
����������
�������

Citation: Jung, E.; Lin, C.; Contreras,

M.; Teodorescu, M. Applied Machine

Learning on Phase of Gait Classification

and Joint-Moment Regression.

Biomechanics 2022, 2, 44–65.

https://doi.org/10.3390/

biomechanics2010006

Academic Editor: Tibor Hortobagyi

Received: 14 December 2021

Accepted: 26 January 2022

Published: 1 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Applied Machine Learning on Phase of Gait Classification and
Joint-Moment Regression

Erik Jung 1,*,† , Cheryl Lin 2,† , Martin Contreras 1 and Mircea Teodorescu 1

1 Department of Electrical and Computer Engineering, University of California Santa Cruz,
Santa Cruz, CA 95064, USA; mcontr15@ucsc.edu (M.C.); mteodore@ucsc.edu (M.T.)

2 Department of Computer Science, Northwestern University, Evanston, IL 60208, USA;
cheryllin2025@u.northwestern.edu

* Correspondence: eajung@ucsc.edu
† These authors contributed equally to this work.

Abstract: Traditionally, monitoring biomechanics parameters requires a significant amount of sensors
to track exercises such as gait. Both research and clinical studies have relied on intricate motion
capture studios to yield precise measurements of movement. We propose a method that captures
motion independently of optical hardware with the specific goal of identifying the phases of gait
using joint angle measurement approaches like IMU (inertial measurement units) sensors. We are
proposing a machine learning approach to progressively reduce the feature number (joint angles)
required to classify the phases of gait without a significant drop in accuracy. We found that reducing
the feature number from six (every joint used) to three reduces the mean classification accuracy by
only 4.04%, while reducing the feature number from three to two drops mean classification accuracy
by 7.46%. We extended gait phase classification by using the biomechanics simulation package,
OpenSim, to generalize a set of required maximum joint moments to transition between phases. We
believe this method could be used for applications other than monitoring the phases of gait with
direct application to medical and assistive technology fields.

Keywords: gait events; gait classification; musculoskeletal modeling; algorithm; biomechanics

1. Introduction

Biomechanics is the study of human movement that combines the laws of physics
with concepts of engineering to address physical health and performance [1]. Human
gait produces a locomotion using the combination of the brain, nerves, and muscles in
the lower extremities [2]. Balance and gait work uniformly as a complex sensory and
motor coordination. Within this context, the assessment of gait indicates levels of physical
mobility and effects of therapy or assistive technologies. A gait cycle starts at the point of
initial contact of one lower extremity to the point where the same extremity touches the
ground again [2]. Skeletal-based arrangements like the human body rely on muscles and
tendons to manipulate joints [3]. For gait, the human leg depends on three primary joints:
hip, knee, and ankle [4].

Complex biomechanic simulation environments (e.g., OpenSim [5], bioMechZoo [6])
focus on musculoskeletal models performing kinematic estimations. The inverse kinematics
(IK) and inverse dynamic (ID) tools provided by OpenSim are used as a viable solution for
enhancing gait phase classification by outputting a set of required joint-torques to transition
between phases. To make sense of the large databases produced from motion capture
systems or simulation environments, machine learning is key for gait assessment [7–9].
The development of classification models to determine phases of gait for a diverse group
of subjects has not been popular due to the difficult task of generalizing the wide variety
of human locomotion [10]. Instead, most complex models focus on pathological gait
recognition (e.g., detecting disabilities that affect gait) [11], or the stance–swing phase of gait
for classification [10]. Often machine learning approaches are viewed as “black boxes” that
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can solve any problem. However, the unwise choice of parameters can lead to ambiguous
decisions or erroneous predictions [1]. As a reliable approach, literature has focused on gait
recognition or detection [8,11] as the primary machine learning classification to facilitate
automated discrepancies for fall detection, or changes in activities (i.e., transitioning from
walking to running) [2].

Tracking the motion of human subjects performing gait can be done in a variety of
ways, but the most common include: optically monitoring marker trajectory [12–14] or wear-
able IMU sensors using sensor-fusion algorithms to record angular displacements [15,16].
The majority of the subject data in this work was provided two public databases developed
by Moissenet et al. (Public database provided by Moissenet et al. [13]: https://figshare.
com/articles/A_multimodal_dataset_of_human_gait_at_different_walking_speeds/7734
767 (accessed on 13 December 2021)) [13], and Horst et al. (Public database provided by
Horst et al.: https://data.mendeley.com/datasets/svx74xcrjr/3 (accessed on 13 December
2021)) [1] that relied on optical marker-tracking systems. The additional data set for training
purposes was from our own custom IMU sensors [17] collected under IRB Exemption at
UC Santa Cruz.

The primary goal of this work extends the typical application of gait detection or
stance–swing transitions to create a model that can accurately predict the phase of gait
using joint angles. The authors believe understanding a complex breakdown of individual
phases of gait, compared to just toe off, foot flat, and heel off, has deeper insights for
applications such as prostheses, exoskeletons, virtual reality, etc. Machine learning has
been applied to detect a variety of motions with a single sensor which we believe has an
different and more general application than ours [15,18]. Since we know it is a challenge to
generalize the required moments from phase to phase for all subjects, we confined our study
on the sagittal plane. The paper begins by explaining the process for preparing each data
set using OpenSim, a multi-body biomechanic simulation package [5], and bioMechZoo, an
open-source toolbox for analyzing and visualizing movement [6] to accurately label the joint
angle coordinates and phase of gait in Section 2.1. To make sense of the aggregated data set,
we implemented machine learning classification algorithms such as random forest [19,20]
to correlate all of the joint angle recordings with a phase of gait [2] in Section 2.2. The
analysis in Section 3 demonstrated that even with a large set of joints being tracked for a
cyclical movement such as gait along the sagittal plane, there is no real requirement for
wearing additional sensors. Rather, there exists options to reduce the number of joints
monitored and thereby yield which phase of gait we enter with a range of confidence
(See Table A6). To further the extraction of this same data, we used ID from OpenSim to
produce a relationship between phase of gait, joint angles, and required moments, creating
a valuable tool for future prosthetic, exoskeleton, or biomechanics applications [21].

