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Abstract: Infection and sepsis remain among the leading causes of neonatal mortality. The suscep-
tibility of newborns to infection can be attributed to their immature immune system. Regarding
immune response, monocytes represent a numerically minor population of leukocytes. However,
they contribute to a variety of immunological demands, such as continuous replenishment of resident
macrophages under non-infectious conditions and migration to inflamed sites where they neutralize
pathogens and secrete cytokines. Further functions include the presentation of antigens and T-cell
activation. Cytokines coordinate host responses to bacterial and viral infections and orchestrate
ongoing physiological signaling between cells of non-immune tissues. A critical event is the skewing
of the cytokine repertoire to achieve a resolution of infection. In this regard, monocytes may hold a
key position as deciders in addition to their phagocytic activity, securing the extinction of pathogens
to prevent broader organ damage by toxins and pro-inflammatory reactions. Neonatal monocytes
undergo various regulatory and metabolic changes. Thus, they are thought to be vulnerable in
anticipating pro-inflammatory conditions and cause severe progressions which increase the risk of
developing sepsis. Furthermore, clinical studies have shown that exposure to inflammation puts
neonates at a high risk for adverse pulmonary, immunological and other organ developments, which
may result in multiorgan disease. This review discusses significant functions and impairments of
neonatal monocytes that are decisive for the outcome of bacterial infections.

Keywords: apoptosis; phagocytosis; CD95L; phagocytosis-induced cell death; bystander kill; TNF;
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1. Introduction

Neonates, especially if born preterm, are highly susceptible to infections by bacteria,
fungi and viruses. As a result, infection remains one of the leading causes for mortal-
ity and morbidity in early human life [1,2]. Deficiencies of both innate and adaptive
immunity contribute to an impaired neonatal host defense and help to explain their sus-
ceptibility [3,4]. This increased host-specific susceptibility is accompanied by increased
immunopathological risk. The clinical picture in postnatal neonatal sepsis presents as
systemic inflammatory response syndrome (SIRS) [5], with a consecutive shock and rapid
deterioration of ventilation, circulation and metabolism. Even in cases of prenatal infection,
occurring in the intrauterine cavity, the clinical features are those of systemic inflammation,
termed fetal inflammatory response syndrome (FIRS). It is accompanied by a high rate of
complications, such as early-onset neonatal sepsis, periventricular leukomalacia (PVL) and
death, along with long-term consequences, such as bronchopulmonary dysplasia (BPD),
neurodevelopmental disorders [6] and retinopathy of prematurity (ROP) [7].
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In sepsis, the immune response consists of pro- and anti-inflammatory reactions. The
pro-inflammatory reaction, characterized by cytokine storm, is predominant during the
early phase of sepsis, whereas the anti-inflammatory reaction occurs later. This “seesaw of
sepsis” must be well balanced and is crucial for survival [8].

In general, an immune response against bacteria is a complex interplay of different
immune cells. Due to the immaturity of the adaptive immune system in term and especially
preterm infants, the role of the innate immune defense and its components are crucial
with respect to neonatal infection. This review focuses on the armamentarium of neonatal
monocytes and their potential to orchestrate an adequate antibacterial immune response
during sepsis as think tanks or workhorses.

2. Monocytes and Their Role in Processes of Bacterial Sepsis and Inflammation
2.1. Detection of Pathogens

The detection of pathogen-associated molecular patterns (PAMPs) via pattern recog-
nition receptors (PRRs) is the starting point of inflammation [9]. Invading pathogens
or components such as lipopolysaccharides (LPS) and lipoteichoic acid (LTA) cause the
production of pro-inflammatory cytokines via the activation of PRRs, such as Toll-like
receptors (TLRs) expressed by monocytes [10]. In neonates, monocyte expression of TLR-4,
which detects Gram-negative bacteria and facilitates LPS signal transduction [11] is low
compared to adult levels, while it increases with gestational age and explains the special
susceptibility of preterm infants to Gram-negative bacteria. Moreover, TLR-4 shows a
diminished reaction to LPS due to lower activation of myeloid differentiation primary
response 88 (MyD88) [12] and downregulated phosphorylation of nuclear factor ‘kappa-
light-chain-enhancer’ of activated B-cells (NF-kappaB) [13–16]. In a few studies, surface
expression levels of TLR2, mainly involved in the detection of Gram-positive bacteria,
showed no significant difference compared to adult monocytes [16], while others have
reported reduced TLR2 expression on neonatal monocytes [17]. This results in deficiencies
in innate immunity-associated inflammatory cytokine response, which has been widely
demonstrated [18]. Besides membrane-bound receptors, such as TLRs, pathogen patterns
can also be detected by intracellular PRRs called nucleotide-binding oligomerization do-
main receptors or NOD-like receptors (NLRs), for short [19–21]. NOD-1 expression is
significantly lower in neonates than in adults, while NOD-2 expression was found reduced
in preterm neonates only. Stimulation with NOD-1+2 agonists induced lower cytokine
release compared to adults [22]. It can be assumed that the capacity of monocytes to detect
pathogens is an important function in sepsis; however, altered signalling pathways in
neonatal monocytes have yet to be elucidated.

