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Abstract: Emotions are viewed as an important aspect of human interactions and conversations, and
allow effective and logical decision making. Emotion recognition uses low-cost wearable electroen-
cephalography (EEG) headsets to collect brainwave signals and interpret these signals to provide
information on the mental state of a person, with the implementation of a virtual reality environ-
ment in different applications; the gap between human and computer interaction, as well as the
understanding process, would shorten, providing an immediate response to an individual’s mental
health. This study aims to use a virtual reality (VR) headset to induce four classes of emotions (happy,
scared, calm, and bored), to collect brainwave samples using a low-cost wearable EEG headset, and
to run popular classifiers to compare the most feasible ones that can be used for this particular setup.
Firstly, we attempt to build an immersive VR database that is accessible to the public and that can
potentially assist with emotion recognition studies using virtual reality stimuli. Secondly, we use
a low-cost wearable EEG headset that is both compact and small, and can be attached to the scalp
without any hindrance, allowing freedom of movement for participants to view their surroundings
inside the immersive VR stimulus. Finally, we evaluate the emotion recognition system by using
popular machine learning algorithms and compare them for both intra-subject and inter-subject
classification. The results obtained here show that the prediction model for the four-class emotion
classification performed well, including the more challenging inter-subject classification, with the
support vector machine (SVM Class Weight kernel) obtaining 85.01% classification accuracy. This
shows that using less electrode channels but with proper parameter tuning and selection features
affects the performance of the classifications.

Keywords: machine learning; EEG; virtual reality; emotion recognition; neuroinformatics

1. Introduction

Emotions are viewed as an important aspect of human interactions and conversations,
and allow effective and logical decision-making [1]. To understand how these responses
are made or decided, multiple neurophysiological devices collect the bio-signals that are
emitted within the human body. Such devices include electrocardiograms (ECGs) [2] which
measure the heartbeat; electromyograms (EMGs) [3], which measure muscle movements;
electrodermal activity (EDA), which measures skin conductance; electrooculograms (EOGs),
which measure eye movements; and electroencephalography (EEG) [4–10], which measures
brainwave signals directly from the brain. The current medical devices have been developed
to be non-invasive, which reduces risks and provides safe implementation for many people
and researchers alike to perform experiments on human physiology.

Emotion recognition using EEG signals has attracted many researchers with the aim
of understanding the evocation of the emotional responses from the human brain [9,11–13].
The applications of this research will disrupt developers and encourage them to integrate
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the use of a low-cost, portable EEG device together with the use of VR into their prod-
ucts. Emotion recognition systems can assist in a diverse area of applications, such as
human–computer interaction (HCI), emotion understanding, brain–computer interface
(BCI), and medical applications. The EEG emotion recognition system [14–16] does provide
a unique challenge due to the vast differences in every individual’s brainwave patterns,
especially when each individual’s association with emotional experiences is different. EEG
data can assist with the collection of brainwave signals by placing non-invasive electrodes
onto the scalp by following the placement standards of the 10–20 international system.
These electrodes then collect EEG signals and are filtered using fast Fourier transform (FFT)
to obtain rhythmic bands, such as the delta (<4 Hz), theta (4 < 7 Hz), alpha (8 < 13 Hz),
beta (14 < 30 Hz), and gamma (>30 Hz) bands. Additionally, some of the low-cost wearable
EEG headsets have an in-built inertial sensor that allows for the collection of gyroscope
and accelerometer data.

This paper is segregated into the following sections: Section 2 provides literature
reviews of earlier findings of emotional responses from humans and the availability of
emotional datasets; Section 3 presents the research methodology of this work; Section 4
presents the findings and analysis of the classification accuracy and its highlights; and,
lastly, Section 5 presents the conclusion of this research work.

2. Related Work

The database presented in this study explores the possibility of classifying emotions
by stimulating the responses through the use of a virtual reality environment that simulates
an immersive experience reflecting real-life situations. To the best of our knowledge,
the use of a VR-based stimulus for evoking emotions is rarely explored, although VR
technology has proven to provide significant immersive experiences for entertainment,
virtual walkarounds, and simulated driving, which presents an opportunity for researchers
to collect physiological responses for emotion evaluation and classification. This paper’s
contribution explores the use of a VR-based stimulus which will be used to evoke the
emotional responses of participants and to evaluate this proposed classification model
using machine learning algorithms.