2. Materials and Methods
2.1. Data Preparation

In this study, we considered one hundred and nine healthy adults who range in
physical characteristics (e.g., height, weight, mass, age). We used two public databases
that cumulatively provided 4079 full cycles of gait, and our own database, which provided
124 cycles of gait. Moissenet database [13] used 51 participants, Horst database [14] used
56 participants, and our database used 2 participants (See Table A9). In our experiments
we used a set of in-house developed 9-degrees of freedom orientation IMU sensor with a
3-axis magnetometer, 3-axis gyroscope, and 3-axis accelerometer that used the Madwick
sensor-fusion algorithm to calculate angular displacement and wirelessly transmit the
information to a remote host using the TCP protocol [17,22]. Figure 1 shows the correlation
between the age, height, and weight for all of the participants.

https://figshare.com/articles/A_multimodal_dataset_of_human_gait_at_different_walking_speeds/7734767
https://figshare.com/articles/A_multimodal_dataset_of_human_gait_at_different_walking_speeds/7734767
https://figshare.com/articles/A_multimodal_dataset_of_human_gait_at_different_walking_speeds/7734767
https://data.mendeley.com/datasets/svx74xcrjr/3
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Figure 1. Distribution of all 109 participant information regarding age (years), height (m), weight (kg),
and gender (e.g., blue for male, red for female). This large variation is a challenge for classification
algorithms when every subject varies. For distinct comparisons, we chose 2 subjects (Subject One is
red, and Subject Two is blue) at random with different height and weight. Subject One is a 28-year-old
female, 1.56 m in height and weighing 50 kg. Subject Two is a 23-year-old male, 1.76 m in height and
weighing 73 kg. See supplementary data in Table A9.

Since each database had its unique recording strategy (e.g., different marker placement
and different sampling rate), the experimental data were preprocessed using Algorithm 1
to include marker numbers, frames, samples, mass, gender, and height into a single matrix
representing each subject’s biometrics [23]. For example, the Moissenet and our own
databases were sampled at 100 Hz, while the Horst database was recorded at 250 Hz. We
downsampled Horst database to match the other two sets of data and generate a training
data set that consists of over 700,000 samples at 100 Hz. It is important to note that the
markers and their locations for both the Moissenet and Horst databases were interpreted
by BioMechZoo solvers to output a joint angle relationship that yielded similar ranges of
motion. Both of these databases included foot–ground reaction forces. We simulated the
ground reaction force using “the simulated force plate” component available in OpenSim.

Algorithm 1: Data Preparation Pipeline

Input: Marker Data
if File Type == .mot then

OpenSim Inverse Kinematics→ Joint Angles (θ)
OpenSim Inverse Dynamics→Moments (M)
Data Annotation in OpenSim

else if File Type == .c3d then
biomechZoo Inverse Kinematics→ .zoo→ Joint Angles (θ)
Data Annotation in Mokka

Target Phases of Gait (P) from Data Annotations→ Labeled Joint Angle Features (θ)
Aggregate Participant Information (S)
Output: Joint Angle Feature Extraction
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The organization of the data structure for the recorded motion (T) shown in Equation (1),
contains a Cartesian markers (Ci

m, f ; m ∈ {x, y, z}), frame number ( f ), and individual trials
or samples (i).

T =


C1

x,1 C1
y,1 C1

z,1 ... C1
x,2 ... C1

m, f
C2

x,1 C2
y,1 C2

z,1 ... C2
x,2 ... C2

m, f
...

...
...

...
...

Ci
x,1 Ci

y,1 Ci
z,1 ... Ci

x,2 ... Ci
m, f

 (1)

Figure 2 illustrates the process of extracting Cartesian coordinates from raw marker
data and convert them into joint angles. This means that our system is capable accepting
different sources of motion capture, and the pre-processing pipeline from Algorithm 1, we
convert the data sets into a consistent parent–child joint angle relationship for all subjects.
To clean up the data set, we scripted Equation (2) to determine the joint angle representation
along the sagittal plane (Figure 3) for the lower extremity joints [13,14]. After the joint
angles were found for all participants, we verified the alignment for all calculated joint
angles to ensure they are in the same range of motion.

θ2D =
180
π

cos−1(
(Cx,1 · Cx,2) + (Cy,1 · Cy,2)√

(Cx,1)2 · (Cy,1)2 +
√
(Cx,2)2 · (Cy,2)2

) (2)

S =

g1 m1 h1 a1

...
...

...
...

gi mi hi ai

 and L =
[
P S θ2D

]
(3)

Eqn. 2 on 
Left Knee

Cx,y,z
θ2D

(a)

Inverse 
Kinematics

(b) (c)

Figure 2. Each data set included unique configurations of markersets (T) to record the kinematics of
each subject. (a) The location of the optical motion capture markers used by the Moissenet (red) and
Horst (blue) databases, as well as the placement of our IMUs (green). (b) The trajectory of the 3 optical
motion capture markers (shown by the red, green, and magenta arrows) during the experiment of
5 random subjects. (c) The left knee angles throughout an experiment for 5 random subjects.
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Figure 3. Joint angles are calculated using Equation (2) using biomechZoo and OpenSim’s marker
set for five participants. The dashed lines represent the averaged joint angles for Subject One, and
the dotted lines show the averaged joint angles for Subject Two. It is clear from this figure that both
subjects have different ranges of motion during gait cycles (i.e., Subject Two has more ankle flexibility
than Subject One), but still show a general pattern of gait. It is worth noting that the color scheme
remains consistent throughout all other figures for each joint (e.g., right hip: red, left hip: orange,
right knee: green, left knee: teal, right ankle: purple, left ankle: pink).

In some cases there exists multiple trials of the same subject, but in the event the
participant changed, all of the subjects attributes (S): gender (g), mass (m), height (h), and
age (a) were assigned as a new person. After the data sets have been labeled for phase of
gait (P), subject attributes (S), and joint angle kinematics (θ2D), we transitioned into the
process for training both the Gait Prediction and Moment Transition Predictions (Figure 4).