2.2. Phagocytosis and Killing

After recognition, the next steps in the effective elimination of bacteria are binding,
phagocytosis and intracellular degradation in the phagolysosome. Pathogen clearance is
one of the monocytes’ central tasks. Monocyte counts in cord blood are comparable to
those in adult blood with a tendency to be slightly higher in newborns [16,23]. Therefore,
neonates do not lack cells with phagocytic capacity, and thus it is necessary to consider
monocyte functionality. Besides phagocytosis, the production of bactericidal reactive
oxygen species (ROS) and nitric oxide (NO) plays a crucial role in eliminating bacteria.

While few studies show lower phagocytic ability [23], we and others have shown
that infection with green fluorescent protein (GFP)-labeled bacteria revealed no difference
between peripheral blood monocytes from adults (PBMOs) and cord blood derived mono-
cytes (CBMO) with regard to phagocytic capacity, phagocytic indices, degradation activity
and ROS production [18,23–25].
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2.3. Phagocytose Induced Cell Death (PICD)—Regulating the Immune Response via Depletion

PICD was first described by Zychlinsky et al. in 1992, who reported that Shigella
flexneri induces apoptosis in infected macrophages [26]. Further studies showed the same
effect for other bacteria and assumed that effector cell apoptosis supports the resolution of
infection (reviewed in [27]).

Dysregulation or imbalance of PICD in the host is accompanied by a variety of patho-
physiological consequences. If monocytes undergo abortive PICD, bacteria may be elim-
inated incompletely. In case of delayed or insufficient PICD, permanent or prolonged
cytokine production via activated effector cells could lead to sustained inflammation and
systemic damage to the host. Effector cell apoptosis is therefore tightly regulated. In this
context, we discuss the early apoptosis of monocytes in adult septic patients as a means of
influencing the course of disease in an advantageous way [28].

In previous studies, consecutive PICD of neonatal monocytes was compared to adult
monocytes in an in vitro infection model using the most common agents of neonatal sepsis,
group-B-streptococci (GBS) and Escherichia coli, as well as Candida albicans. Although
CBMOs and PBMOs showed identical phagocytic and intracellular degradation properties,
as mentioned above, PICD was heavily reduced in CBMOs [18,29,30]. The Fas/Fas-ligand
system (CD95/C95L) as a member of the tumour necrosis factor (TNF) family was shown
to be relevant for the induction of PICD and reduced PICD in CBMO. Moreover, it was
associated with reduced transcription of CD95L [30]. Recent work revealed that matrix
metalloprotease 9 (MMP-9), which was found to be elevated on neonatal monocytes
compared to adult controls, is responsible for the shedding of CD95L and reduced cell-
contact dependent PICD on infected neonatal monocytes (see Figure 1) [31,32].
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Figure 1. Pathogen recognition, phagocytosis, killing and phagocytosis-induced cell death in cord
blood derived monocytes. Alterations in neonates compared to adults are named in grey text boxes,
small arrows indicate an increase or decrease. Abbreviations: NFκB (nuclear factor ‘kappa-light-chain-
enhancer’ of activated B-cells), MyD88 (Myeloid differentiation primary response 88), TLR (Toll-like
receptor), TNF (tumor necrosis factor), TNFR (tumor necrosis factor receptor), PICD (phagocytosis
induced cell death), CD95L (CD95 ligand or Fas ligand), memCD95L (membrane-bound CD95 or Fas
ligand), MMP-9 (matrix metalloproteinase 9), Bcl (B-cell lymphoma), EGFR (epidermal growth factor
receptor), AREG (amphiregulin), pERK (phosphorylated extracellular signal-regulated kinase).
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One molecular mechanism which may explain downregulated PICD in CBMOs is the
balance of proteins belonging to the B-Cell lymphoma 2 (Bcl-2) family [33]. In comparison
to PBMC, CBMC express higher levels of anti-apoptotic proteins whereas the expression
of pro-apoptotic proteins is diminished [34]. Current findings identified amphiregulin
(AREG) as an important player in this context. AREG is a growth factor that binds to the
epidermal growth factor (EGF) receptor which can be found on the surface of monocytes
and lymphocytes. Surface expression of membrane-anchored pro-AREG is increased on
neonatal monocytes and cleavage/shedding of AREG was found to be highly elevated
after infection with E. coli [34]. Infection induced higher phosphorylation of extracellular-
signal regulated kinases (ERKs), higher expression of Bcl-2 and Bcl-XL and downregulation
of cleaved caspase-3 and caspase-9 in an EGFR-dependent manner, thus inhibiting the
intrinsic apoptosis pathway [34]. Data suggests that AREG shedding may cause apoptosis
resistance and reduced PICD in neonatal monocytes via elevated intracellular MMP-2 and
MMP-9 levels and FasL cleavage [34].