The selection of a particular emotion to stimulate responses is crucial in studying
human emotions. Moreover, human emotions are tied to life experiences; therefore, every
person’s attachment, for example, towards an object or animal differs from one another,
in addition to increases in the complexity of communication among humans over time.
However, every human being from the moment they are born, is implanted with instincts
and basic behavioral patterns that can be found in infants, such as behavioral patterns
that include laughing, crying, and being scared and relaxed, among many other emotions.
These findings were presented by the eminent psychologist, Ekman, who claimed that a
human being has six basic embedded human emotions [17], though some other researchers
have shown that there are more complex embedded emotions beyond these six basic
emotions. Such complex responses are governed by the definitions described in our
emotional dictionaries and are reflective of one’s actions. Plutchik then further developed
these concepts into the wheel of emotions [18]. Additionally, the valence–arousal scale
was developed by Russell [19]. In this study, Russell’s valence–arousal scale was adopted
as this approach has been widely used for emotion recognition where the measurement
of emotions is represented using the valence and arousal axes. To describe the scale,
the emotional state is placed on a two-dimensional plane where arousal is located on the
vertical axis while valence is located on the horizontal axis. Additionally, there is sometimes
also a third axis known as dominance, but is not usually included as the measurement
of dominance is not straightforward. Arousal is measured by using two states which are
active (interested/engaged) and inactive (not interested/not engaged) states, while valence
is measured through the feelings of pleasantness (happy, excited) and unpleasantness
(sad, depressed).
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The exploitation of next-generation technology for entertainment and neurological
evaluation of emotions, such as the adoption of virtual reality, has been actively conducted
by various researchers. Some studies have compared the immersive capabilities between
the standard delivery of video content via computer monitors or television screens versus
virtual reality display headsets and have shown that emotions are triggered at a higher
intensity when presented through VR [20,21]. Emotional implications, such as being seated
and utilizing room-scaled VR, were also studied, and it was shown that room-scale VR
enhances emotional reactivity, especially towards negative threats [22]. VR technology also
provides the flexibility for designers to create realistic and controlled environments [23],
where this would help designers to induce specific emotions for the users.

Presently, the closest resemblance of this research work with any other relatable public
VR database is the “Public Database of 360 Videos with Corresponding Ratings of Arousal
and Valence” [24], where the VR videos were taken from an open-source content and
edited to accommodate the emotional responses required by the researchers. From the
200 immersive VR clips collected from Youtube, Vrideo, and Facebook, 113 were shortlisted,
and this number was then further reduced to 73 after some additional criteria were applied,
such as video length, engagement, and ability to induce valence and arousal. The VR clips’
lengths were between 29 s to 668 s, with an average runtime of 188 s per clip. These videos
were then presented to the participants using an Oculus Rift head-mounted device (HMD),
which features sensors such as a magnetometer, gyroscope, and accelerometer to track the
rotational movement of the head. Later, the researchers requested their participants to
complete a self-evaluation of their emotions by using the self-assessment manikin (SAM)
to obtain an indication of the arousal and valence levels experienced. It was observed
that the lengthier video clips used were of journalistic content (such as news of nuclear
fallouts, homeless veterans, dictatorship regimes) which naturally evokes negative valence,
as stated earlier. Other observations included the appropriate length of the video; if the
user was exposed too long to VR, some of their participants started to feel nauseated and
fatigued, requiring the participants to take a break every 15 min to recover.

Another notable VR database that was found from previous studies was the affective
virtual reality system (AVRS) [25]. This paper showed that the researchers developed their
database by selecting videos that evoked the four emotional quadrants, including both
high and low arousal, as well as positive and negative valence, and then evaluating their
VR stimuli contents by using the SAM rating reporting method.

The Nencki affective picture system (NAPS) [26] is a collection of 1356 realistic pictures
that encompasses five categories (people, faces, animals, objects, and landscapes) which
were confirmed by three evaluators with descriptive rules [27] to ensure the pictures were
in line with the theme in question. Ten pictures were then selected to expose participants
to two stimulating emotions, which were happiness and fear, where these pictures were
embedded into a 3D VR environment to provide the VR experience of viewing the picture
immersively. There were 10 pictures present in each VR room, and the participants were
exposed to these stimuli for 15 s in each room with a 10 s rest in between. While the
participants were exposed to the pictures, the participants wore the Emotiv Epoc+ headsets
to collect their brainwave signals. The paper showed that the researchers were able to
observe changes in the user’s brainwave signals, such as alpha, beta low, beta high, gamma,
and theta bands.

In terms of machine learning algorithms, there were different classification outcomes
depending on the type of stimuli that were presented, whether it was video, images, music,
or a combination of them. Table 1 summarizes the types of classifiers used and their
performance achieved, which ranged in accuracy from 60–83%.
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Table 1. Classification performance achieved by prior researchers.

Author Classifier(s) Performance Achieved

[28] SVM, KNN, Convolutional Neural Network
(CNN), Deep Neural Network (DNN) 82.81%

[29] SVM, CNN 81.14%

[30] SVM 80.76%

[31] Gradient Boosting Decision Tree 75.18%

[32] Decision Tree (DT), SVM, KNN, naïve Bayes
(NB), Random Forest (RF) 60.10%

[33] NB 68.00%

[34] NB, SVM, DT, RF 80.00%

3. Methodology
3.1. Stimuli Selection

The stimuli that were used in the experiments of this study were selected using
several steps. Firstly, we manually selected 39 initial VR-capable video stimuli showing
the potential to evoke the most impactful emotional response. Secondly, these initial VR-
capable video stimuli were then assessed by structurally placing each of the corresponding
videos in its respective quadrants using the arousal–valence space (AVS) model shown in
Figure 1. Finally, 16 VR video stimuli were then selected after an assessment conducted by
subject matter experts with experiences in artificial intelligence supported by a professional
cognitive psychologist.
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3.2. Initial VR Video Selection

