes that range from demographic to those that capture students’ academic
performances. We perform numerous experiments by developing models at different time
frames (two, four, six and eight weeks into a course) to examine how early in the course an
effective prediction can be made. Our experiments involve multiple algorithms, and we
note the CatBoost algorithm as being the most effective on our dataset.

Against this backdrop, the rest of the paper is organised as follows. The next section
reviews existing studies on LA, with emphasis on the various machine learning techniques
used to predict students’ academic performance. Next, the datasets used in this study are
described, followed by our proposed algorithmic approach. The results are then presented,
findings are discussed, and conclusions are made thereafter.

2. Review of Related Studies

Prediction of student academic performance has drawn considerable attention in the
educational field. For instance, predicting whether a student will pass or fail a course, and
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then notifying the instructor about the at-risk student, can enable the instructor to intervene
and provide the student with learning pathways to improve their performance [10]. Several
studies have reported success in predicting student academic performance using various
educational data mining techniques. This review covers related works on prediction using
a generic (or course-agnostic) model and early prediction techniques within the scope of
the study.

2.1. Related Study Exploring Prediction Using Generalised Model

Chen and Cui [11] applied a deep learning approach—long short-term memory (LSTM)
networks—to analyse student online behaviours for early prediction of course performance
using the students’ LMS data. The prediction performance of the LSTM networks approach
was compared against eight conventional machine learning classifiers and AUC was used
as the evaluation metric. The model generalisability was evaluated using the data derived
from semester 1 and semester 2. The results showed that test AUC scores for semester
1 were around 0.75, which was higher than those obtained for semester 2, as the training
data was also from the course in semester 1.

The motivation of Zambrano et al. [9] was to study the portability of student perfor-
mance where the knowledge extracted from a specific course can be applied directly to
a different course from the same degree and with similar levels of LMS usage. Using J48
decision trees, the authors created a predictive model based on 24 courses to classify the
students into a pass or fail category. The model achieved an AUC loss value of 0.09 and
0.28 when using the courses to the same degree, and an AUC loss range from 0.22 to 0.25 for
courses with similar levels of Moodle usage.

LMS data and in-between assessment grades were used in another study [7] to predict
student performance. Multiple linear regression was used to induce predictive models at
the end of the course and evaluate the efficacy of the available features within LMS. To
assess whether the data could offer an intervention during a course, linear and logistic
regression was applied to the features at the end of each week of the course. The results
showed the LMS usage data to be a weak predictor here unless other assessment data were
also included, which ultimately improved predictions.

In another study by Nakayama et al. [12], the performance of students in a blended
learning course was predicted based on their note-taking activities and their individual
characteristics, which were measured via student surveys. The possibility of predicting
performance in final exams was evaluated by using the features of the contents of notes
taken by students throughout the course and overall participant characteristics. The results
showed that features of note-taking activities play a major role in predicting the final
exam scores.

Gasevic et al. [13] built different logistic regression models for nine undergraduate
courses to predict student performance (pass or fail). They used LMS logs and student
information from the institutional student information system to build one model that
would cover all the courses, as well as one model per course. The authors computed the area
under the ROC (receiving operating characteristic) curve (AUC) values. The generalised
model for all the courses showed an acceptable accuracy (0.5 ≤ AUC < 0.7). However, the
models specifically built for a particular course achieved excellent (0.8 ≤ AUC < 0.9) or
outstanding (AUC ≥ 0.9) performances.

2.2. Related Study Exploring Early Prediction of Student Performance

The main reason to predict student performance is to identify the at-risk students,
intervening and customising learning strategies in time to support them in achieving better
results; however, most earlier studies have focused on predicting students’ final course
results once all the student course data was gathered, which would leave no time for such
interventions. Upon recognising this issue, more researchers have recently attempted to
predict student outcomes earlier in their course of study. For instance, González et al. [14]
tried to identify struggling learners at early stages of the course. They used LMS data to
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predict student performance at set points along the way, when 10%, 25%, 33% and 50%
of the course had been completed. Different classification algorithms, namely Decision
Tree (DT), Naïve Bayes (NB), Logistic Regression (LR), Multilayer Perceptron (MLP), and
Support Vector Machine (SVM), were used to evaluate the prediction accuracy. MLP
achieved the best performance on this dataset, with 80% accuracy when 10% of the course
had been delivered and 90% accuracy when half of the course had been completed.

