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Abstract: Finite element (FE) analysis can predict proximal human femoral strength. Automated
meshing and identifying subregions with high relevance for strength prediction could reduce the
laborious modeling process. Mesh morphing based on free-form registration provides a high level of
automation and inherently creates isotopological meshes. The goals of this study were to investigate
if FE models based on free-form transformed meshes predict experimental femoral strength as well
as manually created FE models and to identify regions and parameters with highest correlation to
femoral strength. Subject-specific meshes and FE models were created from a set of quantitative
CT images (QCT) using a B-Spline registration-based algorithm. Correlation of FE-predicted bone
strength and local parameters with experimental bone strength were investigated. FE models based on
transformed meshes closely resembled manually created counterparts, with equally strong correlations
with experimental bone strength (R2 = 0.81 vs. R2 = 0.80). The regional analysis showed strong
correlations (0.6 < R2 < 0.7) of experimental strength with local parameters. No subregion or parameter
lead to stronger correlation than FE predicted bone strength. B-spline-transformed meshes can be used
to create FE models, able to predict femoral bone strength and simplify FE model generation. They can
be used to reveal relations of local parameters with failure load.
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1. Introduction

The prediction of bone strength has a high potential for bone quality assessment [1].
When it comes to patient health, imaging-based methods remain the best option, with
computer tomography-based finite element (FE) simulations showing the highest corre-
lation with experimental bone strength [2]. However, creating such models manually is
expensive and requires a lot of expertise. It would therefore be beneficial to reduce the
cost and time required for processing. This can be achieved by automating meshing in the
model generation.

Mesh morphing methods have already been in use as alternative to manual meshing
methods in FE model generation [3–5]. Usually, a template mesh from an atlas, a mean model
with respect to shape and gray values, or a specimen close to the average, is transformed to fit
the respective target specimen. These transformed meshes are inherently isotopological and
can therefore be used for comparisons in various subregions of the bone such as the neck, or
even element-wise statistical comparisons. While landmark- and surface-based methods for
subject-specific mesh morphing are well documented [4,6–9], they require the implementation
of additional algorithms and methods, e.g., to identify landmarks.

Free-form registration-based methods can be applied directly to provided images and
have also already been used for mesh morphing and mesh morphing-based
FE models [7,10–13]. However, to our knowledge, no study provided data on the accu-
racy of FE models based on such transformed meshes with respect to experimental bone
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strength. In a previous work, free-form registration-based statistical deformation and texture
models (SDTMs) of proximal femora were successfully used to generate 3D FE models from
2D projections with high correlation to experimental results [14]. Although the FE models
in that study were based on morphed meshes, no direct 3D-3D registrations were used to
calculate correspondences.

Several parameters and sections of the femur have been investigated for their ability to
predict fracture risk and bone strength [15–19]. Especially the femoral neck has long been of
higher interest and is one of the distinct regions examined in dual energy X-ray absorptiom-
etry (DEXA) [20,21]. However, DEXA-based bone mineral density (BMD) is a projected
measurement and therefore does not entirely reflect three dimensional properties [22]. The
accuracy of the method with respect to fracture-prediction has also been questioned [23].
Three-dimensional methods appear more promising [24]. Other parameters investigated in
the past are bone volume to total volume (BV/TV) and stress and strain-related measure-
ments [25–27]. However, again, information on their relation to experimentally measured
bone strength is scarce.

Therefore, the potential of FE-based and morphometric parameters using isotopolog-
ical B-spline-transformed meshes to predict experimental bone strength is investigated
in this work. For this purpose, experimentally acquired bone strength measurements are
correlated, first, with FE-predicted bone strength and, second, with local mechanical and
morphological parameters. Conventional, manually created FE models serve as a control to
reveal deviations in geometry or precision of the predicted bone strength in the FE models
with transformed meshes.

In summary, in this work we would like to review how accurately isotopological meshes
can predict femoral strength and if other morphometric surrogates computed based on these
isotopological meshes are also able to predict experimental bone strength sufficiently.

