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Abstract: The computational electroencephalogram (EEG) is recently garnering significant attention
in examining whether the quantitative EEG (qEEG) features can be used as new predictors for the
prediction of recovery in moderate traumatic brain injury (TBI). However, the brain’s recorded
electrical activity has always been contaminated with artifacts, which in turn further impede the
subsequent processing steps. As a result, it is crucial to devise a strategy for meticulously flagging
and extracting clean EEG data to retrieve high-quality discriminative features for successful model
development. This work proposed the use of multiple artifact rejection algorithms (MARA), which
is an independent component analysis (ICA)-based algorithm, to eliminate artifacts automatically,
and explored their effects on the predictive performance of the random undersampling boosting
(RUSBoost) model. Continuous EEG were acquired using 64 electrodes from 27 moderate TBI patients
at four weeks to one-year post-accident. The MARA incorporates an artifact removal stage based
on ICA prior to RUSBoost, SVM, DT, and k-NN classification. The area under the curve (AUC)
of RUSBoost was higher in absolute power spectral density (PSD) in AUCδ = 0.75, AUCα = 0.73
and AUCθ = 0.71 bands than SVM, DT, and k-NN. The MARA has provided a good generalization
performance of the RUSBoost prediction model.

Keywords: electroencephalography; traumatic brain injury; outcomes prediction; multiple artifact
rejection algorithms; independent component analysis; boosting; undersampling

1. Introduction

Traumatic brain injury (TBI) has a tremendous impact on neurological dysfunction and
death in young people (i.e., younger than 45 years old) and children (1–15 years old) world-
wide [1–4]. Most TBI is graded based on initial Glasgow Coma Scale (GCS) as mild (GCS
score 13–15), meanwhile approximately 8–10% is graded as moderate (GCS score 9–12) or
severe (GCS score 8 or less) [5,6] when recorded during the emergency room admission [7].
The effects of TBI on brain electrical activity, due to injury on a number of ionic channels,
electrical generators and network dynamics involved in the distribution and coordination
of electrical energy, can be easily measured using electroencephalography (EEG). EEG
records the neuronal activities with non-invasive electrodes fitted on the scalp, allowing
the analysis of neuronal activity in five canonical EEG frequency bands: delta δ (<4 Hz),
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theta θ (4 to 8 Hz), alpha α (8 to 12 Hz), beta β (12 to 30 Hz) and gamma γ (<30 Hz). The
electroencephalogram can provide invaluable information regarding the instantaneous
changes of brain electrical activity, specifically in aiding neuroprognostication of TBI [8–11].

Numerous research groups have been working on developing a TBI-diagnostic model
based on quantitative EEG (qEEG) features (i.e., differentiation between mild TBI (mTBI)
and no mTBI) [12–18] but have yet to develop a TBI-prognostic (i.e., prediction TBI recovery)
tool effectively that has gained widespread attention. Quantitative EEG analyses use
computationally derived features that highlight specific components of EEG with numerical
values [19]. Predictive models are statistic models that incorporate patient data to anticipate
outcomes and are more robust than simple clinical judgments [2,20]. There have been
numerous reports of prognostic models, but none are widely used. It may be because
the validity and usefulness of predictive models in TBI have not been demonstrated with
sufficient clarity and certainty to convince clinicians of their potential added value. A
systematic review offers possible explanations [20].

Modern advances have shown that EEG is a prospective neuroimaging modality
for accurate prognostication of patients after moderate to severe brain injuries [8,21–23].
Advancements in computational EEG signal processing have significantly improved the
reliability and validity of electrophysiological brain measurements. The preprocessing
of EEG data is tedious and labor-intensive as the recorded EEG data is usually long, and
analyzing raw data through visual inspection is time-consuming. Hence, there is a need
for an automated system to perform the analysis (i.e., feature extraction, feature selection,
and classification).