The selected VR videos must be capable of stimulating emotional responses that can
produce the highest impact for the participants. Initially, it is important to decide on a
specific type of emotional response required for conducting the emotion classification of the
participants. The study follows the most basic types of emotions which can be represented
by the arousal and valence regions, where arousal measures the level of engagement, i.e.,
whether the participants are active or passive about the situation, and valence measures
whether the participants are experiencing positive or negative emotions. Additionally, the
VR videos must be able to fully simulate a virtual reality environment and be reflective or
representative of the real world as much as possible. Lastly, the quality of the VR videos
must be sufficiently high. The criteria applied included the clarity of the VR video and
audio, whereby the VR video presented is intuitive to the participant, and the VR video can
be viewed in 360 degrees virtually. These criteria would provide an immersive experience
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for the participants while viewing the VR world, and the emotional representation of the
real world, as presented in VR, can be sampled accurately.

A total of 39 VR videos was selected for the initial stimuli assessment, and VR videos
were collected from Youtube.com and downloaded for offline usage. These VR videos
were filtered using a built-in feature within Youtube to search for VR videos that can detect
head movements and follow the direction of the user’s visual orientation. However, the
challenge here was that emotional tags were not part of their filter system, thus making it
somewhat challenging to directly locate suitable VR videos required to elicit a particular
kind of emotion. In many of the VR videos viewed during pre-selection, there was a
mixture of emotions that can be found in typical videos. In order to elicit a particular
emotion, a short clip of approximately 20 s would be adequate to stimulate the necessary
emotional responses without fatiguing or nauseating the participants.

The AVS model is divided into four quadrants, namely high arousal/positive valence
(HA/PV), high arousal/negative valence (HA/NV), low arousal/positive valence (LA/PV),
and low arousal/negative valence (LA/NV). To ensure that there was diversity in the VR
videos, each of the quadrants would be populated with four different VR videos that were
representative of that emotional quadrant, which was verified by a cognitive psychologist.
The VR videos were shortlisted according to the adherence of the following criteria:

Does the VR video represent the emotions according to the AVS quadrants?
Does the VR video have a clear image and sound quality?
Does the VR video contain any background music that may disturb the user’s emo-

tional responses?

3.3. Selection of EEG Headset

For the experiment to succeed, it is important to select the correct EEG headset that
is both convenient and inexpensive. The improvements made towards medical imaging
technology have allowed doctors and researchers to be able to further understand human
physiology and psychology through the study of the central nervous system. Various
products for brain imaging scans which do not harm the patients or participants through
any surgical incisions, but instead use non-invasive electrodes to obtain the brainwave
signals, have been developed. The EEG headset in this study needs to be low-cost, portable,
and have electrodes that do not require constant maintenance. At the time of gathering the
information on the cost of EEG headsets that were available in the market, the EEG headsets
available are identified and presented in Table 2 [35–39], along with the descriptions of the
available features and costs for each headset. It can be clearly seen that the relative cost of
the EEG headset increases proportionally with the number of channels with some of the
headsets providing additional features, such as wireless connection or motion sensors.

Table 2. Breakdown of EEG headsets details and costs.

Brand Model Description Cost

B-Alert X Series

A wireless EEG headset with a 10-channel or
24-channel sensor setup capable of recording

brainwave signals and other
physiological signals

Undisclosed

ANT-Neuro eego rt
An EEG headset that can be deployed with up to

64 channels capable of recording high-quality
EEG signals

Undisclosed

OpenBCI Cyton Board + 16
Channel Kit

A fully customizable and programmable
Arduino wireless EEG device with 8–16 channels

for measuring the brainwave signals and
expandable with an expansion kit for measuring

other physiological signals

USD 945.94



Big Data Cogn. Comput. 2022, 6, 16 6 of 22

Table 2. Cont.

Brand Model Description Cost

Emotiv Epoc +

A wireless EEG headset with a 14-channel EEG
electrode setup using saline-based electrode
connections capable of collecting brainwave

signals with nine axis motion sensors

USD 799.00

Emotiv Epoc X Same features as Epoc + model with
upgraded hardware USD 849.00

Interaxon Muse 2016

A four-channel wireless EEG headset that is easy
to wear using dry electrodes that require no

maintenance and capable of collecting
brainwave signals as well as being able to record

3-axis motion sensor data

USD 250.00

Neurosky Mindwave
A one-channel wireless EEG headset that is

portable and easy to wear which is deployed for
health and mental awareness

USD 99.00

For the EEG electrodes to obtain the brainwave signals effectively, the sensors must
not be blocked by any external objects, such as hair or fabric. The closest area to the region
of the hypothalamus of the brain without being obstructed by hair is near the back of the
earlobes. This narrows down the selection from the list of available EEG headsets in Table 2
to Interaxon Muse 2016, where it has four channels with additional features, such as the
3-axis motion sensor which provides accelerometer and gyroscope data. This device is also
open-source, thereby providing researchers access to the raw data of the brainwave signals
captured by the device.

