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Abstract: Background: Artificial turf (AT) has been related to increased injury rates when compared
to natural grass (NG). One potential reason for the differences in injury rates is the difference in
mechanical characteristics of the surfaces. Over the course of a season on artificial turf, due to
heavy use and environmental factors, properties of the surface (such as compliance) may be altered.
The purpose was to compare the effects of newly installed versus aged AT on injury risks at the
metatarsophalangeal, ankle, and knee joint during soccer-specific movements. Methods: Eleven male
soccer players performed three movements on newly installed and ‘aged’ AT. Kinematics and kinetics
were collected for the different surfaces. Results: Knee adduction moments were increased during the
v-cut (119 Nm vs. 164 Nm, p = 0.02), and knee external rotation joint moments were increased during
the circle run (23 Nm vs. 28 Nm, p = 0.04) with the aged surface. No surface effects were seen during
the jog-sprint transition. Conclusions: For movements associated with a high risk for non-contact
injuries, the age of the AT resulted in greater risk factors for injury potential at the knee joint. Further
research comparing injury rates associated with AT should consider mechanical features, specifically
surface compliance.
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1. Introduction

The first generation of artificial turf from the 1960s, characterized by high surface
stiffness and friction properties, has been associated with increased non-contact injury rates
when compared to natural grass [1,2]. The decreased surface compliance (how much a
surface deforms under a given force) may have caused increased levels of impact leading
to increased injury rates [3–6], altered joint movement patterns [7–9], and increased shoe-
surface traction [6,10]. Advancements in artificial turf technologies brought about new
generations of artificial turf, which were developed to mimic the features of natural grass
more closely in terms of compliance and traction.

The third generation artificial turf introduced an underlying shock absorption pad,
rubber/sand infill, and longer pile length to reduce traction and increase compliance of
the turf surface to represent natural grass more closely. Recent studies comparing injury
rates on third-generation artificial turf and natural grass have been inconclusive, finding
either no change, an increase, or a decrease in injuries [11–19]. One potential reason for
the differences in injury rates between these studies was the difference in mechanical
characteristics of the turf surfaces observed. It has been shown that the wear of artificial
surfaces can alter the mechanical properties of the surfaces [20]. Specifically, over the
course of a season on artificial turf, due to heavy use and environmental factors, certain
features such as the rubber/sand infill may become reduced and/or compressed, altering
the traction and compliance features of this turf system [21].

It is known that by altering the traction characteristics, both performance and injury
rates can be affected. While increasing footwear traction has been shown to improve
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performance up to a critical threshold [21–24], it has also been shown to lead to an increased
risk of injury [18,19,25–27]. Similarly, altering the compliance of the surface has been shown
to affect performance [23,28–30]; however, it is unclear how altering the surface compliance
of the turf can influence injury rates.

It is commonly believed that joint loading increases can lead to joint injury [31–34].
During biomechanics research, joint loading may be estimated by calculating resultant
joint moments, which are representative of the net torque or twisting load on the joint, and
joint angular impulse, which is representative of the cumulative loading experienced by
the joint during the stance phase (calculated as the integral of the resultant moment vs.
time curve). While joint moments and angular impulse calculated from inverse dynamics
cannot determine the exact loading on the actual joint structures, they have been used as
valid predictors of the total load across a joint [35,36]. By measuring the resultant joint
moments of athletes performing on a compliant and non-compliant (compacted) artificial
turf surface in a controlled laboratory setting, the influence of compliance on joint loading
can be determined and insight into how compliance may influence joint injury risk can
be attained.

Dixon, Collop, & Batt [8] evaluated extreme effects of surface compliance by exam-
ining differences on asphalt and rubber infill surfaces. This study found no difference in
ground reaction force impact peaks from one surface to the other but rather that the athlete
adjusted their movement pattern to accommodate the differing compliances. A study by
Wannop et al. [30] evaluated how surfaces of different stiffness altered athletic performance
and movements patterns. They found increased running and jumping performance on
soft surfaces, as well as changes in ankle and knee joint angles. These studies suggest that
changes in surface compliance may cause athletes to adjust their movement patterns to
prevent increases in force impact peaks or to achieve increased performance. While both
studies did find differences in joint kinematics, effects on internal joint moments were not
examined preventing further evaluation of injury risk on compliant and non-compliant
surfaces. Also, these studies examined athletes performing on completely different surfaces
of altered stiffness, it is unknown how smaller changes, such as those seen on the same
surface over the course of a season (aged artificial turf versus new artificial turf), can affect
these variables.