Several surveys and studies have been conducted, and the automatic learning methods
(i.e., machine learning (ML)) have proven their effectiveness in recognizing EEG wave
patterns [23–30]. A key advantage of ML is manipulating multimodal objectively; and
modeling hidden relationships in complex datasets with heterogeneous distribution using
advanced mathematical techniques [31,32]. The learning strategy is particularly based
on supervised learning (i.e., the algorithms learn from labeled training data to create a
model that can generate predictions based on unknown data) and unsupervised learning
(i.e., the algorithms analyze and cluster unlabeled data, and discover hidden patterns of
data clusters without the need of human intervention). More in-depth descriptions of ML
and its limitations can be found in references [19,25,32–34].

The procedure for building a TBI predictive outcomes model using the continuous EEG
data typically involves preprocessing the raw recordings to mitigate the low signal-to-noise
(SNR) ratio in order to obtain a more accurate representation of the primary brain activity.
The data confounded with noise or artifacts such as eye blinks, muscular movements, and
other instrumentation noises may not correctly represent the underlying brain signals [19].
In the literature, independent component analysis (ICA) has been investigated as a chosen
technique for artifact rejection to improve the quality of EEG signals. The ICA has been
widely used in EEG signal analysis and brain-computer interface (BCI) [31–33]. Khoshnevis
and Sankar [34] confirmed that the blind source separation in ICA allows estimation of
independent components (ICs) from multiple mixed observations without prior knowledge
about brain activity to remove correlation between the channels [35]. Lee et al. [36] argued
that the gold standard for EEG review (i.e., traditional approach) is a manual inspection
by experts, but ICA algorithms (i.e., automatic approach) could produce EEG with higher
signal quality.

With ICA, the signal sources are assumed to be instantaneous linear mixtures of
cerebral and artifactual sources that can be decomposed into ICs. Once the ICs have been
extracted from the original signals, the clean signal is reconstructed by discarding the ICs
that contain artifacts. Vigário [37] tested the ICA method on simulated and experimental
data and found that it performed well in the separation of signals from their linear mix-
tures and the extraction of eye information from electrooculography (EOG) signals [38].
Romero et al. [39] used ICA to reduce EEG artifacts at various sleep stages and discov-
ered that the bidirectional property of EEG and EOG had little effect on ICA. Therefore,
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noise reduction is a compulsory technique as this method will influence the computation
of qEEG features (e.g., power spectral density (PSD), coherence or connectivity). If the
extracted features do not precisely designate the essential signals, a classification algorithm
employing such features might have problems in identifying the classes of the features.
Methodological differences of artifacts removal make it challenging to extract accurate
qEEG features and they also pose a problem in assessing the reproducibility of the ML
models across restricted datasets.

Recent studies revealed that the ML based on qEEG characteristics yields superior
performance in classifying the outcomes of TBI patients. The results highlighted that the ML
algorithm (i.e., random under-sampling boosting decision trees (RUSBoosted Trees)) that
uses qEEG features (i.e., PSD in specific frequency band (e.g., δ, θ, α and γ)) demonstrated
promising results to predict outcomes of highly imbalanced moderate TBI dataset [40].
The present study extends our prior work [40] by including a modification of adding an
automatic artifacts rejection method (i.e., multiple artifact rejection algorithm (MARA)), an
independent component analysis (ICA)-based algorithm in EEG preprocessing steps and
exploring their effects on the predictive performance of the RUSBoost prediction model.

This paper consists four main sections: Section 1 introduces the present study, in-
cluding some backgrounds and literature review. Section 2 presents the dataset, proposed
methodology, and its performance evaluation. Section 3 includes the results and discussion.
Finally, Section 4 concludes this paper.

2. Materials and Methods
2.1. Outcome Assessment

Patient recovery assessment was conducted through telephone calls by physicians
from four weeks to one-year after the accident. The Glasgow Outcome Scale (GOS) was
used as the primary outcome measure, which was dichotomized as a bad outcome (i.e., GOS
score of 1–4) and a good outcome (i.e., GOS score at 5), in approximately 12-months after
injury. In this study, an expert (i.e., neurosurgeon) in our team evaluated the neurological
outcomes of moderate TBI patients based on GOS score (given in Table 1) that corresponded
to the specific level of improvement of each patient [41,42].