2. Materials and Methods
2.1. Overview

A graphical overview of the study can be seen in Figure 1. In a previous study,
proximal femora from body donations were scanned to obtain quantitative CT (QCT)-
images (Figure 1, left) and the bones afterwards tested in compressive loading until failure
for bone strength [28,29]. A set of FE models based on manually created meshes was
prepared [28] as control study (Figure 1, red). For the morphed mesh-based study (Figure 1,
turquoise), similarity and B-spline-based free-form registrations were used to calculate
an averaged image with respect to gray values and shape from the QCT set, called mean
gray-level image in the latter. This was subsequently used to create the mean mesh, which
was then transformed back to the respective specimens. These isotopological transformed
meshes were compared with their manually created counterparts geometrically. Finally,
the experimental bone strength was compared to the FE-predicted bone strength (both for
the manually created FE models and with transformed meshes), and locally to mechanical
parameters from the FE-simulation and morphometric parameters from the QCT images.
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Figure 1. Graphical abstract: Experimental data and quantitative CT (QCT)-images (left) were
obtained from proximal human femora. “Study”—B-spline transformations were used to create a
mean gray-level image and subsequently subject-specific QCT finite element (FE) models. FE models
and local parameters were correlated with experimental bone strength. “Control”—manually created
QCT FE models are compared to results from transformed meshes and corresponding FE models.

2.2. Data

The underlying dataset consisted of 37 QCT scans, corresponding binary masks that
mark trabecular and cortical bone regions, and 32 compressive loading test results of proximal
human femora from previous studies. Detailed descriptions of the dataset and tests can
be found in Dall’Ara et al. [30], Dall’Ara et al. [28] and Steiner et al. [14]. In brief, samples
from 19 females and 18 males, aged between 46 and 96 years, were scanned with a voxel
size of 0.33 × 0.33 × 1.0 mm3 with a clinical QCT scanner. Sets of binary masks covering
trabecular and cortical bone were available for each scan from another study [29]. The scans
and masks were coarsened to 0.66 × 0.66 × 0.66 mm3 and afterwards equalized to a size
of 161 × 118 × 282 voxels. The samples were tested in uniaxial compression in stance-like
positions until failure. Only the QCT scans, masks, and the experimental data were used in
this study, no additional measurements or experiments were performed on the donor material.

2.3. Finite Element Models

All FE models were created similar to Luisier et al. [31]. Material properties of the
smooth mesh elements were assigned based on bone volume to total volume (BV/TV)
values, using a user-defined material model (UMAT). All meshes consist of second order
tetrahedral elements for trabecular regions and second order wedge elements for cortical
regions with element sizes of about 5 mm. BV/TV was calculated from gray values and
mapped to the meshes using the respective algorithm in medtool (Dr. Pahr Ingenieurs e.U.,
Pfaffstaetten, Austria) [32,33]. The UMAT in use has been described in Dall’Ara et al. [28],
and in more detail in Schwiedrzik and Zysset [34] and Luisier et al. [31], and consists of a
density-based isotropic damage model with exponential hardening and rate-independent
viscosity. The assigned parameters of the material model were similar to Dall’Ara et al. [2]
and Steiner et al. [14], and are given in Table 1. Additional embedding meshes for load dis-
tribution at the femoral head consisted of second order wedge elements with E = 150 MPa
and ν = 0.3. The fixation of distal (bottom) nodes in all directions and a stepwise dis-
placement of a reference node, kinematically coupled to the proximal (top) nodes of the
embedding, acted as boundary conditions.
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Table 1. Elasticity and strength parameters of the material model.

Elasticity Yield/Strength
ε0 [GPa] ν0 µ0 [GPa] k [-] σ0 [MPa] χ0 [-] τ0 [MPa]

Tension 6.614 0.246 2.654 1.333 54.8 −0.246 40.55
Compression 72.9 0.333

2.4. Mesh Transformation

A mean gray-level image was created from all specimens, which represents the mean
3D image of all registered and transformed QCT images. This mean gray-level image and the
corresponding mean mask were calculated as described in Steiner et al. ([14], Appendix A),
using all QCT images in a SimpleITK [35] (v1.0.1; http://www.simpleitk.org, (accessed on
11 March 2022)) and Python-based algorithm. In brief, the algorithm to generate the mean
gray-level image picks a random image from the given set as initial reference. All images are
registered with a free-form B-spline registration and mapped to the respective reference. Then,
a mean gray-level image with respect to shape and gray values is calculated. The process is
repeated with this gray-level image as new reference to avoid specimen related biases. The
mean mask is generated by applying the yielded transformations to the respective masks of
the set, calculating the mean and thresholding it at 25%. After meshing the mean gray-level
image, the inverses of the acquired B-spline transformations are applied to this mean mesh to
attain subject specific meshes. The entire set of 37 images was only used for the calculation of
the mean gray-level image. All subsequent steps were performed using those specimens for
which experimental data was available.