Via PICD and apoptosis regulation, monocytes play a role in preventing immune
response overshooting. In this regard, their reduced function as “think tanks” in neonates
leads to sustained inflammation with risk of illness in later life.

Separate analysis of monocytes infected with fluorochrome-labelled bacteria revealed
reduced apoptosis in phagocytosing monocytes as compared to mates that did not phago-
cytose. Phagocytosing monocytes produced more TNF-α compared to bacteria-binding
or non-interacting monocytes. Meanwhile, it has been observed that TNF-α is capable of
inducing apoptosis in both contact and contact-independent manners. Altogether, this leads
to the hypothesis that non-phagocytosing, TNF-α presenting and secreting monocytes kill
their mates which do not contribute to combating pathogens in an autocrine and paracrine
mechanism [35,36].

This phenomenon called “bystander kill” or “fratricide” is enabled by CD95L/CD95
and TNF-α/TNFR1 pairs of death ligand/death receptors. It is found to be reduced in
neonatal monocytes. [30] Along with PBMOs, they internalize TNF-α/TNFR1 complexes,
which is a prerequisite to initialize apoptosis. This effect plays a predominant role in
non-phagocytosing CBMOs (see Figure 1).

TNF-α and other pro-inflammatory cytokines play a decisive role in sepsis, especially
in the conversion to septic shock [6]. Supplementation of TNF-α led to a sustained detection
of TNF-α on the surface of neonatal monocytes [36]. This indicates that the signalling is
skewed towards anti-apoptotic effects, since TNF-α/TNFR1 complexes on the plasma
membrane bind to TRAF2 (TNF receptor-associated factor 2) and activate the NF-kappaB
pathway, initializing the pro-inflammatory response [37]. Additionally, it can be conjectured
that TNF-α in CBMOs binds more frequently to the TNFR2 receptor. The expression pattern
of the TNFR2 receptor was found to resemble that of PBMOs supporting anti-apoptotic
signalling [35].

It was also found that CBMOs secrete less TNF-α and express less pro-apoptotic
TNFR1 on their surface combined with TNF-α retention on the membrane and delayed
TNF/TNFR1-internalization. This results in lower activation of cleaved caspase-8 and less
PICD [35]. Taken together, the regulative functions of neonatal monocytes as “think tank”
are skewed towards an inflammatory and anti-apoptotic phenotype that may contribute
to sustained inflammation during and after infection and, through this, may build a
pathophysiological explanation for enhanced infection-associated inflammatory damage
in neonates.

2.4. Monocytes in Organ Destruction

In preterm neonates, sepsis and resultant sustained inflammation are associated with
severe organ damage, especially in the central nervous system, lung and gut, with sequelae
including bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy
of prematurity (ROP), intracranial hemorrhage (ICH) and periventricular leukomalacia
(PVL) [37]. Monocytes may participate in tissue injury and organ trauma in sepsis. LPS
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leads to activation of resident macrophages via TLR-4, which in turn (see Figure 2) initiates
the production of TNF-α [16,38] (see Figure 2). This cytokine recruits circulating monocytes
and macrophages via chemotaxis which leads to local inflammation and organ injury.
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Figure 2. Monocytes in organ destruction, black arrows indicate stimulation, grey arrows with a
minus indicate inhibition. Abbreviations: hAFSC (human amniotic fluid stem cell), IL-8 (interleukin
8), LPS (lipopolysaccharide), MFG-E8 (milk fat globule–epidermal growth factor–factor 8), miR-129-
5p (microRNA 129-5p), MYD88 (myeloid differentiation primary response 88), NFκ (nuclear factor
‘kappa-light-chain-enhancer’ of activated B-cells), TLR-4 (Toll-like receptor-4), TNF-α (tumor necrosis
factor alpha).