Table 1. Clinical Description of GOS Score.

GOS Score Clinical Meaning Outcome

1 Death Poor
2 Persistent vegetative state Poor
3 Severe disability Poor
4 Moderate disability Poor
5 Mild or no disability Good

Details in Jennett and Bond [41,42].

2.2. TBI Patients

Continuous EEG eyes-closed data from 27 moderate TBI patients (B1–B27) were
obtained from 64 EEG electrodes to record the brain’s signals from 64-sites on the scalp at a
sampling rate 1 kHz. Electroencephalograms of 27 moderate TBI patients (n = 27) were
collected at the Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
Ethical clearance for this study was attained from the Human Research Ethics Committee,
Universiti Sains Malaysia (USM), with a permission number USM/JEPeM/1511045.

Nonsurgical moderate TBI patients aged 18 to 65 met the inclusion criteria. The
first hit involved the left or right hemisphere, which was confirmed by a computerized
tomography (CT) scan at the time of diagnosis. Criteria of ages under 18 years old, serious
scalp and skull deformities, bone fractures, and drug use were all ruled out. All patients
had given informed consent before participating in this study. All of the patients in this
study were men who had sustained a TBI due to vehicle accidents. Table 2 provides a
detailed explanation of the characteristics of moderate TBI patients for this study.
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Table 2. Moderate TBI Dataset (adapted from Noor et al. [40]).

EEG Dataset ID Gender (F/M) Age Date of Accident CT Brain Characteristic on Emergency Admission GCS
GOS from 4-Weeks to 12-Months

GOS 1–4 GOS 5

B1 Male 53 27 January 2017 No parenchyma, 9 X
Subarachnoid hemorrhage over L-F, P cortex,

B2 Male 18 18 October 2017 Two-way subdural hematoma, No parenchyma 11 X

B3 Male 19 14 February
2018 L-extradural hematoma, two-way T-bruise 10 X

B4 Male 22 13 April 2018 L-T extradural hematoma 10 X
B5 Male 53 15 May 2018 L-P bruise, severe subarachnoid hemorrhage 9 X
B6 Male 19 06 August 2018 R-F small extradural hematoma 11 X

B7 Male 45 12 September
2018 Top extradural hematoma 10 X

B8 Male 62 30 September
2018 F-bruise hemorrhage 9 X

B9 Male 54 30 October 2018 L-T bruise 11 X
B10 Male 22 28 October 2018 R-F bruise 11 X
B11 Male 39 30 April 2019 L-P bruise, L-FTP severe subdural hematoma 11 X

B12 Male 18 22 November
2017 L-F bruise, mild R-T bruise 11 X

B13 Male 19 22 February
2017 L-extradural hematoma 11 X

B14 Male 53 27 February
2017 No parenchyma, 9 X

Subarachnoid hemorrhage over L-F, P cortex,
B15 Male 18 18 October 2017 Two-way subdural hematoma, No parenchyma 11 X

B16 Male 19 14 February
2018 L-extradural hematoma, two-way T-bruise 10 X

B17 Male 22 13 April 2018 L-T extradural hematoma 10 X
B18 Male 53 15 May 2018 L-P bruise, severe subarachnoid hemorrhage 9 X
B19 Male 19 06 August 2018 R-F thin extradural hematoma 11 X
B20 Male 22 28 October 2018 R-F small extradural hematoma 11 X

B21 Male 62 30 September
2018 F-bruise hemorrhage 9 X

B22 Male 54 30 October 2018 L-T bruise 11 X
B23 Male 22 28 October 2018 R-F bruise 11 X
B24 Male 39 30 April 2019 L-P bruise, L-FTP severe subdural hematoma, 11 X

B25 Male 19 14 February
2018 L-extradural hematoma, bilateral T-contusions 10 X

B26 Male 53 15 May 2018 L-P contusion, severe subdural hematoma 9 X
B27 Male 19 06 August 2018 R-F small extradural hematoma 11 X

Abbreviation: B (TBI Patient ID); CT (Computed Tomography); F/M (Female/Male); F-T (Frontal-Temporal);
GCS (Glasgow Coma Scale); GOS (Glasgow Outcome Scale); L-T (Left-Temporal); L-P (Left-Parietal); L-FTP (Left-
Frontal-Temporal-Parietal); P (Parietal); R-F (Right-Frontal).