Data Labeling

Public 
Databases Our Data

Features
(Joint Angles)

Features
(Participant Info)

Training Set for 
Gait Recognition 

Target
(Phase of Gait)

Age Mass Height Sex

Participant 
Information

Labeled 
Datasets

Features
(Joint Angles)

Features
(Participant Info)

Training Set for 
Moment Analysis

Target
(Joint Moments)

Machine Learning Algorithms, 
Gridsearch, & Cross Validation

Gait Prediction 
Model

Moment 
Transition 
Predictions

Figure 4. System overview illustrating the process from acquiring the data to exporting a model for
gait recognition. The process begins by importing the data from either public databases [13,14] or
our own OpenSim simulated data. The features, or joint angles, are extracted into a labeled data
set that simultaneously analyzes the moments for each phase of gait, and cross-validation to create
a test-split for the Gait Classification Model. After the Gait Classification Model has been loaded,
different feature combinations are tested to yield the optimal feature combination (minimum joint
angles) along with Grid Search to find the optimal parameters for an Evaluated Model to best predict
phases of gait.
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2.2. Classification Techniques and Algorithms

Machine learning automates the process of interpreting large sets of data to learn and
make estimations [24] as well as construct a model to perform data-driven classifications.
One of the primary goals of this work was to create a model that can accurately predict the
phase of gait using joint angles. The model is trained to find a correlation between the input
features (i.e., the observed and recorded input data) and the output targets (i.e., different
phases of gait). This correlation is used to calculate targets for stand-alone or unlabeled
features. The accuracy of each model is evaluated by interpreting how well the correlation
can be found by the algorithm to predict the target using the features with cross validation.

In this work we used cross-validation to quantify the performance of each model. We
split a certain percentage of the labeled data to use as test data, while the remaining data
was used to train a model [25]. The training data is used as an input into the model, and
the output was compared to its observed target to evaluate the accuracy against the other
portion of the data set. Cross-validation iterates through the set of data multiple times,
where each interval selects a different set of data samples to test, providing a more consistent
performance metric of the entire model [25]. The calculations from cross validation were
used as a metric for accuracy to compare with the outputs of each model we train.

We used the k-Nearest Neighbors (KNN) algorithm to classify the test features based on
the most frequent phase of gait of their k surrounding neighbors, or closest data samples [26].
The parameter, k, defines how many neighbors were used in each classification. A relatively
larger k results in a more accurate classification due to a larger scope of data. This reduces
the effect of outliers and erroneous data for each prediction. The KNN algorithm has
been used in other instances of training models for gait recognition based on different
bio-mechanic features, including accelerometer data [27], ground reaction forces [28], and
human gait shape analysis [29].

To find the nearest neighbors of each test sample, we calculated the Euclidean distance,
D, between the feature sets of the test and already classified samples [30]. Each feature can
be represented as:

f = ( f1, f2, ... fn)

with n representing the number of features in each sample, and every fn representing one
feature. A feature vector for one sample combines all relevant features for training:

fv = [P, f1, f2, ..., fn]

fs =


Pi θi

1 Si
1

P1 θ1
1 S1

1
P2 θ2

2 S2
2

...
...

...
Pn θn

1 Sn
1


The distance D between the test feature set x and the already classified feature set y

can be represented with the following formula:

D(x, y) =

√
n

∑
i=1

(xi − yi)2 (4)

where the iterator, i, increments for every feature used to train the model [30]. Equation (4)
was evaluated for all training data samples, y. The number of samples (k) used in the
training data set with the smallest distance (D) was selected as the test sample’s k nearest
neighbors. The mode target value, or most frequent phase of gait within the selected
neighbors, was used as the classification of the test sample x (Figure 5) [26]. This process
was repeated to predict a phase of gait for each test feature set. Cross-validation repeats
until all 10 folds and splits are iterated and completed. Generally, as k increases, the accuracy
of the prediction increases as more data points are considered for the final classification.
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Decreasing k heightens the effect of inaccurate data on classifications; the balance for an
ideal value of k is described using GridSearch. GridSearch finds specified parameter values
through an exhaustive search process [31]. It sorts through all possible combinations of
each parameter and finds the optimal values (Table A1). Both GridSearch and feature
extraction optimize the parameters of our model and the features considered to heighten
the efficiency of our model for training.
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Figure 5. Machine learning pipeline for the labeling, splitting, and classification of data to optimize
the accuracy of the gait recognition model. The process begins with the preparation of data, where
the target, or phase of gait, is tagged onto a feature set of joint angles. Before classification, the labeled
data set is split between training and testing to reduce variance and support a more generalized
performance metric of each algorithm. To optimize each algorithm, a feature split and parameter
tuning is iterated through. Each feature and parameter combination is then run through the preferred
machine learning algorithms.

We used GridSearch to programmatically iterate through different combinations of
parameter values (Table A1) to find the ideal values to run the model with [32]. When
applied to the KNN algorithm, it varies the number of neighbors in each classification, k, to
find a balance between the model over-fitting and under-fitting our data. If the number of
neighbors was small, the effect of noise on the classification become larger since the model
only learned from a small subset of neighbor samples. When outliers heavily influence
the model, we notice a bias towards the minor details of the data (over-fitting) rather than
finding a general trend [33]. However if k is large, we notice the opposite since every test
sample will be classified to the target (under-fitting). This happens to be more frequent
than a smaller k in the overall training set, ignoring underlying trends in the data [33].
Finding a balance of the value of k is crucial to achieve an accurate and precise model.

We used the Classification And Regression Trees (CART) algorithm to focus on creating
a decision tree that classifies the test samples [34]. Decision trees are commonly used in
many situations where supervised learning is practical: forming gait pattern models
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using other features such as inhibitory factors of an injury [35], contact forces and angular
velocity [36], as well as step length, walking speed, and stride time [37].

Each tree consists of nodes, branches, and leaves. Nodes are known as a “decision”, or
a comparison or split made on a specific feature in the data set. Branches are the outcome
of the decision made by the node. A leaf is a node at the end of the tree that does not have
branches extending from it. It is important to note that leaf nodes do not make decisions.
Each leaf represents a target or a specific phase of gait. When making a classification,
the data presented in our test feature set compares each node by traversing along the
corresponding branches until it reaches a leaf node [34].