3.4. EEG Headset and Smartphone Setup

The experiments were performed in a controlled environment inside a laboratory. The
EEG signals were recorded using the Interaxon Muse 2016 EEG headset. The EEG headset
collects the brainwave signals from four different channels (AF7, AF8, TP9, TP10) and a
reference at (FpZ). The EEG signals were transmitted via Bluetooth low-energy (BLE) 4.0 to
a Bluetooth-capable smartphone using an application called Mind Monitor, which records
the incoming brainwave signals and applies a fast Fourier transform (FFT) to obtain the five
brainwave signals (Delta, Theta, Alpha, Beta, and Gamma). Apart from these signals, it also
retains the raw brainwave signal. Any artifacts resulting from muscle movements, such as
jaw clenching and eye blinking, were filtered out using noise suppression methods such as
driven-right-leg (DRL)-reference electrodes [40]. Additionally, the 50-Hz electrical noises
were filtered out using a notch filter. The Mind Monitor application has an integrated FFT
algorithm that processes the raw brainwave signal being acquired from the EEG headset
and stores the transformed signals in a comma-separated-value (CSV) file. The smartphone
used to collect the incoming EEG signals was a Samsung Note II (N7100) with a Quad-Core
1.6 GHz Cortex-A9 CPU, an Exynos 4412 Quad 2 GB RAM chip, and a BLE 4.0 Bluetooth
chip. The EEG recordings were acquired at 0.5-s intervals by Muse Monitor based on the
original 256-Hz raw sampling rate with the four-channel electrodes placed at AF7, AF8,
TP9, and TP10, and reference at FpZ according to the 10–20 international system.

The stimulus was presented via a VR headset which requires the attachment of a
smartphone that has an AMOLED screen display of 5.5” with a 1080 × 1920 pixel resolu-
tion. The stimulus VR video that was stitched together based on the respective quadrant
representation of the emotions was stored in the smartphone for ease of access. The stim-
ulus was presented in the order of calm, scared, happy, and bored, with each quadrant
presenting four different VR videos stimulating the participants for 80 s per quadrant.
When transitioning to another quadrant, there was a rest period of 10 s provided for the
participants to reset their mental state before proceeding with the next emotional quadrant
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of VR videos. The presentation of the VR videos was continuous and takes approximately
350 s to complete.

3.5. Experiment Protocol

A total of 32 healthy participants (7 females, 25 males), aged between 23 and 45,
participated in the experiment. Before the experiment began, each user was required to
sign a consent letter and was notified of the experimental procedure. Participants were
presented with a pair of earphones for an immersive audio experience, and adjustments
were made by the participants to improve comfort while viewing the VR video. Figure 2
shows the setup of the low-cost wearable EEG headset used to collect the brainwave signals
as well as the VR stimulus presented using the VR headset attached with a smartphone.
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Figure 2. Headset devices (EEG and VR) worn by a participant where the positions of sensors are
placed on the frontal scalp (AF7, AF8) and earlobes (TP9, TP10).

A total of 16 VR videos were presented to the participants, and any disorientations [41–44]
that may be felt by the participants were avoided as much as possible to reduce incomplete
recording sessions. Table 3 shows the details of the VR videos in the sequence of presenta-
tion. The access hyperlink details for the videos are also provided as of 17 November 2020
for the VR stimuli that were used for the editing and stitching of the complete emotional
stimuli presentation. As depicted in Figure 3, the sequence of presenting the emotional
responses of the VR videos was as follows:

1. Each quadrant of the VR videos was presented for 80 s using four different videos
per quadrant;

2. A 10-s rest was provided to reset the user’s mental state before proceeding to the next
emotional quadrant;

3. The VR videos were presented in a continuous sequence without any breaks in between;
4. Once the presentation of VR videos had ended, the participants would notify the

researcher to conclude the experiment.
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Table 3. VR videos used for stimulating emotional responses.

VR Video Title Stimulus Link Status

360 VR Timelapse Footage of
the Aurora Borealis over

Kashwitna Lake
Calm https://youtu.be/ehJg_OlcjpE Available (accessed on

17 November 2020)

Wild Dolphins VR 360 Video
Experience Calm https://youtu.be/BbT_e8lWWdo Available (accessed on

17 November 2020)

[360◦/VR Video] Méditation
& Relaxation Calm https://youtu.be/Z-ihuDLNVR8 Available (accessed on

17 November 2020)

360 Penguins in Antarctica Calm Currently removed (accessed on
17 November 2020)

360 Camera|Eiger North
Face-Summit Scared https://youtu.be/7g2k0eEQUaM

(private)
Currently private (accessed on

17 November 2020)

Virtual Reality 360 Inside
Rattlesnake Den Scared https://youtu.be/JRPafnjumPk Available (accessed on

17 November 2020)

360 BLOOD ROOM
Horror-4K Scared https://youtu.be/tolO9cR60lk Available (accessed on

17 November 2020)

Scary Paranormal Activity
Séance-360 Degree Video Scared https://youtu.be/3xlVHH3BwrA Available (accessed on