The TNF-regulating RNA miR-129-5p is downregulated in neonates with sepsis. This
down-regulation has been associated with increased TNF-α and interleukin-8 (IL-8) pro-
duction by monocytes following LPS induction and might explain the over shooting
inflammatory response. A supplementation of miR-129-5p could thus present a potential
therapeutic target with anti-inflammatory effects in neonatal sepsis and should be further
investigated [39].

Breastfeeding has been described as ameliorating the outcome of neonatal sepsis [40].
One contributing factor might be the presence of milk fat globule–epidermal growth
factor–factor 8 (MFG-E8), also called lactadherin, in human milk. In murine neonatal
sepsis, a deficiency in MFG-E8 leads to increased monocytic pro-inflammatory cytokine
production (IL-6, IL-1β and TNF-α) [41] upon infection, resulting in increased serum LDH
(lactate-dehydrogenase) levels, implying tissue damage, lung damage and loss of intestinal
integrity, which is associated with the development of NEC with resulting increased
mortality [42]. Treatment with MFG-E8 was found to improve lung injury scores and
prevent the development of NEC [43,44]. In a recent study, MFG-E8 in human milk was
found to decrease the production of pro-inflammatory cytokines (IL-8, TNF-α and MCP-1)
and increase anti-inflammatory cytokines (IL-4) in the intestines of preterm infants, making
them less prone to suffer from sepsis and NEC [45].

Over-expression of pro-inflammatory cytokines by neonatal monocytes [41] can lessen
the chance of survival in sepsis [40] and cause severe sequelae.
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2.5. Functions of Monocyte Subsets

In human blood, cytokines are able to convert monocytes into different subpopula-
tions [46]. On the one hand, interferone-gamma (IFN-γ) or microbial products, such as LPS,
induce the microbicidal and pro-inflammatory classical M1 macrophage. M1 macrophages
are characterized by a high production of pro-inflammatory cytokines (IL-1β, IL-15, IL-
18, TNF-α, IL-12) and increased surface expression of major histocompatibility complex
(MHC) II and B7 family receptors (CD80/CD86), needed for T-cell interaction and antigen
presentation [47]. On the other hand, polarization towards alternatively activated, anti-
inflammatory macrophages occurs in response to stimulation by IL-4/IL-13, LPS/immune
complexes or IL-10/transforming growth factor beta (TGF-β)/glucocorticoids. The al-
ternatively activated subgroup is characterized by an upregulated expression of CD16,
and therefore these monocytes play an important role in antibody-dependent cellular
cytotoxicity (ADCC) [48]. Compared to adult peripheral blood macrophages, cord blood
macrophages showed aberrant STAT1 and STAT3 (signal transducer and activator of tran-
scription) phosphorylation upon stimulation, which is essential for differentiation into
subgroups. Furthermore, CD80/CD86 presentation was reduced in both pro-inflammatory
and anti-inflammatory type cord blood macrophages, resulting in a lower capacity to
interact with T-cells and stimulate Treg production compared to adults [49].

Another way to discriminate monocyte subpopulations is by regarding receptor ex-
pression and functionality. The monocytes termed “classical” make up the majority, and
express high levels of CD14 and only low levels or no CD16 (CD14hiCD16) [50,51]. They
are further characterized by low levels of human leucocyte antigen (HLA)-DR molecules
and mainly function as phagocytes with wound-healing and anti-apoptotic qualities [52].

The remaining monocytes are characterized by a higher expression of CD16 and fall
into two subgroups designated as “intermediate” (CD14hiCD16+) and “non-classical”
(CD14−/loCD16+). Intermediate monocytes are associated with angiogenesis, display
the highest ROS production and have T-cell stimulatory properties, expressing higher
levels of HLA-DR and MHCII. Non-classical monocytes stimulate T-helper cells and have
pro-apoptotic qualities [52].