A solution proposed by Queiroga et al. [14] used students’ interaction with their virtual
learning environment to identify at-risk students as early as possible. Classic DT, MLP, LR,
random forest (RF), and the meta-algorithm AdaBoost (ADA) were used. The proposed
approach utilised genetic algorithms (GA) to tune the hyperparameters of the classifiers,
and the results were compared with the traditional method without hyperparameter
optimisation. The prediction model was run every two weeks for a 50-week duration
course. The results showed that the highest AUC score was achieved using the GA during
the initial period. There was a considerable decrease in performance from week 30 due to
the increase in the number of input attributes.

A study by Zhao et al. [15] used Moodle data to predict student performance in the first
quarter of a semester. They used the fuzzy rule-based classification method (FRBCS) and a
modified FRBCS to predict the learning outcomes of students. The results showed that the
modified FRBCS method provided higher stability and better performance compared to
the unmodified FRBCS method.

A study made by Ramaswami et al. [16] tried to estimate the earliest possible time
within a course at which reliable identification of students at risk could be made. The
input data were a combination of LMS, demographics and assignment grades. Four
different classifier algorithms were tested: NB, RF, LR and k-Nearest Neighbours (kNN).
Two experiments were conducted, one using all the features and the other using features
selected for their high prediction accuracy. LR produced the best accuracy of 83% in week
11, and the authors noted that it is better to apply feature selection approaches rather than
select all features for making predictions due to overfitting.

Howard et al. [17] attempted to determine the ideal time to apply an early warning
system in a course. LMS data along with student grades and their demographic information
were used as input data for the prediction model. After testing multiple predictive models,
the Bayesian additive regressive trees (BART) model yielded the best results with a mean
absolute error (MAE) of 6.5% as early as week 6, precisely midway through the course.
This point in the course is sufficiently early so that remedial measures can be taken by the
teacher, as required.

To sum up, various models have been proposed by researchers and a variety of
different machine learning approaches have been used to mine educational data for student
performance prediction. Moreover, some excellent results have been achieved using an
assortment of different methods, with no one method outshining all other methods (refer
to Table 1), unsurprisingly in line with the “No Free Lunch” theorem [18]. In general, a
recent systematic literature review [10] into predicting student performance has found that
reported accuracies range widely and are influenced by many factors, with the bulk of the
studies appearing to achieve predictive accuracies between ~70% to ~90%.
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Table 1. Machine learning algorithms applied in educational environments.

Authors Prediction Goal Evaluation Measures Methods Compared Best Performers

Prediction Using Generalised Model
[11] Binary classification AUC LSTM LSTM
[9] Binary classification AUC, AUC loss DT Proposed method
[7] Binary classification Accuracy Linear and logistic regression Proposed method
[12] Course grades R-squares and prediction error Support vector regression Proposed method
[13] Binary classification AUC LR Proposed method

Early Prediction of Students’ Performance

[19] Binary classification AUC, F-measures DT, NB, LR, MLP neural
network, and SVM MLP

[14] Multiclass classification AUC DT, RF, MLP, LR, ADA, GA GA
[15] Binary classification F-measures FRBCS and modified FRBCS modified FRBCS
[16] Binary classification F-measures, accuracy kNN, RF, NB, and LR LR

[17] Final grades MAE RF, BART, PCR, KNN, NN,
and SVM BART

3. Datasets

The data used in this exploratory research was extracted from courses offered at an
Australasian HE institution in a blended learning environment. Tayebinik and Puteh [20]
have defined blended learning as a fusion of traditional face-to-face and online learning,
where instructional delivery happens across both traditional and online courses, such
that the online component becomes a natural extension of traditional learning. Data
from various semesters were included in building the prediction model. The purpose
of considering courses of different durations was to make sure our models could handle
courses of different lengths and attributes. Single course-specific predictive models are
commonly able to provide better performance when they have sufficient historic data, but
they are not easily scalable to port to other courses. Data from the LMS (Moodle) action
logs, the Student Management System (SMS) and the Enrolment Management System
(EMS) were used for the study. These are described next.