17 November 2020)

360◦ Cat子猫 (“kitten”) 360◦

@pet shop Happy https://youtu.be/0RtmVnD8_XM Available (accessed on
17 November 2020)

Christmas 2016 Children’s
Museum (2) Happy https://youtu.be/HoCBaSIdbLw Available (accessed on

17 November 2020)

GoPro VR Omni Trailer Our
First 360 Camera Rig Happy https://youtu.be/LKJT9wVfo90 Available (accessed on

17 November 2020)

ALICE the first Swedish baby
goes VR 360 video Happy https://youtu.be/flawfUqDibI Available (accessed on

17 November 2020)

Workshop on Freelancer First
VR Classroom In

Bangladesh-(Watch in 1080P)
Bored https://youtu.be/VxeaeIFH9R4 Available (accessed on

17 November 2020)

VR in the Classroom English
Pronunciation:

The American “T”
Bored https://youtu.be/y5JsOOyUJ6M Available (accessed on

17 November 2020)

Carrington College Mesa
Campus Classroom-360◦

Virtual Tour
Bored https://youtu.be/wJ7TIwq4sDw Available (accessed on

17 November 2020)

VR Lecture Example Bored https://youtu.be/SuREv8OAGVg Available (accessed on
17 November 2020)

3.6. Machine Learning Algorithms
3.6.1. K-Nearest Neighbor (KNN)

The classification using the KNN algorithm aims to extract the majority vote, which
decides whether the observation belongs to a certain K-similar distance. For this, in any
dimensional space, the Euclidean distance shown in the equation was used since KNN is a
non-parametric classification algorithm. It can assign labels to any previously unsampled
points which generally has a lower efficiency as the size of the data increases, thus requiring
the use of a feature decomposition algorithm [45]. The performance is highly reliant on
the value of K which is usually determined from hand-tuning experiments. However, an
exhaustive search using an expensive search technique might be required in certain cases

https://youtu.be/ehJg_OlcjpE
https://youtu.be/BbT_e8lWWdo
https://youtu.be/Z-ihuDLNVR8
https://youtu.be/7g2k0eEQUaM
https://youtu.be/JRPafnjumPk
https://youtu.be/tolO9cR60lk
https://youtu.be/3xlVHH3BwrA
https://youtu.be/0RtmVnD8_XM
https://youtu.be/HoCBaSIdbLw
https://youtu.be/LKJT9wVfo90
https://youtu.be/flawfUqDibI
https://youtu.be/VxeaeIFH9R4
https://youtu.be/y5JsOOyUJ6M
https://youtu.be/wJ7TIwq4sDw
https://youtu.be/SuREv8OAGVg
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since it is not trivial to optimally select K, where the K-similar distance (d) is described in
the equation below.

d(x, y) =

√
n

∑
i=1

(xi − yi)
2. (1)

where d = the distance between 2-points; x = the value of x at x-axis point; y = the value of y
at y-axis point; i = the counter from 1 to n.

3.6.2. Support Vector Machine (SVM)

The SVMs are supervised linear classification models that make use of hyperplanes,
where the hyperplane is the plane that exists between the separation of classes. Each sample
point is plotted in space which determines the different classification features. In SVMs, a
multiclass classification is implemented by breaking the problem down to multiple binary
classification cases. The following equation is retrieved using the one-vs-one multiclass
classification where n represents the number of classes [46].

n ∗ (n− 1)
2

(2)

where n = number of classes.

3.6.3. Naïve Bayes (NB)

When the dimensionality of a particular dataset is high, the use of NB is recommended
since the presence of the selected feature in a class is unrelated to the presence of another
feature which belongs to another class. The use of the NB model is helpful for large datasets
with many attributes [47]. Due to its simplicity, the naïve Bayes algorithm might even
surpass some of the more complex classification techniques. The probabilistic rule used in
the NB equation is shown below.

P(c|x) = P(x|c)P(c)
P(x)

. (3)

where P(c|x) = the posterior probability of class (c, target), i.e., the given predictor (x,
attributes); P(c) = the prior probability of class; P(x|c) = the likelihood/probability of the
predictor given the class; P(x) = the prior probability of the predictor.

3.6.4. Neural Network (NN)

The neural network (NN) usually consists of weights, where the value designates the
importance of the neuron which was attached on the input side of the weight while the
bias term factors in any possibilities that may not have been initially considered and will
cater to these unforeseen circumstances. The bias can be attached to any neuron that is not
specifically on the input layer. Activation will cause a neuron to make a decision on an
output and return itself to another decide on another iteration of the output. The equation
for calculating the activation of a neuron is shown below.

f (z) = f

(
b +

n

∑
i=1

xiwi

)
(4)

where b = bias; x = the input to neuron; w = weights; n = the number of inputs from
incoming layer; i = the counter from 1 to n.
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3.6.5. Random Forest (RF)

The random forest (RF) algorithm can be used to solve regression or classification
problems, making it a diverse model. In RF, the classification model is used based on the
entropy node shown in the equation below:

Entropy =
C

∑
i=1
−pi ∗ log2(pi) (5)

where pi = the relative frequency of the class being observed; c = the number of classes.
Entropy uses the probably of a certain outcome in order to make a decision on how the

node will branch out. However, due to its logarithmic function, it is mathematically intensive.