When training quantitative data, each node splits at a specific feature value. In our
case, a node concerning right hip angles could split at θ = 20. This creates the left branch at
θ < 20 for the right hip node, and θ > 20 for the right branch. The ideal split yields both
branches as a completely homogeneous pool of data points with the same target. Each
branch splits into more nodes until every leaf node is either a product of a perfect split or
until the tree reaches the maximum depth or width as specified by the parameters. The
Gini impurity (I) is a quantitative measure of how accurate a split is. Ideal splits have a
Gini impurity value of 0 [38], and is calculated as follows:

I = 1−
t

∑
i=1

(pi)
2 (5)

where t = 7 is the number of targets, and pi is the probability of selecting a data point with
target i within the entire data set.

The feature with the smallest Gini impurity is chosen as the root of the tree. In other
words, if we randomly classified according to the target distribution of the data set, the
feature with the smallest possibility of incorrect classification is the root (see Figure 5) [39].
Once we select a feature as the root node and splits according to the smallest Gini impurity
value, choosing the next node and split is repeated with the data subset of each branch
until a complete tree has formed. As seen in Figure 5, our classification in a decision tree
followed the splits made by the nodes for a test feature set until a leaf node, or target,
is reached.

The parameters of maximum depth and width of a decision tree prevent the common
problem of overfitting in decision trees [34]. Suppose we let the tree grow until every
split reaches an impurity of 0. In that case, every feature set likely traces a unique path
to an individual leaf node due to noise in the data, making the classification overfitted
and heavily affected by every outlier. To prevent this, we restrict the number of splits
and nodes through a tree’s maximum depth and width. GridSearch iterates through
different threshold values, so the parameter values shown in Table A1 avoid underfitting
and overfitting.

The random forest (RNDM) algorithm uses many different decision trees, as con-
structed in the CART algorithm, to create a forest [40]. The most frequent classification
made among all the decision trees in the forest is the classification of test data points [40].
The logic behind using a forest of trees formed by randomly selected data samples and
features is that the entire forest will have a low correlation between each tree. The product
of uncorrelated models is far more accurate than any individual prediction. Similar to the
wisdom of crowds, trees with erroneous data are protected by a more significant amount of
trees with more accurate models.

We began the random forest algorithm developing each decision tree by creating a
bootstrapped data set as portrayed in Figure 5 [40]. With repetition, a set of data samples
randomly selected from the entire data set is the bootstrapped data set that will form our
tree. Every bootstrapped data set has the same number of samples as the entire data set, so
that most bootstrapped sets include the repetition of random samples.

For each bootstrapped data set, decision trees were formed with a random selection
of m features. Typically m =

√
n, with n being the total number of features in the data

set (Figure 4). The process of creating a decision tree (Algorithm 2) uses each tree formed
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from calculating Gini impurity to determine the order of features as nodes and the optimal
split per node. The process of building different bootstrapped data sets and creating
decision trees with random subsets of features for each bootstrapped group repeats until
the maximum number of trees t is reached. When classifying a test sample with the random
forest algorithm, a test feature set serves an an input into all the decision trees in the forest.
The most frequent target output of the trees is the classification derived from the test data.

The random forest algorithm is optimized using the parameters m, the number of
features used in each tree, and t, the number of trees in a forest (Table A1). A GridSearch
through both these parameters usually reveals an increase in accuracy with the typically
selected value of m =

√
n, and a larger t to account for more significant variation in datasets.

GridSearch is essential to prevent underfitting and overfitting in the RNDM algorithm due
to the randomness of sample and feature selection.

Algorithm 2: Classification of phase of gait in relation to joint angles using
Random Forest.

for Number of trees, t do
Create a random set of samples, R
Select a subset of N features, or joint angles (θ2D), from R
Calculate Gini impurity, I, for N using Equation (5)
Form decision tree starting with nodes of lowest I

while Tree height != Max height or Tree width != Max width do
Calculate I for remaining features, or θ2D
Select feature with lowest I as next node
Branch node with lowest weighted I

Use most frequent output of the t trees as test data classification
Output: Random Forest Classification Model

2.3. Extra Trees Regressors

Regression is another approach of supervised machine learning that outputs numerical
values as a target, rather than as a category [41]. The previous KNN and decision tree
algorithms are applied as regression techniques by changing the target from categories
into continuous values. For example, a KNN classification can be turned into regression
by averaging the numerical targets of the k nearest neighbors rather than taking the most
categorical frequent target. Similarly, the leaves become prediction values rather than
categories in a regression algorithm in algorithms with decision trees.

The extra trees algorithm is very similar to the random forest algorithm, creating many
decision trees to form a forest. However, there are two critical differences between random
forest and extra trees. Extra trees do not use a bootstrapped dataset like random forest.
Each decision tree was formed by every sample in the entire training set [42]. Additionally,
the extra trees algorithm uses a random split while creating decision trees, rather than
calculating the optimal split with weighted Gini impurities like a typical decision tree [42].
Although, it is essential to note that extra trees still use Gini to calculate feature importance.
Predictions in extra trees are made by averaging the output of all the trees in the forest for
every test sample set [42]. When employing GridSearch in extra trees regression, the same
parameters iterated through during the random forest algorithm are optimized (Table A1)
so that the decision trees that make up the forest do not underfit or overfit the dataset.

2.4. Algorithm Applications

The classification algorithms (KNN, CART, Random forest) use the feature set that
included joint angles (right and left hip, knee, and ankle) and participant information
(e.g., height, mass, gender, age). Our feature set comprises 10 individual features, 6 joint
angles, and 4 participant attributes. The target is the individual phase of gait for each data
sample. We employ a 10-fold cross-validation and a 20/80 train–test split across all models
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when evaluating accuracy. The data is iterated 10 separate times during cross-validation to
evaluate the accuracy. Each iteration selects a different 20% portion of the data set to reserve
as sample test data points while the other 80% is selected as training data for the model.