2.3. EEG Recordings

The EEG signals were obtained using 64 electrodes to record brain signals from
64 different locations on the scalp. All electrodes were placed following an international
standard of 10–10 electrode configuration [16,43]. The CPz (i.e., equivalent to Ch-32) was
set as an EOG channel for tracking the eye movement and blinking artifacts. As a result,
only 63 EEG channels were used as input data in our classification model.

The patient ground electrode serving as reference electrode was placed at 10% front-
ward to Fz connected to earlobes. A programmable direct current (DC) broadband
SynAmps amplifier was used to measure the brain signals by boosting up to 2500 gain and
precision of 0.033/bit in the recording range of 55 millivolts (mV) at the DC 70 Hz frequency
range. The 16-bit alternating current (AC)-DC converters were used for digitizing EEG
signals to 1 kHz. During the recording, each patient was sat in a comfy seat in front of a
computer screen in a dimly lit room and advised to remain motionless and close their eyes
to remain task-free (i.e., no tasks or activities performed) for 350 s.

The continuous EEG eyes-closed data were obtained from moderate TBI patients with
follow-up visits. The first measurement (i.e., four–10 weeks post-accident) contributed to
thirteen moderate TBI data. Eleven moderate TBI EEG data were contributed from the
second measurement (i.e., six-months post-accident). The third measurement (i.e., one-year
post-accident) contributed to three EEG data. The patients would be rejected if they
failed to participate in the follow-up EEG measurements within the given time frame.The
raw, unprocessed EEG data were exported for further analysis. The patient would be
disqualified if they failed to participate in EEG measurement within the time frame. The
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raw, unprocessed EEG data were exported for further analysis. Figure 1 depicts a block
diagram of the suggested methodology.

Figure 1. Block diagram of the proposed method.

2.4. EEG Data Preprocessing

The continuous eyes-closed EEG data were preprocessed in MATLAB R2020a (Math-
Works, Natick, MA, USA) using open-source EEGLAB toolbox version 2019.0 [44,45] with
the custom MATLAB script. The details about the preprocessing script are given as fol-
lows. We assigned the 63-channels continuous eyes-closed EEG signal to be presented as a
vector x = [x1, x2, x3, x4, . . . , x61, x62, x63], where xm is the 60 segments (i.e., 1-s) from the
m-channel of EEG signal (i.e., m = 63 channels).

The power line noise was eliminated in the first step by applying a notch filter at
50 Hz (in Malaysia) on the signal x with EEGLAB function (i.e., pop_ eegfiltnew()). Next,
the ICA was performed, and artifact-related components were rejected according to the
MARA [46,47] to remove the EOG artifacts (e.g., eye blinks, eye movements), electromyo-
gram (muscle) artifact, and electrocardiograph (EKG) artifactual activity components.
MARA is a supervised ML algorithm that automates artifact removal by hand-labeling
ICA components. For this purpose, MARA employs a classifier (i.e., a linear programming
machine) that discriminates an ICA component that is not derived from brain activity. The
MARA classification system is based using two linear classifiers for finding a separating
hyperplane (P), which is mathematically solved by Equation (1).

P = sign(wv + b){−1, 1} (1)

ICA components are classed as neural or artifact w is a weight vector taken from
labeled training data samples, v is a feature vector, and b is a bias factor [47,48].

The MARA provides visualization of each component scalp map (see Figure 2a,b),
its spectrum, respectively (see Figure 2c,d), and the current label of the component (i.e.,
artifact or neural) by presenting each component’s probability based on the six features
(i.e., current density norm, range in pattern, mean local skewness, λ, fit error and 8–13 Hz)
as feature selection procedure described in [47]. If the artifact probability is greater than 0.5
(p-artifact = 0.99, see Figure 2e), it is considered as an artifact, and if the artifact probability
is less than 0.5 (p-artifact = 0.00), it is considered as a neuronal signal (see Figure 2f).
Features that contribute to a component marked as an artifact are plotted as red bars,
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and features that indicate the component containing neuronal activity are marked in blue.
These features are invaluable in understanding the MARA’s decision.