3.6.6. Gradient Boosting Machine (GBM)

Boosting is a machine learning algorithm where weak learners are converted into
strong learners. Weak learners are classifiers which may perform slightly better than
chance, irrespective of the distribution over the training data. In boosting, the predictions
are sequential, wherein each subsequent predictor learns from the errors of the previ-
ous predictors. Hence, gradient boosting (GB) can be applied to both regression and
classification problems.

3.7. Machine Learning Parameters

This research approach adopts the approach of intra-subject and inter-subject clas-
sification. Intra-subject classification is a process of classification of individual datasets
whereas inter-subject classification is the process of classification by combining all individ-
ual datasets into a single large dataset. Both intra-subject and inter-subject classification
have single-band features (individual bands of Delta, Theta, Alpha, Beta, and Gamma) or
a combination of all five bands. This research uses all available electrode positions (TP9,
TP10, AF7, AF8) for the classification process. The summaries of the classifiers and their
configurations are as presented in Tables 4–6.

Table 4. KNN parameter configuration.

Configuration KNN

Library Caret

Seed 300

Cross Validation 10-fold

Pre-Process Center, Scale

Table 5. SVM parameter configuration.

Configuration Class Weight Linear
Kernel 1

Linear
Kernel 2

Polynomial
Kernel

Radial Basis
Function
Kernel 1

Radial Basis
Function
Kernel 2

Radial Basis
Function
Kernel 3

Library Caret Caret Caret Caret Caret Caret Caret

Seed 300 300 300 300 300 300 300

Cross
Validation 10-fold 10-fold 10-fold 10-fold 10-fold 10-fold 10-fold

Kernels svmRadial
Weights svmLinear svmLinear2 svmPoly svmRadial svmRadialCost svmRadial

Sigma
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Table 6. Feedforward artificial neural network (FANN), distributed random forest (DRF), gradient
boosting machine (GBM), naïve Bayes (NB) parameter configuration.

Configuration FANN DRF GBM NB

Library h2o h2o h2o h2o

Distribution Multinomial Multinomial Multinomial Multinomial

Hidden_dropout_ratio 0.5 0.5 0.5 0.5

Hidden Layers 32, 32, 32 32, 32, 32 32, 32, 32 32, 32, 32

Input_dropout_ratio 0.2 0.2 0.2 0.2

Sparse True True True True

Epochs 10–2000 10–2000 10–2000 10–2000

Cross Validation 10-folds 10-folds 10-folds 10-folds

Ntrees - 100 - -

Seeds - - 200,000 20,000

Laplace - - - 50

All the classifiers were trained using 90% of the total dataset while the remaining 10%
were tested and evaluated on the performance of the trained model. All the classifiers were
conducted using the 10-fold cross-validation method to find the average accuracies of the
various classification models’ performances.

4. Discussion and Analysis
4.1. Data Structure

The data were collected and stored in a comma-separated value (CSV) format with
each participant’s data recorded on approximately 640 rows. Twenty-four EEG-related
columns were extracted as features, which consisted of each electrode’s (AF7, AF8, TP9,
TP10) raw and transformed brainwave data (delta, theta, alpha, beta, gamma), along with
additional readings that included the accelerometer, gyroscope (X,Y,Z), HSI link, battery
level, and extraneous elements (blinks and clenches). An additional column was added
to the dataset to indicate the emotions that were elicited during the specific timestamps.
Any cells with missing values due to movements of the head that may cause a temporary
connection loss between the sensor and the skin during the data streaming process from
the EEG headset were interpolated.

The intra-subject variability approach was applied to measure the individual classi-
fication accuracy over 31 participants, where each individual’s dataset would consist of
approximately 640 rows. On the other hand, the inter-subject variability approach was
applied to measure all of the combined individuals’ datasets to form a single large dataset
that consisted of approximately 20,000 rows. Subsequently, columns such as the HSI link,
battery level, and extraneous elements (blinks and clenches) were removed from the dataset,
as they only consisted of either hardware or involuntary muscular movement information
that was not relevant to the emotion classification task.

4.2. Overall Classification Results

The experiment commenced by using the intra-subject variability approach to perform
the emotion classification, i.e., a common experimentation approach used in prior studies
due to its lower complexity and higher classification accuracy results. Based on Figure 4, it
is shown that the class weight kernel from SVM was able to achieve the highest accuracy
of 97.57% using spline interpolation and 97.66% using linear interpolation, and followed
closely by the polynomial kernel with 96.03% using spline interpolation and 96.14% using
linear interpolation. As such, it was also observed that the interpolation approach used
as part of the classification preprocessing does impact the accuracy of the emotion classi-
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fication, although the topic of the interpolation method adopted was rarely discussed in
prior studies.
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Figure 4. Intra-Subject Classification Results using Five Bands.