3.1. Action Logs from Moodle

Moodle’s built-in features track student activities in each course [21]. The courses
comprise online modules pertaining to subject readings (provided via book resources,
URL links or web pages), assessments (in the form of assignments or quizzes) and forum
discussions. For the purposes of this study, the log data directly related to student activities
were extracted from Moodle, while instructor data were excluded.

Each event record in the log signifies various actions (started, viewed, created, up-
dated, etc.) performed by students on Moodle; data related to eight types of learning
activities were collected. Table 2 shows the percentage of various activities logged by
course. It should be noted that the usage of these activities varies across courses, and not
all activities may be relevant for every course.

For instance, quiz activities do not form part of many courses, such as for Internet Pro-
gramming or Application Software Development courses, amongst a few others; therefore,
log data are not available for them (see Table 2). Numerical representations were calculated
for each course module.

3.2. Enrolment Management System

The usage of the LMS and therefore the amount of logged data is scarcer in earlier
parts of a course, which can be expected to lead to a lower predictive accuracy at initial
stages of a course. Hence, demographic information and pre-academic data, such as age,
gender, citizenship and entrance requirements, from the EMS were also utilised to augment
the total dataset.
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Table 2. Information about the courses and corresponding log attributes.

Course Name Semester

Course Size
Number of

Assessments

Grade
Distribution Logged Activities in %

Male Female High
Risk

Low
Risk Forum Quiz Folder Assign Resource Book URL Page

Introduction to
finance 1 39 73 3 65 47 30 34.1 9.8 8.9 1.4 8.6 3.7 1.6

Introduction to
finance 2 51 73 3 67 57 27 31.3 12.8 6.9 1.1 12.6 4.6 2.5

Computer
Applications

and the
Information Age

1 67 48 4 94 21 42.1 - 1.1 24 21.1 7 0.9 2.9

Computer
Applications

and the
Information Age

3 21 12 4 20 13 43.5 - 0.8 23.9 22.1 5 0.9 2.9

Fundamentals
of Information

Technology
1 78 15 3 68 25 34.2 - - 23.1 17.4 4.9 16.6 3.1

Fundamentals
of Information

Technology
2 75 42 6 71 46 35.8 - - 22.2 16.6 5.8 17.2 1.5

Application
Software

Development
1 87 10 6 58 39 23.4 - - 34.7 34.3 - 7.5 -

Internet
Programming 2 61 5 4 37 29 33.7 - 0.3 17 37.1 - 7.3 4.2

System Analysis
and Modelling 2 68 25 4 65 28 33.1 7 4.1 8.4 21.2 16.5 6.6 0.09

3.3. Student Management System

The SMS provided assessment data consisting of in-between assignment grades,
quizzes, final exams and total course marks. Some of the assessments were online and
logged in the Moodle LMS, while other assessments were offline and handed in on paper
or via other systems.

4. Method

Before the students’ data could be accessed for conducting any form of analysis, ethics
approval was required. An ethics application was submitted to the Human Research Ethics
Committee at the host HE institution, and subsequently, approval to proceed was attained.

Once the data were obtained, a design decision was made to use a derivative of the
final course mark for each student as the target (or dependent) variable for prediction. The
final course mark is based on weighted averages of the marks that students received from
the online assignments and the final examination.