Therefore, the purpose of this study was to compare the effects of newly installed
(compliant) versus aged (non-compliant) artificial turf on the resultant metatarsophalangeal
(MTP), ankle, and knee joint moments during soccer-specific movements. It was hypothe-
sized that as the compliance of the turf surface decreased, the resultant joint moments at all
joints would increase, providing support that this mechanical characteristic of artificial turf
may play a role in the increase of injury rates on less compliant turf surfaces such as earlier
generations of artificial turf [1,2].

2. Materials and Methods
2.1. Participants

Eleven male high-level recreational soccer athletes were recruited for this investigation
(mean ± SD: height, 1.77 ± 0.07 m; body mass, 72.3 ± 7.0 kg). The athletes were required to
properly fit and perform all movements in a US men’s size 9, 10, or 11 Adidas F50 Adizero
Artificial Ground SYN (Figure 1) soccer cleat (Adidas AG, Herzogenaurach, Germany). All
athletes were free from lower extremity injury or pain for the six months prior to testing and
provided informed written consent in accordance with the University’s Conjoint Health
Research Ethics Board.
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platform and cutting outwards to his right at a 45° angle (Figure 2, left). The athlete started 
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Figure 2. Diagram of the v-cut (left) and circle run (right) movements. 

To determine surface effects during linear accelerations, a jog to sprint transition 

movement was performed. The athlete started from rest and jogged approximately 7.5 m 

at a self-determined pace towards the force platform, upon reaching the force plate, the 

athlete transitioned to a maximal effort sprint, the first stride of which was his left foot on 

the force platform. To explain this to the athletes, the concept was that they were jogging 

during a game and suddenly had to sprint for a ball. The athlete was instructed to slow 

down two strides following contact with the force platform but no sooner. 

The order of the different movements was randomized with the athletes receiving 

adequate time to warm up prior to the test being initiated. During the movements, athletes 

were instructed to land with their left foot near the center of the force platform to ensure 

that the foot remained on the force platform for the entire duration of the movement. 

Through visual inspection, if the left foot was roughly centered on the force platform, the 

trial was discarded, and the athlete was required to repeat the movement. This resulted 

in the athletes performing 5–7 trials in each condition.  

2.3. Artificial Turf Installation 

Figure 1. Photograph of the shoe used in the experiment.

2.2. Movements

Each athlete performed three different soccer-specific movements during this inves-
tigation; a 90◦ v-cut, a circle run, and a jog to sprint transition. All movements were
performed five times at maximal effort with at least 30 s rest between trials and 2 min rest
between movement types.

The 90◦ v-cut movement consisted of the athlete approaching the force platform from
a 45◦ angle with the force plate on his left side, planting his left (outside) foot on the force
platform and cutting outwards to his right at a 45◦ angle (Figure 2, left). The athlete started
from rest at a distance such that his third footfall would place his left foot in the middle of
the force platform.
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2.3. Artificial Turf Installation 

Figure 2. Diagram of the v-cut (left) and circle run (right) movements.

The circle run consisted of the athlete running along a curve with a 2.3 m radius
and planting his left (inside) foot on the middle of the force platform (Figure 2, right).
Similar to the v-cut movement, the athlete started from rest at a distance such that his third
footfall would land on the force platform. After contact with the force platform, the athlete
continued running along the curved path until returning to the starting location.

To determine surface effects during linear accelerations, a jog to sprint transition
movement was performed. The athlete started from rest and jogged approximately 7.5 m
at a self-determined pace towards the force platform, upon reaching the force plate, the
athlete transitioned to a maximal effort sprint, the first stride of which was his left foot on
the force platform. To explain this to the athletes, the concept was that they were jogging
during a game and suddenly had to sprint for a ball. The athlete was instructed to slow
down two strides following contact with the force platform but no sooner.