Subsequently, the experiment proceeded to use the inter-subject variability approach
to observe whether the added complexity of classification over the entire test cohort would
drastically impact the emotion classification accuracy results. The classification results
using a feedforward artificial neural network (FANN) are shown in Figure 5. By observing
the changes in the classification accuracy based on the changes of the epoch configurations,
it was shown that FANN does not produce very high accuracy results. The highest emotion
classification accuracy obtained was 41.04% with the number of epochs set at 2000.
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Figure 5. Inter-Subject FANN Classification Result using Five Bands.

In Figure 6, the results for KNN, SVM, and FANN using the default parameter config-
urations are shown. By comparing the results shown in this figure, the class weight kernel
from SVM obtained the best classification results, i.e., 75.90% using the linear interpolation
method and 75.61% using the spline interpolation method. This was followed closely by
KNN achieving a classification accuracy of 75.55% using linear interpolation method and
75.43% using spline interpolation. Despite the complexity of adopting the inter-subject
variability approach, the classification accuracy achieved from the two classifiers was
acceptable for a four-class classification problem.
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To further improve the classification accuracy, the default parameters of the classifiers
were then tuned in the next set of experiments. The dataset used for this classification
results was based on the linear interpolation method as it consistently produced better
classification accuracies over the spline interpolation method when adopting the inter-
subject variability approach presented earlier above. The results for the tuned classifiers
are shown in Figure 7. By tuning the parameters of the classifiers, it was observed that
the majority of the classifiers showed improvements throughout. Noticeably, the most
improvements were gained by the radial basis function kernel 1 and radial basis function
kernel 3, followed by class weight kernel, all of which were from the SVM classifier.
Through ranking, it can be seen that radial basis function kernel 1 achieved the highest
accuracy at 85.01%, followed closely by class weight kernel at 84.80%, the radial basis
function kernel 3 at 84.44%, and finally KNN at 82.61%.
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The following experiment compares results between brainwave signals for classifica-
tion only and the combination of brainwave signals plus inertial sensing data (accelerometer
and gyroscope). The dataset used for this experiment was conducted using the inter-subject
variability approach. The classifiers used for this experiment were distributed random
forest (DRF), gradient boosting machine (GBM), and naïve Bayes (NB), as shown in Figure 8.
It can be observed that that the addition of the inertial sensing data affects the outcome of
the classification accuracy for GBM and NB with slight improvements in their accuracies
when brainwave signals were combined with the inertial sensing data. However, the DRF
classification accuracy remained relatively the same. As for classification performances,
DRF still achieved the highest classification accuracy at 82.49%.
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Using the training model achieved from earlier results, the next step was to develop a
live emotion prediction system using the four-class classification approach together with
the trained machine model as shown in Figure 9. The model used for this live emotion
prediction system was based on DRF obtained from the previous classification experiment.
Figure 10 shows the results from five participants. It can be observed that the highest
emotion classification accuracy obtained was from the scared emotion at 76.25% and the
bored emotion at 72.50%. Both the scared and bored emotions are located in the low arousal
space of the AVS model.
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Figure 10. Results from live emotion prediction system using a four-channel EEG headset from a
four-class predictor model.

4.3. Comparing Classification Results from Previous Studies

Based on the observations of the results presented in Table 7, the highest classification
accuracy using the intra-subject variability approach was 97.68%, while it was 85.01% for
the inter-subject variability approach. In this study, the classification results showed that
using the features of the five bands exhibited a higher classification accuracy over the single
bands. Since inter-subject classification would be more representative of general application
usage, this study then combined the five bands with the inertial data and classified them
using distributed random forest (DRF) which is a neural network classifier, and was able to
obtain a classification accuracy of 82.49%.

Table 7. Overall classification accuracy.

Brainwave Band Classifier Classification
Accuracy Remark

Five Bands Support Vector Machine
(Class Weight) 97.66% Intra-Subject

Five Bands Support Vector
Machine (RBFK1) 85.01% Inter-Subject

Five Bands with
Inertial Data Distributed Random Forest 82.49% Inter-Subject

As shown in Table 8, previous studies, such as by Katsigiannis and Song [48,49], also
conducted emotion classification using EEG signals. However, the brainwave bands that
they selected were only the theta, alpha, and beta bands compared to this study which
uses all five bands (delta, theta, alpha, beta, and gamma). However, at the time of this
study, there was little evidence from the existing literature of emotion classification being
conducted specifically using a wearable EEG headset with VR as the emotional stimulus;
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hence, it was difficult to locate a fair and relevant comparison with our study. Nonetheless,
the closest comparison for intra-subject variability results was obtained from the two prior
studies found. Both studies [48,49] used the DREAMER dataset which stimulates their
user’s emotional response obtained through a video stimulus shown on a large monitor.
The researchers also collected their EEG samples using a wearable Emotiv Epoc+ EEG
headset, which has 14 recording electrode channels. They obtained their results by running
the last 60 s of their video samples to evaluate the user’s level of arousal and valence.
However, due to the large number of emotional tags that could be associated with the video
stimulus over such an extended time for viewing the videos, it would have been difficult
to accurately identify the specific emotional classes for the particular timestamp since the
user’s emotional state would have changed over that extended duration of viewing time.