Student support services at the given institution require predictive outputs that indi-
cate only two possible outcomes for each student, namely if they are at risk or otherwise.
Therefore, in order to conduct machine learning, each student in the historic dataset record
needed to be labelled as being either at risk or not. A subsequent design decision needed to
be made on how to define each of these two categories so that models could be generated.
An early assumption was made that students with a mean final course mark of 50% or less
were likely to be at-risk students due to the fact that these students have not successfully
completed numerous courses. However, initial experiments using this threshold yielded
highly imbalanced datasets and consequently poor models.

Subsequently, the threshold for defining at-risk students was adjusted and fixed at 60%
or less for a mean final course mark, with the remainder being considered not at-risk. This
threshold decision was supported by the underlying data, which revealed that the mean
course mark for students who eventually abandoned their qualification studies was 61%,
and only 15% of students who eventually completed their qualification studies achieved a
mean course mark of 60% or less. The adjusted threshold addressed the class imbalance
problem to a sufficient degree since most machine learning algorithms can handle some
imbalance, and standard performance evaluation measures can still be effective unless
large amounts of imbalance exist [22].
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The raw data from the LMS log files were processed in order to engineer features
used for building the predictive models. This data processing step converted raw data
into variables that captured normalised and relative attributes of each student in respect
to their cohort. In doing so, features were generated that were course-agnostic and thus
generic. This entailed calculating the rolling mean of the actions performed by students
over multiple weeks rather than displaying the counts of the actions performed by students
each week. The rolling mean was calculated from the averages of actions from every week
and is represented as a single column, hence reducing the number of feature columns. In
addition to the rolling mean, the Z-score (or standard score) was also calculated, which
relativised a student’s score on a given feature with that of their peer’s based on the degree
of deviation from the mean. When in-between assessment grades were available, they
were added to the input data and the same procedure was followed, which meant that the
assessment features were not tightly coupled with the specific courses.

Z =
X − µ

σ
(1)

In Equation (1), X denotes the value of the independent variable, µ is the cohort mean
score for the independent variable and σ is the standard deviation of the independent
variable.

Students’ prior course grades had an impact on the students’ performance, as the prior
course grade was linearly related to the final score (Figure 1). Hence, the prior grades of
the students along with the count of pass/fail for previous courses were measured. Table 3
represents the various numerical and categorical features that were used for this study.

Figure 1. Comparison of prior score with final score of students.
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Table 3. Feature description.

Feature Name Description Type

Average score of prior courses The mean score achieved by a student from
across all previous course scores Numerical

Maximum score achieved in
prior course

The maximum score achieved by a student from
their previous courses Numerical

Prior course deviation score The Z-score of a student in respect to the
deviation of the cohort mean Numerical

Assignment score The assignment scores received by a student Numerical

Assignment deviation score The Z-score of the student’s mean assignment
score as a deviation from the cohort mean Numerical

Prior role description Student’s previous year’s primary activity Numerical

LMS deviation score The engagement score expressed as a Z-score of
a student as a deviation from the cohort mean. Numerical

LMS engagement score The count of all activities performed by a student
on the Moodle platform. Numerical

Citizenship The nationality of the student Categorical
Age Age of a person Categorical
Highest school qualification Highest school qualification at admission Categorical
Study mode Study by distance/online or on-campus Categorical
Gender Gender of the student Categorical
English proficiency test English proficiency Categorical

4.1. Predictive Modelling

The prediction was performed using classification algorithms that classify a given
instance into a set of discrete categories; in our case, the pre-defined categories are at risk or
not at risk. There is a wide range of algorithms supporting classification used throughout
the literature. Choosing the optimal algorithm is difficult since they differ in numerous
aspects, such as learning rate, robustness and the amount of data required for training, as
well as their biases and behaviours on different datasets.

This study used the recently developed CatBoost [23] algorithm for prediction tasks.
CatBoost was chosen since it is flexible in its ability to work with both categorical and
numeric features and is able to seamlessly function in the presence of missing values. A
categorical feature is a feature that has a discrete set of values that are not essentially
comparable with each other. In practice, categorical features are usually converted to
numerical values before training, which can affect the efficiency and performance of
the algorithm. However, CatBoost has been designed with the specific aim of handling
categorical data. The ability to handle both categorical and missing data represents a
considerable technical advantage over other algorithms, and a recent interdisciplinary
review [24] has found it to be competitive with other state-of-the-art algorithms.