Adult sepsis patients have been found to have elevated levels of both CD16+ mono-
cyte subgroups, showing an increase of intermediate monocytes especially. Furthermore,
HLA-DR expression seems to be reduced during sepsis and correlates with a negative
sepsis outcome [52–54]. Studies measuring monocyte subpopulations at different ages have
found a similar phenotype in healthy neonates. Neonatal monocytes express lower levels
of HLA-DR, reaching adult levels after about six months [55]. Furthermore, neonates have
the highest levels of intermediate monocytes of any age group [56] also of non-classical
monocytes which are even more elevated in preterm neonates [16,57,58]. Neonatal mono-
cytes also displayed a compromised ability to activate T-cells, whereas IL-10 production
was enhanced, which could, again, correlate with the high proportion of intermediate
monocytes [58,59]. These results suggest that neonatal monocyte subtypes are skewed
towards an immunosuppressive and anti-inflammatory phenotype which could protect
from hyperinflammation during early microbial colonization but also lead to lowered
anti-bacterial protective capacity in case of disease. However, it is important to discrimi-
nate between these in vitro findings and in vivo neonatal reactions to infection where an
increased pro-inflammatory reaction has been observed [59]. Both hypo- and hyperinflam-
mation can occur during the course of sepsis [8] and their regulation seems to be inadequate
in neonatal monocytes.

2.6. Cytokine Production and Responsiveness

The molecular components of sepsis encompass cytokines, acute-phase proteins and
plasma cascades. The cytokine profile of septic neonates is characterized by elevated
levels of pro-inflammatory cytokines, such as TNF-α and IL-6, as well as the immune-
regulatory cytokine IL-10 [60,61]. The levels at which these cytokines are produced vary
with different stages of infection. TNF-α and IL-6 seem to be increased during the initial
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inflammatory response, while IL-10 and IL-4, as an anti-inflammatory signal, increase
during the termination of disease [62]. Production of particularly low amounts of anti-
inflammatory IL-4, IL-12 and IFN-γ has been linked to a higher risk of adverse outcomes in
neonatal sepsis; additionally, IL-6 and IL-10 seem to have predictive value when it comes to
determining disease outcomes, giving these two cytokines a pivotal role regarding cytokine
production in neonatal sepsis [63–65].

Upon stimulation with microbial products, such as LPS, neonatal monocytes produce
significantly more IL-6 than adult monocytes [55], and neonatal blood also contains higher
levels of IL-6 compared to toddlers. This finding has been linked to decreased expression of
the LPS-inducible gene Zc3h12a in newborns compared to adults. Zc3h12 has a regulatory
effect on the amounts of IL-6 being produced by initiating its degradation. [66]. IL-6
activates the production of acute phase proteins in macrophages via phosphorylation of
STAT3. An increase of IL-6 resulting in higher acute phase protein levels in neonates could
be the result of a decrease in neonatal macrophages in the SOCS (suppressor of cytokine
signalling) 3/IL-6 ratio, which is responsible for inhibiting STAT3 dependent intracellular
signalling [67].

IL-10, as an immune-regulating and phagocytosis-enhancing [68] signalling peptide
with anti-inflammatory potential, seems to be important in the control of inflammation [69].
It is associated with the upregulation of CD16 on macrophages, thereby promoting ADCC,
and down-regulation of HLA-DR, but fails to achieve this effect during in vitro stimulation
of cord blood macrophages of term and preterm neonates. The particular cellular cause
of this decreased effect has yet to be determined [48]. In neonates, monocytes rather than
polymorphonuclear cells (PMNs) [70,71] react with IL-10 production upon infection and
therefore they are thought to be more crucial for the course of FIRS [72]. However, little is
known about the exact time course of neonatal IL-10 production in comparison to adult
monocytes.

Macrophage migration inhibitory factor (MIF) is another pro-inflammatory cytokine
that can be found in elevated levels in neonates, especially around the time of birth, and
high levels of MIF have been associated with elevated morbidity and mortality rates in
septic adults. Physiologically, MIF seems to counteract the suppressed immune status of
newborns, but in the face of infection it might have a detrimental effect on survival and
thus also presents a potential therapeutic target [73].

Another cytokine that has been associated with the pathophysiology of neonatal sepsis
is the pro-inflammatory IL-17. Il-17 recruits neutrophils and monocytes in combination
with other cytokines, such as IL-8 and IL-6, and is released in reaction to bacterial contact
with immunological barriers. As its production is decreased in neonates, it could contribute
to an impaired immune response to extracellular pathogens and to a dysregulation of the
evolving microbiome, thus resulting in bacteraemia and sepsis [74].