Before selecting specific algorithms to use, we bench-marked the mean accuracy (with
the standard deviation) in Table A5 using cross-validation on 10-fold experiments for a
sample set employing all available features to help us narrow our chosen algorithms to
KNN, CART, and RNDM. It is important to note that the parameters found from cross-
validation and GridSearch mentioned in the previous sections were consistent for all
feature combinations. The Naive Bayes (NB) and Support Vector Machine (SVM) algorithm
produced models with relatively low accuracy compared to the other algorithms. As a
linear classifier, the NB algorithm was unfit for our human gait classification with natural
variances. The inefficiency of the SVM classifier with the Radial Basis Function (RBF) kernel
and its proneness to over-fitting given larger data sets makes it unsuitable for training our
model, and its shortcomings are prevalent in a 22% average decrease in accuracy compared
to the algorithms we employed (Table A5). In addition, this SVM algorithm is particularly
sensitive to noise, which makes it unsuitable for classifying our data with human variation.
Therefore, we chose a final selection of the KNN, CART, and Random forest algorithms for
our phase of gait prediction.

Since joint moments are only calculated for the subset of .mot data processed through
OpenSim, we use regression techniques to roughly predict the moments corresponding
to the joint angles from the .c3d files. In this scenario, the joint angles and participant
information are the features, while we have a multi-class target: the moments for each of
the six joints. By calculating moments for every test sample, we observed the trends of joint
moments over each phase to approximate the maximum moment needed to move from
one phase to the next, an addition to our overall gait pattern model.

To predict joint moments from the joint angles extracted from .c3d files, we created
a model with the extra trees regressor using joint angles and moments from OpenSim.
Our features were joint angles and participant information, and our targets were joint
moments. A separate model was created for each phase, as seen in Figure 6. The regression
accuracy calculated by cross-validation for each model is recorded in Table A7, where
each model’s coefficient of determination exceeds 0.5, meaning each model accounts for a
majority of the variance of the outputted moments. For this application, where joint angle
trends varied greatly with each participant and even between each gait cycle, the extra trees
outperformed all other regression algorithms due to the randomness in splitting nodes to
smooth noise in the data set. It is important to note that due to the variance of subjects’
physical characteristics (i.e., subjects can be very small to large), the regression accuracy
per phase may seem lower than normal. This does not affect the system’s ability to take
physical characteristics and derive a estimation on required moments to transition between
phases of gait.
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Figure 6. Pipeline for creating a moment prediction model that categorizes phases of gait and
participant information to yield the max, mean, and standard deviation for moments (Nm/kg). The
data preparation process groups all of the joint moments, angles, and participant information by
phase of gait. This feature set is then split randomly to ensure that the model does not rely heavily on
any individual feature, and repeated 7 times for each phase of gait.

3. Results and Discussion

The typical application for monitoring human gait focuses on the stance–swing transi-
tions for cycle tracking (95% accuracy) [43], or rely heavily on the measurements on the foot
(98% accuracy) [44]. This work aims to be less biased and dependent on a specific body part
(in the event there is limb loss), and instead demonstrates the numerical trade-offs between
tracking different joints on the human body. To increase the efficiency of our model, we
reduced the number of features used while training to reduce the training run-time and
ease the process of data collection [19]. Our models used a maximum of n = 10 features
to train: joint angles (θ2D = 6), and four participant attributes. Each test included the four
participant attributes while training a model,

θ2D

∑
i=1

(
6
i

)
=

6

∑
i=1

6!
(6− i)! · i! = 63

where the joint angle feature combinations are iterated through to find the ideal combination
of the least number of features n and highest accuracy. This method trained the models
ranging from just one joint angle, or all six, meaning the model trains on a minimum of
five features and a maximum of ten. Some joints reveal themselves to affect the correlation
between features and target more than others after analyzing the accuracy of the model of
each joint combination.
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As previously mentioned, the feature set, or input into the model, compromises of
six joint angles and four participant attributes. The target, and eventual output of the
models, is the individual phase of gait for each data sample. We used a 10-fold cross-
validation and a 20/80 train–test split across all models when evaluating accuracy in
recognizing the collection of joint angles. The data is iterated during cross-validation to
evaluate the accuracy between the labelled data set as well as for parametric configurations.
To find the performance of our models against the labeled data versus predicted data, we
used confusion matrices to find mean accuracy (Tables A2–A4). If the model yields the
correct phase of gait given the joint angle(s) compared with the labeled data set, that is
considered a successful prediction. Hip joint angles are particularly effective in training
the model (Figure 7), and models training with KNN using feature combinations with
just three joint angles can reach over 85% accuracy with one or both hip joint features.
The CART algorithm also undergoes the same feature selection process among 63 feature
combinations and achieves over 84% accuracy with just three joint angle features, slightly
underperforming the KNN algorithm. The RNDM algorithm involved the same overall
feature selection in the data set as other algorithms with 63 feature combinations. Random
forest outperforms both KNN and CART (Figure 7) and was able to reach over 87% accuracy
with just three features, revealing the importance of randomness when analyzing human
data. Refer to Figure 7, which shows a significant association between both the hip joint
angles and higher accuracy for all algorithms and combinations of joint angles.

Due to the nature of unique gait motions across individuals, we focused on the strong
connection between phase of gait, joint angles, and joints’ moments. Focusing on the
lower extremity joint angles for human gait is informative enough for phase classification.
This approach can bridge this form of kinematic analysis toward joint dynamics. It is a
well-known challenge to generalize the required moments from phase to phase for all
subjects, but by taking advantage of OpenSim’s inverse dynamics solver (ID):

τ = M(q)q̈ + C(q, q̇) + G(q)

We purposed our joint angles for generalizing moments:

τ = 2mω× α + mω× (ω× θ2D) + G× θ2D (6)

where τ represented the generalized forces, m is the mass, ω is angular velocity, α is angular
acceleration, G is gravitational forces, and θ2D is the joint angles from Equation (2). Our
Moment Prediction Model (Figure 6) interpreted those joint angles (θ2D) and predicted the
maximum moments (Nm/kg) to transition between phases of gait. This correlation between
joint angles, moments, and phase of gait aim to deliver an extremely adaptable model. The
output (Figure 8) has the potential to be applied as a bookmark or characterization for
assistive technologies to replicate given the physical characteristics of their users.
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Figure 7. Relationship between accuracy yielded from predicting phase of gait from joint angles and
the combination of used features: right hip (red), knee (green), ankle (purple), left hip (yellow), knee
(teal), and ankle (pink). It is important to note that if there is only 1 feature there is no way a tree can
be formed, so there are no decision tree outputs for those feature combinations. This method to find
the optimal feature combination, or feature reduction, demonstrates there is no need to monitor all
6 joints to result in a high phase of gait predictive model. See Table A6 for a numeric representation.