Table 8. Intra-subject classification accuracy.

Researcher Classifier Accuracy

This Study Support vector machine 97.66%

[49] Dynamical convolutional
neural network 86.23%

[48] Support vector machine 62.49%

Two studies were found for comparing for the classification results in terms of inter-
subject variability [37,39], as shown in Table 9. One of the studies uses a dataset obtained
from ASCERTAIN which uses video stimulus to obtain their EEG samples while the other
study developed their own proprietary VR stimulus environment to stimulate emotional
responses from the users, which closely resembles this study’s VR stimulus with slight
differences. Marin-Morales’s [37] study uses varying architectural designs to measure the
levels of arousal and valences and was able to obtain an average classification accuracy
of 70.00% while Subramanian’s [39] approach, which used the common video stimulus
approach, could only obtain a classification accuracy of 61.00%.

Table 9. Inter-subject classification accuracy.

Researcher Classifier Accuracy

This study Support vector machine 85.01%

[37] Support vector machine 70.00%

[39] Naïve Bayes 61.00%

Both comparisons of intra-subject and inter-subject variability showed that using VR
as a stimulus presentation method produced better classification results than the common
video stimulus approach shown through a large monitor. The immersion level provided by
a VR headset stimulates a greater emotional response from the user because of their feeling
of “being there”, and the VR headset also narrows the user’s field of vision to only display
in front of their eyes without external visual or noise interruptions from their surroundings.

To compare the performance of the proposed approach in terms of classification
accuracy, Tables 10–12 present the confusion matrix of this study using the RBFK1 kernel
and the comparison of the highest accuracies from the most closely related study [37]
using the inter-subject approach, which was also conducted in VR, in terms of arousal and
valence classifications, respectively. A direct four-class confusion matrix comparison is not
possible because the existing study only presented biclassification results for arousal and
valence separately and not as a single four-class classification, as conducted in this study.
By comparing the simpler biclassification results of the existing study against the more
complex four-class classification results of this study, this study’s approach can be seen to
outperform the existing study’s approach for emotion classification in virtual reality.
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Table 10. Confusion matrix for this study (RBFK1).

Emotions Calm Bored Scared Happy

Calm 420 6 18 15

Bored 20 425 13 42

Scared 23 36 422 67

Happy 12 10 24 354

Recall 88.42% 89.10% 88.47% 74.06%

Precision 91.50% 85.00% 77.01% 88.50%

Table 11. Arousal classification comparison of proposed approach versus existing results.

This Study

Comparison

[37]

Arousal High Low High Low

High 87.88% 12.12% 75.00% 25.00%

Low 17.48% 82.52% 33.33% 66.67%

Table 12. Valence classification comparison of proposed approach versus existing results.

This Study

Comparison

[37]

Valence Positive Negative Positive Negative

Positive 81.22% 18.78% 75.00% 25.00%

Negative 11.22% 88.78% 37.50% 62.50%

4.4. Suggested Implementations to Improve Classification Accuracy

Some weaknesses can be found in this research, most notably the attention span or
engagement of the participants while being immersed inside the VR environment. Partici-
pants might become intrigued with other objects presented within the digital environment
other than the intended emotional stimuli, or the participants might have just closed their
eyes while viewing an object that was frightening to them. There was also another missing
immersion capability, which was the ability for participants to be able to interact with
objects inside the VR environment. These weaknesses can be addressed with EOG sensors
to track the eye movements of participants and to provide them with trackable controllers
to interact with objects inside the VR environment.

Other factors, such as tuning parameters for the classifiers, will also need to be
further considered to improve the classification accuracy as well as improve computational
resources by reducing the time spent on processing the data [50]. Other machine learning
methods, such as convolutional neural network (CNN) and extreme learning machine
classifier, as well as feature transformation methods including time-order representation
(TOR), can also be considered, as shown by the researchers [51–53], where the results of its
four-class emotion classification obtained accuracies of between 91–97%.

5. Conclusions

This work has presented the results of the classification performances using KNN,
SVM, FANN, DRF, GBM, and NB using videos displayed in a VR headset which was paired
together with a low-cost wearable EEG headset which had four recording electrode channels
(TP9, TP10, AF7, and AF8) as well as inertial sensing data to classify the emotions of the
participants into four distinct emotion classes. The results had shown that inter-subject
variability was able to obtain an accuracy of 85.01% accuracy, whereby the complexity of
a large dataset of 20,000 rows was higher compared to intra-subject variability with just
approximately 640 rows, which was able to obtain an accuracy of 97.66%. A novelty of this
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research was that a live prediction emotion system was also developed to demonstrate the
real-time emotion classification performances using the low-cost wearable EEG headset
with only four channels to detect the four classes of emotions. The performances of the
classifiers showed the capabilities of the classifiers using different preprocessing and input
features, such as using interpolation, single bands, five bands in combination, as well as
adopting inertial sensing data.
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