The order of the different movements was randomized with the athletes receiving
adequate time to warm up prior to the test being initiated. During the movements, athletes
were instructed to land with their left foot near the center of the force platform to ensure
that the foot remained on the force platform for the entire duration of the movement.
Through visual inspection, if the left foot was roughly centered on the force platform, the
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trial was discarded, and the athlete was required to repeat the movement. This resulted in
the athletes performing 5–7 trials in each condition.

2.3. Artificial Turf Installation

FIFA 2 star graded artificial turf was installed into the biomechanics laboratory to allow
for the kinetic and kinematic data collection on the turf surface (Figure 3). The Ecofill Pro
Series 3NX FTS surface, a third-generation infilled surface from Mondo Worldwide was in-
stalled based on the manufacturers’ specifications. The turf consisted of long monofilament
fibers, each having a height of 45 mm and a semi-concave shape with sand/rubber infill.
Surface compliance was increased by incorporating a 23 mm shock pad of post-consumer
rubber granules under the turf surface.
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The dimensions of the turf installed in the laboratory were 21 m × 5 m, to ensure that
all athletes could perform the movements successfully without limitations due to space.
To ensure accurate kinetic data collection, a separate piece of shock pad and infilled turf
was isolated from the main section of turf via a separate 60 cm × 90 cm turf plot that was
rigidly bolted to the force plate. Following turf installation, mechanical properties of the
artificial turf were measured using a Clegg Impact Hammer to verify that the turf was
within the manufacturers’ specifications for a newly installed surface. Using the Clegg
Impact Hammer, a cylindrical mass of 2.25 kg with a diameter of 50 mm (ASTM F355,
missile D) was guided down a vertical ventilated tube from a height of 450 mm above the
turf surface to measure the magnitude of maximum deceleration [37]. Ten measurements
were taken throughout the turf surface and the mean value from the Clegg Impact Hammer
was 94 g’s.

2.4. Artificial Turf Simulated Wear

Following initial biomechanical testing for all athletes of the three soccer-specific
movements on the newly installed artificial turf, the same turf was artificially aged. In
this experiment aging of the turf was defined as compaction of the surface, resulting in a
decrease in surface compliance as measured by the Clegg Impact Hammer. In order to age
the turf, an industrial vibrating plate compactor (Wacker Neuson VP1135, Wacker Neuson,
Munich, Germany) was used by walking it back and forth over the surface. Although
simply applying compaction to the surface does not simulate all aspects of aging of the
surface in a weather-related environment, it allowed comparison in terms of compaction
and the primary variable of interest, a decrease in compliance of the surface, which generally
occurs through years of play.
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During compaction of the surface, numerous Clegg Impact Hammer measurements
were taken, with cessation occurring when these values were measured within the manu-
facturers’ specifications for defining turf that is aged, but still playable; values above 190 g’s
represent a surface requiring replacement. Compaction stopped and the athletes returned
for the second set of biomechanical tests when the measurements (n = 10) of the Clegg
Impact Hammer averaged 170 g’s (1.8 times greater than the newly installed surface). This
value falls within the range of values measured on five-year-old turf [38].

2.5. Biomechanical Data Collection

Eight high-speed cameras (Motion Analysis Corporation, Santa Rosa, CA, USA) oper-
ating at 240 Hz recorded kinematic data, while a Kistler force plate (Kistler AG, Winterthur,
Switzerland) operating at 2400 Hz simultaneously recorded kinetic data. Only kinetic and
kinematic data in which the participant contacted the middle of the force platform were
used for analysis. Nine retro-reflective markers were attached to the left lower leg, rearfoot,
and forefoot segments for three-dimensional kinematic data collection (three markers per
segment). A multi-segment foot model was used to evaluate the effects of the artificial
turf on the metatarsophalangeal (MTP) joint, specifically in the sagittal plane which has
previously been associated with turf-toe related injuries [2,38]. Double-sided tape was used
to attach the markers shoe and lower leg. For the lower leg, the markers were placed on
the tibia at the proximal end, on the tibia at the distal end, and mid-distance between these
markers on the lateral aspect of the shank. For the rearfoot, markers were placed on the
posterior proximal shoe heel, posterior distal shoe heel, and the lateral side of the shoe
below the lateral malleolus. For the forefoot, markers were placed slightly more distal than
the 1st and 5th metatarsal head as well as on the shoe, at the most distal aspect. Preceding
the dynamic trials, a standing static trial was recorded and used to determine knee, ankle,
and MTP joint centers. The knee joint center was defined as the midway point between
markers placed on the medial and lateral femoral epicondyles, the ankle joint center was
defined as the midway point between markers placed on the medial and lateral malleoli
and the MTP joint was defined as the midway point between markers placed on the 1st and
5th metatarsal heads. The standing static trials defined segment lengths and the location of
segment centers of mass, which were used for inverse dynamics calculations.