Typically healthy humans follow a very similar gait pattern. However, it is important
to note that there are still noticeable differences between Subject One’s and Subject Two’s
phase of gait and joint moment relationship (e.g., Phase 6 in Figure 8c). The results
demonstrate that each person’s gait is unique in relying on different joints to move. Subject
One is a 28-year-old female that is 1.56 m in height, and weighs 50 kg. Subject Two, a 23-year-
old male that is 1.76 m tall and weighs 73 kg, shows more of a minor moment requirement
to transition between phases of gait than Subject One. It is essential to recognize that both
subjects were chosen from different databases, yet they yielded similar trends. For example,
monitoring the left knee in Figure 8d indicated that Subject Two had a larger moment to
transition from Phase 3 to 4 with a 31% difference compared to Subject One (Table A8). Yet,
they followed similar moment requirements in a scaled proportion.
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Figure 8. The values as predicted by the Extra Trees Regressor (Figure 6) form predicted maximum
moments (Nm/kg) for each joint. The average maximum moment required for the transition between
each phase is plotted as a continuous line with the maximum for each phase based off of our subject
pool. It is important to realize that every participant has a unique gait pattern, but the regressand, or
outcome, yields a general approximation or trend for each phase. For numeric representations see
Table A8. (a) Right hip. (b) Left hip. (c) Right knee. (d) Left knee. (e) Right ankle. (f) Left ankle.

The observation in Figure 8 showed that Subject One had a stronger dependency on
the left side of the body, and Subject Two was more evenly distributed with a slight bias to
the right side of the body. The assessment from both the gait classification and moment
prediction models demonstrated a fundamental breakdown in the analysis of walking
movement and can be further implemented as a valuable tool for biometric technologies.

4. Conclusions

This paper proposes a machine learning method to identify the phase of gait from joint
angle measurements and generalize a set of required joint moments between those phases
of gait along the sagittal plane. We used the algorithms KNN, CART, and RNDM to yield
an 82%, 87%, and 92% accuracy in gait phase classification with all available features or
lower extremity joints. Our understanding of how feature reduction affected the confidence
of our RNDM classification model (Table A6) indicated how reliable monitoring fewer
joint angles could be. Figure 7 proved this analysis by showing how the amount of joints
required for monitoring each subject affects the accuracy of gait phase prediction. It is
clear that the more sensors or features monitored, the higher the confidence; however,
the difference between tracking six joints to five joints (0.5%), or six joints to three joints
(4.04%) has a very minimal drop-off in accuracy. This finding indicates that reducing the
number of joints monitored for complex gait phase-reliant applications will yield promising
results. It is important to note that flexibility of joints is entirely individualized, where age
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or gender might demonstrate their own significant variance. For this work, we focused on
the relationship between the physical characteristics and angular displacement of joints
for human subjects. The authors believe future applications of this work could include:
biomechanic comparisons between age and gender [45], robotic assistive devices, and
motion not confined to the sagittal plane.

We correlated the exact joint angle measurements and phases of gait to yield each
subject’s moments. Figure 8 and Table A8 demonstrate how a smaller Subject One requires
smaller moments to transition between phases of gait than a physically larger Subject Two.
Generally, both subjects in Figure 8 follow similar trends, but differences like Phase 6 for
the Right knee show a considerable uniqueness between persons. The difference between
results demonstrated how body size affected the required maximum moments proportion-
ally. Correlating the joint angle relationships between the two modes for gait prediction
and moment transitions (Figure 4) can be used as a powerful tool for biometric applications.
Using the same database for two different applications bridges the IK and ID area of biome-
chanic analysis proving the impact of joint angle measurement techniques. Implementing
IMU sensors for biometric analysis reduces the cost, room-bounded configurations, and
overall complexity of optical motion capture systems.
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[M(q)] inverse of the mass matrix
α angular acceleration
q̈ vector for accelerations
q̇ vector for velocities
ω angular velocity
τ vector of generalized forces
θ2D joint angles along sagittal plane
i individual trials or samples

f frame number

m marker number
C(q, q̇) vector of Coriolis and centrifugal forces
Cx,y,z Cartesian markers
fs feature set
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fv feature vector
q vector of generalized positions
R random set of samples
tau generalized forces
a age
CART Classification And Regression Trees algorithm
D distance between feature sets
F forces
G gravitational forces
g gender
h height
I Gini impurity
KNN K-Nearest Neighbors algorithm
L labeled data set
M moments
m mass
N number of features when branching
n total number of features
P phase of gait
r force plate responses
RNDM Random forest algorithm
S subject data
T motion captured database
t number of trees

Appendix A

Table A1. Using GridSearchCV with the scikit learn tools, the best parameters were found for KNN,
CART, and RNDM, where each algorithm went through a 10 fold and split using cross-validation.

KNN CART RNDM
algorithm auto ccp alpha 0.0 bootstrap True
leaf size 30 class weight None ccp alpha 0.0
metric minkowski criterion gini class weight None

metric params None max depth None criterion gini
n jobs None max features None max depth None

n neighbors 10 max leaf nodes None max features sqrt
p 2 min impurity decrease 0.0 max leaf nodes None

weights distance min impurity split 1 max samples None
min samples split 5 min impurity decrease 0.0

min weight fraction leaf 0.0 min impurity split None
presort deprecated min samples leaf 1

random state None min samples split 5
splitter best min weight fraction leaf 0.0

n estimators 250
n jobs None

oob score False
random state None

verbose 0
warm start False
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Table A2. K-Nearest Neighbors Classification report with a confusion matrix for all the phases of gait
(left) and scores (right).