CatBoost is a category boosting ensemble machine learning algorithm that uses the
gradient boosting technique by combining a number of weak learners to form a strong
learner. It does not use binary substitution of categorical values; instead, it performs a
random permutation of the dataset and calculates the average label value for every object.

The combinations in CatBoost are created by combining all categorical features already
used for previous splits in the current tree with all categorical features in the dataset. Cat-
Boost thereby reduces overfitting, which leads to more generalised models [23]. CatBoost
uses ordered target statistics (Ordered TS) to tackle categorical features for a given value of
the categorical feature, which means that the categorical feature is ranked before the sample
is changed with the expectation of the original feature value. In addition, the priority and
its weights are included. In this way, the categorical features are changed into numerical
features, which effectively decreases the noise of low-frequency categorical features and
improves the robustness of the algorithm [25]. The performance of CatBoost was bench-
marked against four other standard machine learning algorithms: Random Forest [26],
Naïve Bayes [27], Logistic Regression [28] and kNearest Neighbours [29].
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4.2. Machine Learning Procedure

The machine learning procedure used the hold-out method to perform the experiments
where the order of occurrences of the training-test split was maintained. The experiments
were implemented using Python [30], which has built-in functions suitable for estimating
and refining the results of predictions.

4.3. Model Evaluation

After designing the classification model, the next step is to evaluate the effectiveness of
the model. This study used total accuracy, recall, precision and the F-measures derived from
a confusion matrix [31]. The total accuracy alone can be a misleading evaluation measure if
the dataset is imbalanced because a model often favours learning and the prediction of a
value of the most frequent class. This can give a misleading impression that the classifier
has generalised better than it really has. In such circumstances, it is preferable to use the
F-measure, which considers both precision and recall; an F-measure is the harmonic mean
of precision (or positive predictive value) and recall (sensitivity) shown in Equation (2).

F − measures = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (2)

Precision is the measure of classifier’s exactness

Precision =
TP

TP + FP
(3)

Recall is the measure of the classifier’s correctness.

Recal or True Positive Rate =
TP

TP + FN
(4)

where TP denotes TruePositive, FP signifies FalsePositive, FN represents FalseNegative,
and TN denotes TrueNegative.

Further, the AUC (Area Under the Curve)—ROC (Receiver Operating Characteristics)
curve is a performance measurement for a classification problem at several threshold
settings [32]. ROC is a probability curve, and AUC signifies a measure of separability
and is used for distinguishing between the class labels. AUC rates range from 0 to 1.
The acceptable AUC range for a predictive model depends on the context. Typically, in
most research areas, an AUC rate above 0.7 is preferred [33]. In general, higher AUC
scores indicate models of higher quality. The following equations are used for calculating
AUC-ROC. In our study, we used the accuracy, F-measure and AUC as evaluation metrics.
Our decision to use accuracy, F-measure and AUC as evaluation metrics is supported by a
recent systematic literature review [10] into the usage of predictive models in LA contexts.

4.4. Experimental Design

Our experimental design was devised in a manner that robustly evaluated the ability
of our generic models to port across different courses and different deliveries of the same
courses. We used a modified k-fold cross validation approach to evaluate our generic
models. Given that our dataset is made up of seven different courses, and a total of
10 separate deliveries of those courses, we decided to train a model using nine course
deliveries and test against the remaining hold-out course offering. We repeated this process
10 times with a different combination of training and hold-out courses in order to arrive at
our final, aggregated evaluation scores for our models.

5. Results

The results from our evaluations in regard to portability of the generic (or course-
agnostic) prediction model and feature selection approaches are described here.
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5.1. Overall Performance Comparison of Classifiers

The generalisability of all the generic classifier models is shown in Table 4, which
records the aggregated model evaluation across all the hold-out datasets, together with the
standard deviation over the 10 separate train/test executions. The best performing scores
are in bold.