The immune response against different pathogens depends on lymphocyte subsets,
especially T-helper (TH) cells, and their production of cytokines. IFN-γ or IL-2, known
as TH1 cytokines, induce the activation and differentiation of monocytes, whereas TH2
cytokines, e.g., interleukin-10 (IL-10), promote antibody synthesis and immunoregulatory
signals [75]. Studies have shown that in neonates the balance between both immune
responses is shifted towards TH2 due to diminished phosphorylation of IFN-γ-R-associated
STAT-1 [76], making monocyte signalling pathways hyporesponsive to IFN-γ [76]. The
imbalance in polarization is necessary to maintain pregnancy because TH1 cytokines can
induce pregnancy complications, including miscarriage [77,78].

Apart from their ability to influence other immune cells, such as monocytes, and thus
to regulate immune responses, cytokines can also influence their primary producers and
“cross-regulate” immunoreaction. IFN-γ inhibits TH2 cells [79], whereas IL-10 may bias
towards TH2 differentiation, resulting in down-regulation of TH1 functions [80]. IL-10
production in neonatal leukocyte populations (CBMNC) seemed to be reduced because of
an altered interaction between monocytes and T-cells [49,81]. Therefore, monocytes are in-
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volved in determining immune response. The decision about its direction requires a certain
intellect in our immune system and is a further task for monocytes as thinking deciders.

Recent studies have investigated the possibility of using cytokine levels, which increase
earlier in disease than acute phase proteins and are more specific to infection, as a diagnostic
tool and a prognostic marker for sepsis. IL-6 and IL-10 levels especially have been found to
be significantly altered in neonates and to coincide with negative sequelae [4,63,65,81].

2.7. Modulating Effector Cell Functions of Monocytes in Neonatal Sepsis

During the inflammatory response monocytes are not only essential for the innate
immune response by producing cytokines and presenting phagocytic activity, they also
play an essential role in activating the adaptive immune response by T-cell activation and
antigen presentation [82]. To this end, numerous studies investigated the expression of
molecules involved in APC (antigen-presenting cell)/T-cell communication.

Among this class of molecules is HLA-DR, an MHCII protein commonly found on
monocytes that is involved in antigen presentation to T-cells. This complex is down-
regulated on monocytes during sepsis, which might be indicative of an impairment in
monocytic antigen presentation capacities during systemic inflammation [83]. The de-
creased expression of HLA-DR seems to correlate not only with a decreased lymphocyte
responsiveness but also with the severity of the disease and mortality in paediatric sepsis pa-
tients [84,85]. It was associated with the anti-inflammatory secondary immune response to
sepsis and is thought to prevent over-inflammation following an intense pro-inflammatory
period [86] as well as possibly be involved in the long-term immunosuppression that can
often be found in patients post sepsis [85]. The basal monocytic HLA-DR expression was
found to be decreased in preterm [86] and term neonates [87], which suggests that even
before systemic infection-related down-regulation, neonates present with an impairment in
immune cell functionality. Since HLA-DR expression on monocytes is decreased in the early
stages of sepsis and correlates with disease intensity and mortality, it was discussed as a
biomarker for diagnosis and prognosis of sepsis [88]. However, on its own, HLA-DR expres-
sion does not seem to be sufficiently sepsis-specific and would have to be complemented
by other markers, for example, CD64 expression on neutrophile granulocytes [87,88].

In an infectious setting, monocytes can activate different T-cell subtypes through
cytokine production. However, in sepsis, monocytes were found to be insufficiently
capable of activating T-cells [82]. Instead, immunosuppressive regulative T-cell (Treg)
populations are elevated in septic patients [89,90]. These can be induced via IL-10, produced
by activated monocytes [91]. Elevated Treg levels are associated with post-sepsis long-
term immunosuppression and compromised immune system function. The neonatal
immune system tends to be of a pathogen-tolerogenic disposition, containing high levels
of Treg cells [92–94]. This might be necessary to allow neonates to establish a healthy
commensal intestinal microbiome and to interact with foreign antigens without constant
inflammatory response. However, in case of infection this immunosuppressive state
supported by Tregs could become detrimental and quickly lead to severe sepsis. The T-cell
imbalance in neonates, modulated by activated monocytes, has also been associated with
the development of NEC [95].