1 2 3 4 5 6 7 Precision Recall F1-Score Support
1 18,885 1140 19 7 54 18 1149 7 0.89 0.89 0.89 21,272
2 1145 17,179 864 10 33 47 8 6 0.89 0.89 0.89 19,286
3 25 928 14,827 807 28 100 37 5 0.89 0.89 0.89 16,746
4 13 7 814 10,169 778 37 51 4 0.86 0.86 0.86 11,869
5 29 28 20 765 22,132 824 32 3 0.92 0.93 0.93 23,830
6 9 27 55 18 889 28,913 1183 2 0.93 0.93 0.93 31,094
7 1194 5 20 28 26 1200 14,700 1 0.86 0.86 0.86 17,173

accuracy 0.90 141,270
macro avg 0.89 0.89 0.89 141,270

weighted avg 0.90 0.90 0.90 141,270

Table A3. Classification and Regression Trees Classification report with a confusion matrix for all the
phases of gait (left) and scores (right).

1 2 3 4 5 6 7 Precision Recall F1-Score Support
1 17,894 1404 51 22 67 27 1807 7 0.84 0.84 0.84 21,272
2 1321 16,452 1366 25 49 55 18 6 0.85 0.85 0.85 19286
3 38 1411 14,037 1041 57 118 44 5 0.84 0.84 0.84 16,746
4 26 23 1099 9334 1264 61 62 4 0.79 0.79 0.79 11,869
5 50 35 72 1229 21,234 1171 39 3 0.89 0.89 0.89 23,830
6 32 64 94 64 1267 27,874 1699 2 0.90 0.90 0.90 31,094
7 1847 13 54 70 43 1735 13,411 1 0.79 0.78 0.78 17,173

accuracy 0.85 141,270
macro avg 0.84 0.84 0.84 141,270

weighted avg 0.85 0.85 0.85 141,270

Table A4. Random Forest Classification report with a confusion matrix for all the phases of gait (left)
and scores (right).

1 2 3 4 5 6 7 Precision Recall F1-Score Support
1 19,106 855 18 8 46 10 1229 7 0.89 0.90 0.90 21,272
2 974 17,381 850 4 31 40 6 6 0.90 0.90 0.90 19,286
3 33 990 14,833 737 24 98 31 5 0.89 0.89 0.89 16,746
4 13 9 823 10,118 839 31 36 4 0.87 0.85 0.86 11,869
5 32 22 22 785 22,207 741 21 3 0.92 0.93 0.93 23,830
6 15 28 39 16 881 29,053 1062 2 0.93 0.93 0.93 31,094
7 1228 5 19 26 22 1304 14,569 1 0.86 0.85 0.85 17,173

accuracy 0.90 141,270
macro avg 0.89 0.89 0.89 141,270

weighted avg 0.90 0.90 0.90 141,270

Table A5. Accuracy of prediction (%) of Cross-Validation (CV) on 10-fold experiments using Linear,
CART, KNN, and RNDM using all available features.

Classifier KNN CART NB SVM RNDM

Mean (± SD) 0.902 (± 0.012) 0.857 (± 0.018) 0.796 (± 0.017) 0.665 (± 0.023) 0.905 (± 0.011)
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Table A6. Using feature reduction, we can demonstrate the correlation between number of joints
(features) and mean accuracy (%) using Random Forest classifier. It is worth noting that 6 has only
1 combination of features, but the rest follow the format: max accuracy % (mean %).

Number of Features 6 5 4 3 2 1

KNN 90.8 90.6 (90.1) 89.3 (88.7) 86.7 (85.4) 79.7 (75.0) 49.6 (47.3)
CART 87.9 87.1 (87.0) 86.2 (85.6) 84.1 (82.4) 76.4 (71.0) 45.8 (43.1)
RNDM 91.7 91.2 (91.1) 90.0 (89.8) 87.6 (86.6) 79.8 (75.3) 45.8 (43.2)

Table A7. A table of the regression accuracy per phase when generating the Extra Trees model to
predict joint moments from joint angles. The accuracy is the coefficient of determination, R2, of the
prediction. The best possible score is 1.0.

Phase of Gait Regression Accuracy (R2 Error)

1 0.567
2 0.592
3 0.713
4 0.840
5 0.568
6 0.727
7 0.505

Table A8. Required moment transitions between gait cycles as predicted by Random Forest regression
for Subject One, Subject Two, and All Partipicants. See Figure 1 for physical characteristics (e.g., mass,
height, weight).

Subject One Moment (Nm/kg)

Gait Transition Right Hip Left Hip Right Knee Left Knee Right Ankle Left Ankle
1 −→ 2 0.080 (± 0.014) 0.040 (± 0.011) 0.110 (± 0.013) 0.048 (± 0.015) 0.777 (± 0.013) 0.244 (± 0.021)
2 −→ 3 0.072 (± 0.018) 0.245 (± 0.025) 0.112 (± 0.020) 0.090 (± 0.018) 0.075 (± 0.013) 0.391 (± 0.021)
3 −→ 4 0.167 (± 0.036) 0.333 (± 0.033) 0.180 (± 0.029) 0.285 (± 0.030) 0.297 (± 0.017) 0.427 (± 0.029)
4 −→ 5 0.065 (± 0.010) 0.078 (± 0.015) 0.134 (± 0.024) 0.042 (± 0.006) 0.299 (± 0.011) 0.022 (± 0.005)
5 −→ 6 0.263 (± 0.032) 0.109 (± 0.021) 0.216 (± 0.054) 0.030 (± 0.004) 0.341 (± 0.016) 0.049 (± 0.015)
6 −→ 7 0.506 (± 0.002) 0.105 (± 0.004) 0.089 (± 0.006) 0.030 (± 0.006) 0.313 (± 0.008) 0.100 (± 0.004)
7 −→ 1 0.424 (± 0.086) 0.294 (± 0.074) 0.236 (± 0.060) 0.478 (± 0.118) 0.261 (± 0.074) 0.307 (± 0.060)

Subject Two Moment (Nm/kg)