Figure 2. Visualization independent components (ICs) with MARA for automatic artifact rejection.
Figure (a) shown the IC17 scalp map for the the eye blink artifact. Figure (b) shown the IC32 scalp
map of the neuronal component. The steep power spectrum shown in figure (c); the alpha peak
around 10 Hz power spectrum shown in figure (d). Figure (e,f) shown each component of six features
that the MARA classification.

In this study, IC17 is a typical eye blink artifact shown by intense frontal activity steep
power spectrum; IC32 is a neuronal component showing the alpha peak around 10 Hz. The
scalp map indicates the occipital brain source. We can choose to remove ICs automatically
without inspection, but in this study, ICs flagged as artifacts will be rejected based on the
artifacts probability and scalp map computed by MARA to produce a clean signal y. After
that, a band-pass filter with cutoff values at 0.1 Hz and 100 Hz was applied to the clean
signal y to remove any undesired peaks with extreme signal values. The output signal was
represented as the signal z. In order to cover multiple informative frequency bands (i.e., δ,
θ, α, β,and γ), the frequency analysis is limited to a range of 0.1 to 100 Hz as recommended
by McNerney et al. and van den Brink et al. for TBI classification [12,18].

2.5. Data Preparation

The first 60 s of recording were deleted due to artifact contamination. The next 60 s of
EEG data were then split into 60 fragments of one second. The fragmentation began at a
60,001 miliseconds because the first 60 s had been rejected. The input signal z was matrix-
arranged (i.e., the amplitude of the EEG channel × time) following to the default arrange-
ment of the 64-channel WaveGuard EEG helmet cap. The M× Fs is the signal z, where M is
the number of EEG channels (i.e., M = 63 channels) and Fs (i.e., = 1 kHz) is the sampling rate.
Therefore, there were 1620 segments of data (i.e., 27 recordings × 60 segments/recording).
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2.6. EEG Feature Extraction

Feature extraction is critical stage in any EEG analysis that identifies common feature
representations among EEG samples. The absolute frequency bands were determined by
integration of the PSD inside each frequency band: δ (0.5–4 Hz), θ (4–7 Hz), α (7–13 Hz),
β (13–30 Hz) and γ (30–100 Hz). Based on Equation (2), the Fourier transform (FT) of ẑ(ω)
over an interval of [0, T] is calculated to assess the frequency content of the input signal
z(t) based on Equation (2).

ẑ(ω) =
1√
T

∫ T

0
z(t)exp−iωt dz (2)

The average PSD is subsequently computed for each EEG frequency band of each
channel. Equation (3) can be used to represent the generic PSD, Pzz(ω) of a given signal
z(t), where E is the estimated value and T is the time range for the PSD, Pzz(ω).

Pzz(ω) = lim
T→∞

E[|ẑT(ω)|]2 (3)

PSD is a frequently extracted characteristic that quantifies the power contained
within a frequency domain signal. It is similar to the FT of a signal’s auto-correlation
function [19,49]. Therefore, each EEG sub-band had an average of 63-PSD in one segment.
For each frequency band, the 63-PSD average was convolved to generate a feature vector
(e.g., Pβ = [Pβ1, Pβ2, . . . , Pβ63]).

2.7. RUSBoost Prediction Model

RUSBoost is a hybrid sampling-boosting model that balances the characteristic of
classes by minimizing instances from dominant classes [50,51]. Since the dataset distri-
bution were heavily skewed, a robust classification algorithm was required which would
work well with such a skewed dataset. The implementation of the RUSBoost as a classifier
for predicting moderate TBI outcomes is feasible since the epochs reflecting poor and good
outcomes are not uniformly distributed in both the training and testing datasets. A skewed
dataset slows the classifier’s learning rate for the poor outcome, as most data corresponds
to the good outcome. As a result of this imbalance, the model’s predictions are biased
towards the majority class, resulting in a decrease in the model’s overall performance [52].