Processing and analysis of the kinematic and kinetic data were performed with KinTrak
7.0.25 (Human Performance Laboratory, University of Calgary, Calgary, AB, Canada).
A fourth-order low pass Butterworth filter with cut-off frequencies of 24 and 100 Hz for
kinematic and kinetic data respectively, smoothed the data.

For each trial, utilized translational and rotational outsole traction and internal re-
sultant joint moments at the MTP, ankle, and knee were quantified. Means of the peak
values were calculated from the accepted five trials per athlete then averaged across all
eleven athletes. The utilized translational outsole traction coefficient was quantified as the
peak value for the ratio between the vector sum of the shear force and the vertical force
during each trial. The rotational traction was calculated as the peak free moment about
the vertical ground reaction force. MTP, ankle, and knee internal resultant joint moments
(3-dimensional) were calculated using a standard inverse dynamics approach.

2.6. Statistics

For statistical analysis, the mean of all trials for each participant in each condition
was calculated and compared using a paired t-test to determine any significant differences
across the turf conditions for the variables of interest with a significance level set to α = 0.05.
Data was formally tested for the violation of normality using a Shapiro-Wilk test. If a
significant difference was detected, effect size calculations (Cohen’s d) were performed and
reported following the method of Cohen [39] and Dunlap et al. [40]. All statistical analysis
was performed using SPSS software v12.0 (SPSS Inc., Chicago, IL, USA).
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3. Results
3.1. V-Cut

Table 1 highlights all variables for the v-cut movement including ground reaction
forces, utilized traction, MTP, ankle, and knee joint moments. No differences were found in
the peak ground reaction forces. A significant decrease in peak translational traction utilized
by the athletes was seen when performing the movement on the aged turf compared to the
newly installed turf (1.29 vs. 0.95, p = 0.02).

Table 1. Mean peak values for the v-cut movement on the newly installed and aged artificial turf surfaces.

V-Cut New Aged p-Value

Medial Ground Reaction Force [N] 1159 ± 332 1233 ± 410 0.32
Posterior Ground Reaction Force [N] 267 ± 52 246 ± 87 0.28
Anterior Ground Reaction Force [N] 485 ± 189 502 ± 181 0.66
Vertical Ground Reaction Force [N] 1824 ± 413 1888 ± 360 0.49
MTP Extension Angle [deg] 23 ± 10 25 ± 6 0.30
MTP Extension Moment [Nm] 183 ± 68 194 ± 66 0.32
Ankle External Rotation Moment [Nm] 90 ± 30 87 ± 25 0.50
Ankle Eversion Moment [Nm] 116 ± 42 115 ± 42 0.89
Knee External Rotation Moment [Nm] 55 ± 20 55 ± 15 0.99
Knee Adduction Moment [Nm] 119 ± 68 164 ± 69 0.02 *, ES = 0.95
Utilised Translational Traction 1.29 ± 0.44 0.95 ± 0.12 0.02 *, ES = 0.88
Utilised Rotational Traction [Nm] 14.32 ± 1.58 14.84 ± 1.72 0.72

N = Newton, Nm = Newton-meters, deg = degree, MTP = metatarsophalangeal, * = significant difference,
ES = effect size.