In neonates the monocyte–T-cell interaction is skewed towards an immunosuppressed
state which could become critical in the event of sepsis, once again highlighting the mono-
cytes’ role as important “think tanks”.

2.8. S100-Alarmins in Neonatal Sepsis

Neonates show highly elevated blood levels of S100A8/A9 alarmins [96,97], and
although it is apparent that they play an important role in the regulation of innate immunity,
it remains debatable whether they enhance or attenuate inflammation and whether they
benefit or harm neonates.

S100A8 and S100A9 (also referred to as MRP8 and MRP9) are Ca2+-binding proteins
that are highly concentrated in the cytoplasm of granulocytes and monocytes. Together they
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form a heteromeric complex that is also called calprotectin [98]. S100-alarmins are released
from monocytes either passively via necrosis or are actively secreted during inflammatory
processes [99]. They are classified as danger-associated molecular patterns (DAMP) and act
as endogenous TLR4-agonists. TLR-4 activation initiates MyD88 signalling, with activation
of interleukin-1 receptor-associated kinase 1 (IRAK-1) and NF-kappaB [100], resulting in
pro-inflammatory cytokine release, including TNFα, IL-6, Il-1β and macrophage inflamma-
tory protein 2 alpha (MIP-2-alpha) [101]. The elevated serum levels in neonates result from
monocyte secretion [97] and high concentrations in human breast milk [102].

In adults, an increase in S100-alarmins is mostly reported in the context of inflamma-
tion. In chronic inflammatory bowel disease, stool concentrations of calprotectin are a diag-
nostic tool for inflammatory activity. In rheumatoid arthritis, they cause pro-inflammatory
effects and upregulate MMP3, MMP9 and MMP13 expression on phagocytes [103], along
with induction of chemotaxis [104]. They have also been identified as amplifiers of inflam-
mation promoting lethal endotoxin-induced shock in adults [100]. In neonates, however,
their role has not been clarified. A recent study demonstrated their expression on monocytes
to be associated with inflammatory activation, chorioamnionitis, FIRS (fetal inflammatory
response syndrome) and elevated inflammatory proteins [104]. Contrary to that, other stud-
ies report a more regulatory, protective function for S100-alarmins in newborns [105]. High
amounts of alarmins alter MyD88 signalling in a way that prevents hyperinflammation
without impinging on pathogen defence in neonatal sepsis [101] and prevent the expansion
of an inflammatory monocyte population that causes hyperinflammation and endotoxic
shock in neonatal mice [96]. A study from 2014 supports this observation and demonstrates
the TLR-4 hyporesponsiveness of phagocytes with decreased TNFα release and enhanced
survival of mice in septic shock upon S100-alarmin treatment. This stress tolerance was
also seen in human cord blood derived monocytes, whose inflammatory LPS response was
impaired compared to adult monocytes, while depletion and pharmacological inhibition
of S100A8/A9 reversed this inhibition of pro-inflammation, supporting the hypothesis
that alarmins act as an endogenous tolerizing factor [99]. This tolerizing quality might
also come to play in the neonatal development of a healthy gut microbiome, as a recent
study suggests. Enterally absorbed S100A8/S100A9 deriving from breast milk stimulated
lamina propria macrophages to support the expansion of Tregs and in turn allowed eubiont
bacteria to colonize. A healthy gut microbiome is essential to avoid the development of
gut-origin sepsis [106]. It was also shown that mechanistic target of rapamycin (mTOR)
suppression in CBMOs is linked to the known high levels of S100A8/A9 alarmins in cord
blood serum. Treating PBMOs with cord blood serum or alarmins inhibited mTOR sig-
nalling and glycolysis in a similar manner. S100A8/A9 treatment also inhibits the metabolic
shift towards glycolysis upon inflammatory stimulation by mTOR inhibition in human
CBMOs [107].

Taking these findings together, the massive release of S100-alarmins by monocytes
points towards an important regulatory role for monocytes in neonatal immunity.

2.9. Immunometabolism of Neonatal Monocytes

The metabolism of activated monocytes and macrophages has been extensively dis-
cussed [108], however, research has been mainly focused on monocytes of adults, while
little is known about the situation in neonates.