Table 4. Performance scores of various classifiers.

Classifiers F-Measure Accuracy AUC

CatBoost 0.77 ± 0.024 75 ± 2.1 0.87 ± 0.023
Random Forest 0.67 ± 0.025 67 ± 2.4 0.74 + 0.015

Naïve Bayes 0.67 ± 0.023 68 ± 2.3 0.71 ± 0.034
Logistic Regression 0.68 ± 0.031 67 ± 3 0.73 ± 0.025

K-Nearest Neighbors 0.71 ± 0.02 71 ± 2.4 0.72 ± 0.022

We can observe from the results that the F-measure scores range from 0.67 to 0.77, with
CatBoost achieving the highest score. The variability across the different algorithms on all
10 datasets is similar, indicating that all algorithms generated generic models with a stable
behaviour on all the courses.

The overall accuracy of all the algorithms has similarly ranged between 65% and 75%,
with the result from CatBoost again clearly outperforming the other algorithms on these
datasets. The accuracies of the bottom three algorithms, namely Naïve Bayes, Random
Forest and Logistic Regression, did not exhibit significantly divergent accuracy results.

The AUC is a particularly effective measure of the effectiveness of the decision bound-
ary generated by the classifiers tp separate out the two class labels representing at-risk
and not at-risk students. These scores range from 0.71 to a very high score of 0.87, with
CatBoost once more producing the best result and demonstrating that it has generated a
classifier with the most effective decision boundary.

5.2. Classifier Performance Snapshots

The experimental results indicate that CatBoost is the most effective algorithm on these
datasets and feature set, across the various standard algorithms considered in the study.
Our attention now turns to examining the behaviour of the best performing algorithm on
one of the hold-out datasets (Computer Applications and the Information Age—Semester
3). Our motivation was to analyse the ability of the algorithm to produce generic models
that can identify at-risk students at early stages of a course so that in a practical setting,
timely interventions can be initiated. To that end, we partitioned the dataset into 2, 4, 6 and
8 week intervals. We trained a CatBoost classifier on each snapshot/partition of the dataset
in order to simulate a real-world scenario where only partial information is available at
different stages and points in time of a course.

Figure 2 depicts the F-measure and AUC score for the CatBoost classifier on the hold-
out dataset, depicting the metric scores at each of the 2, 4, 6 and 8 week snapshots in time.
As expected, we observe that there is generally an improvement in the generalisability of
the classifier as a course progresses and more data and a richer digital footprint are acquired
for each student. However, the predictive accuracy as expressed by both AUC and the
F-measure is still very high at an early 2-week mark, meaning that an accurate identification
of at-risk students can already be made within two weeks of a course’s commencement,
and that necessary interventions can be conducted as required in a timely fashion. Similar
patterns were observed on the remaining nine hold-out datasets at the same snapshots
in time.
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Figure 2. F-measure and AUC plot of CatBoost on the Computer Applications and the Information
Age—Semester 03 hold-out dataset.

5.3. Feature Importance

Feature importance analysis is an important aspect of machine learning, as it enables
practitioners to understand what the key factors are that drive the predictions. In this
analysis, we are able to quantify how much each feature of the data contributes to the
model’s final prediction, thus introducing some measure of interpretability.

In this study, we used the Shapely Additive Explanations (SHAP) method [34] for
estimating feature importance and model behaviour. The SHAP method has the additional
ability to depict how changing values of any given feature affect the final prediction. The
SHAP method constructs an additive interpretation model based on the Shapley value. The
Shapley value measures the marginal contribution of each feature to the entire cooperation.
When a new feature is added to the model, the marginal contribution of the feature can
be calculated with different feature permutations through SHAP. The feature importance
ranking plot from the training data is shown in Figure 3, representing the generic model
from Section 5.1.