When evaluating internal joint moments, only frontal plane knee joint moments were
found to be significantly different. The aged turf increased the peak internal knee adduction
moment by 38% from 119 Nm to 164 Nm (p = 0.02). Evaluating the peak angle of the shank
relative to the turf surface in the frontal plane highlighted that the aged artificial turf
resulted in a smaller angle (greater lean) compared to the newly installed artificial turf (53◦

vs. 49◦, p = 0.03).

3.2. Circle Run

Similar to the v-cut movement, no significant differences were found when comparing
the peak ground reaction forces for the circle run (Table 2). No difference was seen in
the utilized translational or rotational traction. The only significant difference seen in the
variables examined occurred in the transverse plane at the knee joint. The peak internal
rotation moment increased from 23 Nm to 28 Nm (p = 0.04) when performing this movement
on the aged artificial turf.

Table 2. Mean peak values for the circle run movement on the newly installed and aged artificial turf surfaces.

Circle Run New Aged p Value

Lateral Ground Reaction Force [N] 963 ± 303 1000 ± 268 0.34
Posterior Ground Reaction Force [N] 336 ± 96 307 ± 94 0.15
Anterior Ground Reaction Force [N] 119 ± 62 125 ± 47 0.59
Vertical Ground Reaction Force [N] 1353 ± 245 1308 ± 195 0.13
MTP Extension Angle [deg] 27 ± 7 25 ± 7 0.13
MTP Extension Moment [Nm] 85 ± 54 92 ± 67 0.74
Ankle Internal Rotation Moment [Nm] 79 ± 22 81 ± 18 0.60
Ankle Inversion Moment [Nm] 124 ± 44 136 ± 40 0.18
Knee Internal Rotation Moment [Nm] 23 ± 14 28 ± 13 0.04 *, ES = 0.71
Knee Adduction Moment [Nm] 114 ± 28 113 ± 35 0.85
Utilized Translational Traction 0.95 ± 0.17 0.99 ± 0.18 0.23
Utilized Rotational Traction [Nm] 17.00 ± 3.06 16.47 ± 3.42 0.43

N = Newton, Nm = Newton-meters, deg = degree, MTP = metatarsophalangeal, * = significant difference,
ES = effect size.
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3.3. Jog-Sprint Transition

No significant differences were found in the peak ground reaction forces when move-
ments were performed on the different turfs (Table 3). Further, when examining the internal
joint moments associated with the jog to sprint transition period, no significant differences
were seen in the frontal or transverse plane at the MTP, ankle, or knee joint.

Table 3. Mean peak values for the jog to sprint transition movement for newly installed and aged
artificial turf surfaces.

Jog-Sprint Transition New Aged p Value

Posterior Ground Reaction Force [N] 207 ± 143 224 ± 143 0.69
Anterior Ground Reaction Force [N] 503 ± 61 523 ± 74 0.09
Vertical Ground Reaction Force [N] 1611 ± 185 1613 ± 218 0.97
MTP Extension Angle [deg] 31 ± 4 32 ± 4 0.55
MTP Flexion Moment [Nm] 78 ± 12 78 ± 14 0.50
Ankle External Rotation Moment [Nm] 37 ± 12 39 ± 16 0.82
Ankle Inversion Moment [Nm] 13 ± 13 15 ± 12 0.76
Knee External Rotation Moment [Nm] 59 ± 10 55 ± 16 0.45
Knee Abduction Moment [Nm] 127 ± 38 108 ± 31 0.14
Utilized Translational Traction 1.16 ± 0.17 1.13 ± 0.24 0.70

N = Newton, Nm = Newton-meters, deg = degree, MTP = metatarsophalangeal.

4. Discussion

The purpose of this study was to compare the effects of simulated wear of artificial turf
on internal joint moments at the metatarsophalangeal, ankle, and knee joint during soccer-
specific movements. It was hypothesized that as artificial turf ages and loses compliance,
joint loading (estimated from joint moments) would increase, suggesting that the athlete
may be at a greater risk of suffering a joint injury during play. The hypothesis was only
partially supported in that knee joint moments were increased in the frontal plane during
the v-cut and in the transverse plane in the circle run movement with the less compliant
turf, with a large effect size (>0.71), being present for both movements. When evaluating
the effects of aged artificial turf on joint moments for a linear movement, such as the jog to
sprint transition, the hypothesis was not supported as joint moments did not increase with
turf wear.