The agreement of B-spline-based meshes with manually created meshes was controlled
qualitatively via visual inspection and quantitatively using average surface distances
and volume differences between the mesh types for each specimen. Surface distances
were computed using Euclidean distance transforms in SciPy 1.0.0 [36] applied to mesh
voxelizations (0.22 mm voxel side length). The distance transforms were used to determine
the distances of the voxels of one voxelization boundary to the other, and vice versa. The
morphed meshes were finally used to create the corresponding FE models. Agreement
of these FE models with the ones based on the manual method were controlled using
a qualitative inspection of the damage and BV/TV distribution, and the correlation of
simulated bone strength with experimental bone strength.

2.5. Regional Statistics

Regional statistical analyses are straightforward for isotopological meshes, which
are comparing local morphometric parameters and local FE outcomes with experimental
data. BV/TV, bone mineral content (BMC), von Mises stress and maximum absolute
principal strain were selected as representative morphological and mechanical parameters
due to their frequent use in literature and clinical environment (BV/TV, BMC) [37–41], and
findings regarding their significance in bone quality assessment in other studies (stress,
strain [26]).

For this, BV/TV values from all elements were multiplied by the volume of the
respective element to calculate BMC. Values for von Mises stress and maximal absolute
principal strain were extracted for each mesh element from the first frame of the FE
simulations which was still within the linear elastic range of the model. The strain values
were normalized by the respective reaction force of the reference points. The isotopology
of the transformed meshes then allowed to correlate bone mineral content (BMC), von
Mises stress, and maximum absolute principal strain over distinctive regions, and for
each element as well, with the experimentally acquired bone strengths. Weighted and
unweighted averages were calculated for BV/TV and BMC, respectively, within each region.
Maximal regional values were used for von Mises stress and maximum absolute principal
strain [42]. The investigated regions included the whole bone, the entire neck section,

http://www.simpleitk.org
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superior and inferior neck sections, and cortical and trabecular variations of these regions.
Finally, the element-wise correlations with the experimental bone strength were evaluated.

2.6. Computational Details

Each B-Spline registration was preceded by a similarity registration, covering translation,
rotation, and scaling. The B-spline registrations were executed with a control point grid-size
of 5 × 5 × 5, for a total of (5 + 3) × (5 + 3) × (5 + 3) × 3 = 1536 degrees of freedom. A
multi-resolution framework, as provided by SimpleITK, with coarsening factors (4, 2 and 1)
and Gaussian filtering (σ = 2, 1 and 0), was applied. Here, the registration is performed
in three subsequent steps with increasing image size and quality. This is done to speed up
registration overall and to avoid local minima. Gradient descent line search and correlation
were used as optimizer and metric/objective function, respectively. Each registration was
initialized with parameter values equal to zero (scaling 1) and the findings from each step in
the multi-resolution framework passed as initial values to the next iteration. This registration
setup was used in the same way in Steiner et al. [14], where it delivered good and robust
results. The non-zero positivity of the Jacobi determinants were continuously controlled
throughout the registrations to preserve orientations and bijectivity.

The mean gray-level image was generated on an Intel Xeon CPU E5-2697 v3 with
2.6 GHz, 14 cores, and 28 threads.

All FE models were solved using Abaqus V6R2017x. Computations were performed
on Intel(R) Xeon(R) CPU E3-1231 v3 @ 3.40 GHz machines with 4 cores/8 threads.

The correlations were calculated in Python, using Scipy [36].

3. Results
3.1. Accuracy of Transformed Meshes

The mean gray-level image was successfully calculated, requiring about 10 h in real-
time. The mean mesh was successfully generated and transformed afterwards. A qualitative
visual comparison of meshes created manually with the transformed ones is shown in
Figure 2. The transformed meshes were generally very similar to their manually created
counterparts while lacking details.

Figure 2. Exemplary renderings of three femora (1, 2, 3) in side and frontal view of the original (A),
and transformed meshes (B). The transformed meshes were all similar in appearance compared to
the standard, manually created models.