In the SHAP feature importance graph seen in Figure 3, each row signifies a feature.
The features are arranged from the most important at the top to the least consequential
at the bottom. The abscissa corresponds to the SHAP value (Figure 4), which influences
the final prediction. Every point in the plot denotes a sample, where red represents a
higher feature value and blue represents a lower feature value. The vertical line on the
plot, centred at 0 represents a neutral contribution towards a final prediction. As the points
on the graph move further to the right on the x-axis from this vertical line, the higher the
positive contribution becomes towards the prediction of a student succeeding. The inverse
is true for the strength of a contribution towards a prediction for an at-risk student as the
values extend into the negatives on the x-axis.

In our model, the assignment grades (both current and prior grades) played a vital
part in prediction, which is unsurprising. We can observe from the graph that as the
maximum grade for a student increased, the stronger this became as a predictor for positive
outcomes. The reverse relationship also held; however, it was more acute, indicating that
lower assignment grades had a stronger negative contribution than higher assignment
grades for positive outcomes.
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Figure 3. Feature importance ranking plot with CatBoost SHAP.

Figure 4. Shapley force plot of a sample.

The above figure depicts the behaviours of the model at a global level. However, the
SHAP method can also explain a given prediction for an individual student using a SHAP
force plot (refer to Figure 4). The force plot depicts the extent to which each of the most
significant features is pushing a final prediction towards a negative or positive prediction.
The ‘base value’ on the graph represents the mean prediction value, which can be regarded
as a 50/50 point. Values to the right of the base value represent a final positive prediction
and the inverse for the final values on the left. In the example below, we see that the
assignment deviation score, the rolling assignment average score and the part-time study
mode of a student most strongly influence the final prediction towards a positive prognosis
for this specific student. Meanwhile, the age of the student has some influence towards a
negative outcome prediction.

While feature importance shows what variables affect predictions the most, and force
plots indicate the explainability of each model’s predictions for an individual student, it
is also insightful to explore interaction effects between different features on the predicted
outcome of a model. A dependence scatter plot seen in Figure 5 demonstrates this. The
x-axis denotes the value of a target feature, and the y-axis is the SHAP value for that feature,
which relates directly to the effect on the final prediction. Figure 5a denotes that there
is generally a positive correlation between LMS engagement scores and the assignment
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scores. Two noteworthy patterns emerge from Figure 5a. First, we can see that students
who score highly on the assignment scores but exhibit poor engagement levels with the
LMS receive strongly negative outcome predictions by the model. We also see there is a
threshold of 0.4 for the LMS engagement score, and those that score above this threshold
are positively correlated with the model’s predictions for successful outcomes, which is
amplified further for those with higher assignment scores.
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Figure 5b considers the feature interaction of learner age and LMS engagement scores.
Age of a student plays a significant role in the generated models. As the age of a student
increases, the effect on the model predictions for positive outcomes becomes stronger.
From approximately age 26 onwards, increases in the student age carry a stronger positive
effect on model predictions for positive outcomes until age 40, from which point there do
not appear to be any further increasing positive effects. Higher LMS engagement scores
generally interact positively with age for successful outcomes. It is striking that those who
are most at-risk are those in their early twenties with LMS engagement scores having no
clear positive effect on prediction outcomes for this student demographic.

6. Discussion

The results have clearly indicated that generating viable generic models that are not
tightly coupled to specific attributes of different courses is possible. The generic model
has shown an effective average accuracy of around 75% across quite diverse courses. The
diversity was seen in the fact that courses had varying numbers of assessments, differing
distributions in their usage of the messaging Fora. Some courses used quizzes, books and
various online learning resources, while others did not, or they differed greatly in their
emphasis of their usage. The generic models were able to handle widely disparate courses,
and despite them, produce useful predictive models even at earliest stages of a course’s
delivery in order to permit timely interventions for at-risk students if necessary.