With the movements associated with a high risk for non-contact injury due to their
explosive nature and high joint moments in the non-sagittal plane, such as the v-cut and
circle run, the fact that the aged turf caused greater joint moments is a cause for concern as
previous research has linked these joint moments with increased injury risk [32,33]. Since
no change was seen in the magnitude of the ground reaction force components or ankle
joint moment for these movements, the increase in joint moments occurring at the knee is
likely linked to modified lean angles seen on the aged turf. This is supported by the fact
that athletes had a reduced shank angle in the frontal plane relative to the floor in the aged
turf condition during the v-cut, generating a greater moment arm when calculating internal
joint moments at the knee. This observation suggests that increased injury risk was due to
modified movement patterns rather than increased force magnitudes, which is in agreement
with Dixon, Collop, & Batt [8] who also found that increasing surface compliance did not
influence ground reaction force impact peaks but rather joint kinematics. Further, the less
compliant surface leading to increased joint moments in the non-sagittal planes was similar
to the findings when comparing turning on a relatively soft newly installed turf compared
to a stiff plastic sport surface [23].

It was interesting to note that during a linear movement, such as the jog to sprint
transition, no changes were seen between the newly installed and aged artificial surface
in terms of forces or joint moments. It appears that for linear type movements, changes
in compliance associated with turf wear are not related to increased injury risks. As
previous research has found that increasing compliance may increase performance during
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linear movements [23,30], the firmer-aged artificial turf may provide a benefit in this linear
movement scenario without increasing injury risk.

One of the main concerns from earlier generations of turf and their limited compliance
was the development of turf-toe or overloading of the capsuloligamentous complex caused
by hyperextension at the MTP joint [39]. This study found that there were no differences in
MTP joint angles/moments on the newly installed and aged turf surface. This suggests that
the aged turf would not be more likely to elicit these forms of injury during the movements
examined. Perhaps during more extreme MTP joint flexing scenarios, such as those seen in
American Football when an opposing player causes an excessive force on an already flexed
joint (explained by Rodeo et al. (1990) [37] as one of the common scenarios for turf-toe),
differences in surface compliance may play a role in injury risk.

Previous work has shown that as artificial surfaces wear, their mechanical properties
can be altered [20]. The practical implications of this current study are that it provides a
reason to consider turf mechanical features when evaluating injury rates on these surfaces.
The lack of inclusion of this information could be the reason for current inconclusive results
in whether a turf surface is more or less susceptible to injury rates compared to natural
grass [11–18]. Further, by implementing more stringent guidelines for turf replacement
and maintaining acceptable compliance features, injury rates occurring on artificial turf
may be reduced.

A major limitation associated with this study was the approach to represent artificial
turf wear. The main purpose of this manuscript was to simulate wear through compaction
as this is a major factor associated with actual turf wear over years of play. Environmental
factors such as rain, adding saturation levels to the turf and sun exposure, adding degra-
dation elements to the turf, could also affect its mechanical performance. Longitudinal
mechanical testing of turf surfaces in varying climates could help to evaluate how these
characteristics change with various environmental factors, as well assessing how field
maintenance can influence the aging effect and the corresponding influence on athlete
biomechanics would be of interest. Another limitation was using joint moments to represent
joint loading. Joint moments are only a surrogate of loading occurring at the joint and do
not provide information into loading occurring in different individual structures (muscle,
ligament, bone), however, with current technology this approach is the best attempt to
determine what is occurring at the joint.

In conclusion, it can be seen that for lateral movements, aged artificial turf may be
more susceptible to injury risk at the knee, as seen by the increased frontal and transverse
internal joint moments [32,33]. Future research examining the effects of artificial turf on
injury rates should not only consider the generation features of turf but also the wear and
mechanical aspects associated with the pitch as this manuscript has shown that these may
also be factors that can affect joint loading. As well, further research should be performed
to evaluate turf wear and mechanical aspects of artificial turf on injury rates.
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