The averaged surface distance between the two mesh types was 0.7 ± 0.6 mm. Boxplots
of the surface distances for all specimens are shown in Figure 3.

The average volume difference was 4.1± 3.0%, with the transformed meshes generally
showing lower volumes. A Bland–Altman plot comparing the volumes is given in Figure 4.
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There, the relative difference with respect to the mean between the volumes of each speci-
men are plotted. The even distribution of the datapoints, parallel to the average difference,
indicates that the differences between the respective volumes are independent of their size.

Figure 3. Boxplots of surface distances between standard- and transformation-based meshes for each
sample. Medians are displayed as black lines and means as stars in each box. The turquoise horizontal
line shows the mean of means. Whiskers show minimal and maximal values not considered being
outliers. Outliers are not shown.

Figure 4. Bland–Altman plots of mesh volumes: mesh volumes of the standard and transformation-
based models are compared by plotting their means against their relative differences. No dependen-
cies are apparent.

3.2. FE-Predicted Bone Strength

All FE models could be created and solved. Solving required about 10 min for each
model. Figures 5 and 6 show comparisons of both modeling strategies with respect to
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BV/TV and damage, respectively. The outcomes look visually very similar to the ones
based on manual meshing with respect to the spatial distribution of BV/TV and damage.

Figure 5. Bone volume to total volume (BV/TV) distribution in three exemplary samples (1–3) of
the set. Left models were generated individually (A), right models were created with transformed
meshes (B).

Figure 6. Damage distribution at peak loading in three exemplary samples (1–3) of the set. Left
models were generated individually (A), right models were created with transformed meshes (B).
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Figure 7 shows the scatter plots of simulated ultimate forces against experimental
ultimate forces. The average simulated bone strength and correlation with respect to
experimental force were 4159 ± 1731 N and R2 = 0.80 for models based on manually
created meshes, and 3697 ± 1567 N and R2 = 0.81 for those with transformed meshes. A
two-tailed paired t-test yielded p = 7 × 10−11, rejecting the null-hypothesis of equal means
for a significance level of α = 0.05.

Figure 7. Experimental vs. simulated bone strength based on manually created (red) and transformation-
based meshes (turquoise).

3.3. Regional Statistics

An overview of regional correlations with experimental ultimate forces is given in
Figure 8. The bone is generally divided into trabecular (“T.”) and cortical (“C.”) sections, as
well as whole, superior (“Sup.”) and inferior (“Inf.”) neck. A cropped section of the bone
without shaft was also analyzed. Higher correlations (R2 ≥ 0.65) were found for BMC and
maximum absolute principal strain and in the inferior neck region.

Figure 8. Correlations of the respective averaged (BV/TV and bone mineral content (BMC)) and
maximal (von Mises and maximum absolute principal strain) values of each specified region with
experimental ultimate force. Higher values were found for BMC, and maximum absolute principal
strain especially in the inferior neck region. The abbreviations Sup., Inf., C., and T. indicate superior,
inferior, cortical, and trabecular sections, respectively, as well as combinations thereof.

Regional statistics based on single element-level results can be seen in Figure 9, show-
ing mean, standard deviation (std), and correlation with experimental ultimate forces,
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per element, in the first three columns. The last column shows the 10% of all elements
which have the highest correlation with experimental ultimate force. Again, generally high
correlations (R2 > 0.6) were found for BMC and maximum absolute principal strain, and
in the inferior neck region. Additionally, high correlations can be seen in the head region
for BMC and maximum absolute principal strain, and in the shaft cortex for BV/TV and
von Mises stress. Higher correlations were also found in the greater trochanter region.

Figure 9. Elemental means, standard deviations, and correlations with experimental ultimate force
of—from top to bottom—BV/TV, BMC, von Mises stress, and maximal absolute strain. Note that
mean and standard deviation values exceed the respective color bar limits for better visualization.
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4. Discussion

This study demonstrated the potential of FE models, based on meshes morphed with
B-Spline transformations, to predict bone strength in the proximal human femur. After a
one-time creation of the mean gray-level image, this approach allows a fully automated and
robust creation of QCT FE models. Such models show practically the same predictability
as classical, manually created FE models. Furthermore, the isotopological meshes allow
the analysis of local morphological and simulated mechanical parameters within similar
anatomical regions without any further effort.