The 75% accuracy was stable across all the diverse courses, and it is comparable to
predictive accuracies attained in published research. It could be argued that 75% accuracy
may not be high enough to instil sufficient confidence in the models. However, one needs to
keep in mind that the defined categories of ‘at-risk’ and ‘not at-risk’ are not black-and-white,
clear-cut categories. These categories are moving targets and students are likely to fall
into either category at different times of their study, or perhaps during different courses
that they might be undertaking. Therefore, these categories embody many grey areas, and
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due to the lack of hard boundaries, the predictive accuracy can always be expected to
be somewhat compromised when converting this complex problem describing a shifting
continuum into a well-defined binary problem. One strategy to overcome this limitation
is to instead focus on success prediction probabilities, which produce continuous valued
outputs between 0 probability of success to 1, denoting complete confidence in successful
outcomes. In addition to relying more on these outputs rather than on hard-thresholded
binary categories, one can produce weekly probability predictions and monitor the change
in the delta from one week to the next in order to generate deeper insights into the risk
profile of a given student.

As for the superior performance of CatBoost over the other algorithms on these
datasets, some of this can be attributed to the higher complexity of CatBoost over the other
algorithms used in this study. CatBoost is a gradient boosting algorithm that makes it
considerably more sophisticated than our benchmarking algorithms, capable of inducing
more complex decision boundaries with some safeguards against overfitting. These internal
mechanics undoubtedly contributed, but also the fact that it is able to seamlessly handle
both missing and categorical data, which is not the case with the implementations of
the other benchmarking algorithms. Both the missing data and categorical (mixed) data
challenges often faced in the LA datasets, as well as the need to generate highly complex
decision boundaries, do seem to indicate that this algorithm should form a part of the suite
of algorithms that practitioners consider using in this problem domain.

7. Conclusions

The large volumes of LMS data related to teaching and learning interactions hold
hidden knowledge about student learning behaviours. Educational data mining methods
have the potential to extract behavioural patterns for the purpose of improving student
academic performances via prediction models. Early prediction of students’ academic
performance enables the identification of potential at-risk students, which provides oppor-
tunities for timely intervention to support them while at the same time encouraging those
students who are not at risk to get more out of the course via data-driven recommendations
and suggestions.

This study considered the problem of developing predictive models that have the
capability to operate accurately across disparate courses in identifying at-risk students.
Our study demonstrates how such generic and course-agnostic models can be developed in
order to overcome the limitations of building multiple models, where each model is tightly
coupled with the specific attributes of different courses. The portability of one model across
multiple courses is useful because such generic models are less resource-intensive, easier to
maintain, and less likely to overfit under certain conditions.

We formulated the machine learning problem as a binary-classification problem that
labelled each student as either at risk of failing the course or otherwise. We demonstrated
how features can be engineered that are not tightly coupled to the specifics of each course,
and thus retain the property of being portable across all course types. Our experiments used
Moodle log data, student demographic information and assignment scores from various
semesters. Diverse courses were considered in order to robustly evaluate the degree to
which our models were generic and portable.

The experiment was carried out using the commonly used Random Forest, Naïve
Bayes, Logistic Regression and k-Nearest Neighbours algorithms, as well as the recently
developed CatBoost algorithm. Across several performance metrics used in the experi-
ments, the results indicated that the best performance was achieved using CatBoost on
our datasets. CatBoost has capabilities in handling categorical features and missing data,
while maintaining competitive generalisation abilities compared to current state-of-the-art
algorithms. We performed a series of experiments in which we simulated the progression of
a teaching semester, considering how early on within a given semester we could accurately
identify an at-risk student. For this, our experiments considered data at regular intervals
(i.e., at the end of week two, four, six and eight). Our results showed that from as early
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as two weeks into a course, our generic, course-agnostic model built using CatBoost was
viable for identification of at-risk students and had the potential to reduce academic failure
rates through early interventions.

Further, we observed that attributes related to assignment grades (current and prior
grades) have a greater impact on model performance relative to other features. Also,
students’ pre-enrolment data such as study mode, highest school qualification and English
proficiency contributed positively to the model prediction. However, one of the most
significant challenges in the space of predictive LA is to address how developed models
can be effectively deployed across new and diverse courses. Our future work will expand
the capabilities of our proposed model to an even broader set of courses.
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