Glycolysis is a fast though ineffective way to generate adenosine triphosphate (ATP)
and other metabolites. ATP is elevated during inflammation, acts as a signal of danger and
can initiate and prolong immune responses. Activated inflammatory monocytes upregulate
glycolytic activity and glucose transporter 1 (GLUT-1) expression to increase glucose uptake
via mTOR and Akt signalling [109]. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
plays a role in the translational regulation of inflammatory chemokines, such as TNF [110].

One of the main metabolic shifts during an inflammatory response moves from oxida-
tive phosphorylation (OxPhos) towards glycolysis and fatty acid synthesis (FAS), which
is known as the Warburg effect [111]. This shift towards glycolysis is reduced in preterm
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monocytes due to low mTOR signalling in macrophages and CBMOs fail to increase glucose
uptake in response to infection when compared to PBMOs [112,113]. CBMOs reacted with
only an increase in glycolysis, along with lower TNF and elevated IL-6 secretion [114].

Recent studies have tried to elucidate the involvement of mTOR signalling in neonatal
immunometabolism and PICD. Leucine pre-treatment induced mTOR-activation on E. coli-
infected monocytes, leading to lower levels of Bcl-2 and raising PICD of CBMOs to levels
comparable to PBMOs. This occurred only on CBMOs despite lower surface expression of
LAT-1 (L-amino acid-transporter) than on PBMOs. Although leucine did not change the
phagocytic properties or glycolysis rates of CBMOs, it did increase OxPhos on infected cells
in an mTOR-dependent manner [115].

On a genetic and epigenetic level, several genes for glucose metabolism were found
lowered in CBMOs compared to PBMOs: the primary rate-limiting glucose transporter
GLUT-1, phosphofructokinase M, mitochondrial pyruvate carrier, pyruvate carboxylase
and malate dehydrogenase 2 were all decreased in neonatal monocytes, leading to broad
metabolic defects, especially regarding glycolysis [107].

Neonatal monocytes show lower expression of genes related to OxPhos, fatty acid oxi-
dation (FAO) and glycolysis [116]. Another area of metabolic alteration is lipid metabolism
and the balance between FAO and FAS. FAO is described as mostly anti-inflammatory
apart from NLRP-3 (NLR family pyrin domain containing-3) inflammasome activation in
macrophages, while FAS favours inflammation in innate immune cells and is critical for dif-
ferentiation and phagocytic activity [116]. Compared to adults, neonates dispose of reduced
energy reserves—FAO especially is limited due to diminished adipose tissue, making the
neonatal immune response more disease tolerant. The reduced neonatal anti-inflammatory
immune response correlates with a higher bacterial load threshold in neonates (50 CFU/mL
vs. 1 CFU/mL in adults). In neonatal sepsis, genes involved in lipid metabolism are
upregulated [117]. In addition, neonatal monocytes express higher levels of peroxisome
proliferator-activated receptor gamma (PPARγ), which is a nuclear receptor involved in
lipid metabolism, as well as inhibition and termination of inflammation [117].

Profiling of human sepsis patients undergoing immunoparalysis has revealed a transi-
tory defect in glycolysis and oxidative metabolism [118]. This suggests that the alterations
in neonatal immunometabolism might be problematic for pathogen defence and could be a
potential target in nutrition and pharmacotherapy of septic neonates [118].

The availability of ketone bodies for brain development is critical for the neonate
and is in danger of being “maxed out” energetically by ketone body consumption after
infection [118,119]. To this end, ICU applies enteral nutrition, resembling intrauterine
nutrition (carbohydrate-rich/fatty acid-low).

Taken together, these observations point to a differential regulation of metabolism,
and its influence on immune responses via cytokine release and cell survival strongly hints
towards a regulatory thinking function of monocytes in neonatal sepsis.

3. Conclusions

Besides their role as phagocytosing cells with a well-known function of eliminating
bacteria, monocytes are crucial deciders in regulating immunoreaction. Mediation of apop-
tosis, modulation of cytokine responsiveness and calculated interactions with lymphocytes
affect the outcome of sepsis in a particular manner. According to our opening question,
monocytes are indispensable for both functions: as think tanks and workhorses.

In neonates, the ability of monocytes to work seems to be fully developed, whereas
their role as mastermind is immature. This leads to phenomes, such as prolonged inflam-
mation and organ damage, with risk of sequelae.

A deeper understanding of monocyte regulating functions opens up new vistas with
regard to therapeutic targets, such as pharmacological influence on cytokines or death
ligands. Therefore, further investigations into monocytes as think tanks may help to fight
neonatal sepsis and its complications.
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