FE models based on transformed meshes closely matched those based on manually
created meshes, both in terms of the mesh and mechanical predictions. The correlation
with experimental bone strength was similarly high with both model versions. The average
ultimate loads were slightly lower for the models based on transformed meshes, as seen in
Figure 7. This could be attributed to their generally lower volumes. However, correlation
between differences in ultimate loads and differences in volume was found to be R2 = 0.207
in a subsequent test. The experimental bone strengths were consistently higher than the
FE model predictions, which is similar to previous studies on the same dataset [28,31,43].
We found a similarly high correlation in our previous study on the same dataset [14] when
estimating models from 2D projections (R2 = 0.835). For comparison, Grassi et al. [8]
found higher correlations (R2 > 0.9) using manual selection of landmarks and radial basis
functions to transform meshes for femoral FE models. However, instead of experimental
and simulated bone strength, they compared strains, and had a smaller sample size of eight,
limiting the comparability to this work. The similarity of manually created and transformed
meshes is apparent in the low values for average surface distance and volumetric difference,
with 0.7 ± 0.5 mm and 4.1 %. Similar results were found by Baldwin et al. [44] who reported
a root mean square distance of 0.9 ± 0.5 mm between manually created and surface-based
transformed meshes on femora. The findings suggest that this method can be used for
the automatic creation of meshes for FE models with a similarly high quality as manually
created ones. In contrast to the landmark-based methods of, e.g., Grassi et al. [8], the
B-Spline registration-based method can be applied directly to the QCT images and might
therefore further accelerate and ease model creation.

In case of local parameters, none of the investigated parameters or subregions showed
higher correlation with experimental bone strength than that of QCT FE-based bone
strength. However, the regional statistical analysis demonstrates the potential of this
method and gives further insights into the distribution of morphometrical parameters
in the femur. Correlation results for BV/TV and BMC in the neck regions (R2 = 0.53
and R2 = 0.62) were comparable to those found by Dall’Ara et al. [30] for dual-energy
X-ray absorptiometry (DEXA)-based femoral neck BMD and BMC on the same dataset
(R2 = 0.66 and R2 = 0.67). The differences in the results could be attributed to slight
deviations of the evaluated regions and to differences in their calculation. This is especially
the case for BMD, which is calculated as an areal density value using DXA, in contrast
to the volumetric parameter BV/TV. Variations in the preparation of the images could
contribute to the differences too. In general, the regional and elemental results showed
higher correlations for BMC and maximal absolute principal strain. Higher correlations
were also found in the inferior neck region. Iori et al. [27] contrarily found higher values in
the superior part, however, their study was conducted on femora in a sideways fall loading
scenario. Additionally, with respect to the prediction of femoral fractures, Poole et al. [45]
found that women with femoral neck fractures had focal osteoporosis in the superior neck
region when compared to healthy controls. This could indicate a central role of structures
in compressive load for ultimate load prediction, while the condition of the superior neck
region reflects the actual fracture risk. Finally, high correlations were also found in the
greater trochanter region. These could be attributed to a general adaptation of the bone to
its use, given that the trochanter is, among others, the onset of most gluteal muscles. DXA
BMD of the greater trochanter also showed the highest correlation with femoral strength in
a study by Cheng et al. [46] in a sideways-fall test.
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The study has some limitations. The QCT images were already masked and prepro-
cessed. Although in principle using unprocessed images would be possible, noise and
unevenly cropped and oriented bones constitute additional challenges which were not
investigated in this study. Furthermore, only proximal human femora were used. The
applicability of the method to other bones needs to be proven. The femora were tested and
analyzed in a stance-like loading scenario. For more general statements with respect to the
relevance of parameters in different regions, several additional loading scenarios should be
examined, especially those simulating sideways fall. Finally, the used boundary conditions
primarily reflect the experimental conditions, but not necessarily the physiological loading
conditions. Especially the regional statistical analysis of the mechanical parameters must
therefore be interpreted under careful consideration of this limitation.

In summary, B-spline-transformed meshes can be used to further automate FE model
generation while preserving precision in femoral strength prediction. While the investi-
gated local parameters in various subregions of the bone could not reach the precision of
FE models of the entire femur to predict bone strength, the isotopology of the transformed
meshes still allowed to highlight anatomical regions of strongest correlation.
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