Gait Transition Right Hip Left Hip Right Knee Left Knee Right Ankle Left Ankle
1 −→ 2 0.157 (± 0.002) 0.047 (± 0.010) 0.121 (± 0.015) 0.054 (± 0.011) 0.132 (± 0.020) 0.247 (± 0.018)
2 −→ 3 0.088 (± 0.019) 0.388 (± 0.020) 0.122 (± 0.018) 0.116 (± 0.016) 0.088 (± 0.020) 0.410 (± 0.0160)
3 −→ 4 0.162 (± 0.022) 0.470 (± 0.033) 0.169 (± 0.020) 0.393 (± 0.013) 0.294 (± 0.009) 0.424 (± 0.010)
4 −→ 5 0.051 (± 0.008) 0.088 (± 0.010) 0.132 (± 0.020) 0.062 (± 0.004) 0.359 (± 0.015) 0.013 (± 0.0027)
5 −→ 6 0.159 (± 0.009) 0.075 (± 0.015) 0.123 (± 0.011) 0.045 (± 0.007) 0.387 (± 0.017) 0.048 (± 0.004)
6 −→ 7 0.512 (± 0.004) 0.122 (± 0.006) 0.260 (± 0.002) 0.104 (± 0.005) 0.485 (± 0.009) 0.107 (± 0.007)
7 −→ 1 0.605 (± 0.038) 0.135 (± 0.017) 0.384 (± 0.017) 0.341 (± 0.033) 0.340 (± 0.025) 0.251 (± 0.022)

All Participants Moment (Nm/kg)

Gait Transition Right Hip Left Hip Right Knee Left Knee Right Ankle Left Ankle
1 −→ 2 0.109 (± 0.062) 0.102 (± 0.072) 0.127 (± 0.039) 0.118 (± 0.080) 0.109 (± 0.062) 0.295 (± 0.097)
2 −→ 3 0.104 (± 0.065) 0.270 (± 0.117) 0.122 (± 0.063) 0.116 (± 0.050) 0.104 (± 0.064) 0.387 (± 0.052)
3 −→ 4 0.130 (± 0.030) 0.435 (± 0.239) 0.189 (± 0.056) 0.331 (± 0.130) 0.131 (± 0.031) 0.354 (± 0.152)
4 −→ 5 0.083 (± 0.028) 0.111 (± 0.063) 0.146 (± 0.021) 0.080 (± 0.036) 0.086 (± 0.041) 0.055 (± 0.039)
5 −→ 6 0.194 (± 0.104) 0.116 (± 0.096) 0.181 (± 0.057) 0.056 (± 0.042) 0.197 (± 0.107) 0.053 (± 0.025)
6 −→ 7 0.425 (± 0.232) 0.089 (± 0.035) 0.212 (± 0.124) 0.066 (± 0.045) 0.426 (± 0.231) 0.064 (± 0.035)
7 −→ 1 0.0.439 (± 0.207) 0.161 (± 0.128) 0.264 (± 0.099) 0.283 (± 0.177) 0.438 (± 0.206) 0.254 (± 0.138)
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Table A9. Participant Information used in Figure 1.

Height Age Weight

Male 1.66 31 67
Female 1.64 48 65.4
Female 1.56 28 50
Male 1.77 23 72.5
Male 1.83 25 73.5
Male 1.76 23 73

Female 1.69 44 65
Female 1.66 30 57.1
Male 1.88 57 86
Male 1.8 59 63.4

Female 1.7 26 61.3
Male 1.8 29 92

Female 1.58 22 67
Female 1.76 26 73.8
Female 1.71 48 59.8
Male 1.92 33 87.5

Female 1.66 31 80.5
Male 1.89 38 89.9

Female 1.7 62 60.7
Male 1.77 21 67.2

Female 1.6 24 63.5
Male 1.84 21 89.6

Female 1.55 19 56.5
Female 1.65 40 61.8
Female 1.64 40 61.5
Male 1.74 32 72.2

Female 1.64 28 61.9
Male 1.91 25 88
Male 1.82 25 79.5

Female 1.72 21 62.8
Male 1.74 39 74
Male 1.77 52 87.2

Female 1.7 35 62
Male 1.9 48 89.4

Female 1.66 63 60.2
Female 1.69 58 73
Female 1.73 50 68
Female 1.69 46 76
Female 1.67 41 60.5
Male 1.79 43 95

Female 1.69 30 58
Female 1.71 64 51.5
Male 1.72 51 65.5
Male 1.87 24 86
Male 1.72 26 50.8
Male 1.77 38 81.5
Male 1.76 42 66.1
Male 1.88 31 74.8
Male 1.83 67 98
Male 1.78 21 74
Male 1.75 29 68.9

Female 1.81 21 64.9
Male 1.84 21 80.8
Male 1.82 23 82.7
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Table A9. Cont.

Height Age Weight

Female 1.63 26 54.9
Male 1.79 21 77.3
Male 1.91 24 94.2
Male 1.88 23 69.5
Male 1.84 26 72

Female 1.58 20 52.3
Female 1.68 25 60.4
Female 1.64 23 55
Female 1.69 21 69.7
Female 1.69 26 59.3
Female 1.67 25 54.5
Female 1.75 23 57.4
Female 1.6 27 47.3
Female 1.62 22 61.4
Male 1.81 21 82.3

Female 1.69 19 65.6
Female 1.55 22 56.7
Female 1.61 26 56
Male 1.82 21 69.1

Female 1.62 22 62.1
Male 1.74 30 80.7
Male 1.99 21 91.2
Male 1.78 21 69.5
Male 1.83 24 67.5

Female 1.81 22 62.1
Male 1.81 28 81.35

Female 1.65 21 58.1
Male 1.78 23 80.9

Female 1.68 27 67.6
Male 1.78 23 82

Female 1.67 21 58.8
Female 1.69 24 59
Female 1.72 23 56.1
Female 1.61 23 52.1
Male 1.79 30 71

Female 1.58 21 53.15
Female 1.75 21 65.15
Male 1.83 25 79.95

Female 1.64 23 54.8
Male 1.82 21 76.5
Male 1.82 22 74.6

Female 1.65 20 56.45
Male 1.88 22 78.3
Male 1.92 22 90.8
Male 1.86 24 72.2
Male 1.87 22 81.8

Female 1.67 21 61.8
Female 1.61 30 55.75
Male 1.71 20 69.75

Female 1.7 22 66.15
Male 1.86 23 73.35
Male 1.79 22 71.75
Male 1.85 19 77.75
Male 1.778 24 69.85
Male 1.83 21 68.04
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