A majority class is known as a negative class and constitutes the maximum of the
dataset. With increasing samples in the negative class, learning becomes more compli-
cated since ML classifiers for used learning purposes in such imbalance datasets may
disregard positive class (i.e., minority class) samples as noise or outliers. In the majority
class (i.e., good), the predictive model leans towards better accuracy, meanwhile poorly
performing on the side of the minority class (i.e., poor). The examples of the minority class
are misclassified at a higher rate than examples of the other classes. The steps for RUSBoost
implementation is described in Algorithm 1 [50].

The present study implemented the RUSBoost algorithm with decision tree (DT) as
the weak learner. By applying the RUSBoost, the resampling method (i.e., undersampling)
handled the imbalanced dataset problem by altering the minority and majority class size
to provide a balanced distribution in a training dataset. Boosting leverages the random
samples of the data to create each tree where each sample is balanced because the algorithm
undersamples the majority class to match the size of the minority class. Due to the minimal
number of epochs representing poor outcomes (18.52%), the number of weak learner, that is,
30 trees, were utilized in the final models with a number of 20 splits, and a learning rate of
0.1 was merged into a high-quality ensemble predictor using the base function fitensemble
to build a RUSBoost prediction algorithm in prediction recovery of moderate TBI.
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Algorithm 1 RUSBoost Algorithm.

Input: Given a set R of examples
(x1, y1), (x2, y2), . . . , (xm, ym) with minority class yr ∈ Y, |Y| = 2.
Weak learner (decision trees), WeakLearn.
Number of iteration, T
Desired percentage of total examples to be represented by the minority class, N

1: Initialize W1(i) = 1/n, for all i.
2: for t = 1, 2, . . . , T do
3: Create temporary training dataset R′t with distribution W ′t using random under-

sampling
4: Train a WeakLearn, providing it with samples R′t and their weight W ′t
5: As a result, get a hypothesis ht : X×Y → [0, 1].
6: Compute the pseudo-loss for R and W ′t :

εt = ∑
(i,y):yi 6=y

Wt(i)(1− ht(xi, yi) + ht(xi, y))

7: Compute the weight update parameter:

ζt = εt/(1− εt)

8: Update Wt(i) for each sample:

Wt+1(i) = Wt(i)ζ
1
2 (1+ht(xi ,yi)−ht(xi ,y:y 6=yi))
t

9: Normalize the weights Wt+1:

Wt+1(i)←Wt+1(i)/

(
H

∑
i=1

Wt+1(i)

)
10: end for
Output: The final hypothesis:

Sfinal(x) = arg max
y∈Y

T

∑
t=1

ht(x, y) log10(1/ζt)

In order to evaluate the performance of the proposed recovery prediction system, we
used a k-fold cross-validation process. To do this, the dataset was divided randomly into k
equal-sized subdivisions. At each fold, the k–1 subdivisions were used for training, and the
remaining partitioning was used for testing. This process is repeated for k-times (i.e., k = 5).
The results of five partitions were averaged and reported as the system performance.

2.8. Evaluation in Imbalanced Dataset

Instances in a binary classification task can be labeled as either positive or negative.
The minority class is usually regarded as a positive class in binary poorly balanced datasets,
while the majority class is usually considered negative. This research classified the poor and
good outcomes as positive and negative cases, respectively, resulting in the classification
matrix shown in Table 3.
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Table 3. Confusion matrix of binary classification problem.

Ground Truth Prediction

Positive Negative
(Poor Outcome) (Good Outcome)

Positive (Poor Outcome) TP FN
Negative (Good Outcome) FP TN

True positive (TP) and true negative (TN) are valid predictions, but false negative
(FN) and false positive(FP) are wrong predictions. Analyzing the four entries in the
confusion matrix does not suffice to assess the classifier’s performance. The confusion
matrix provided four types of performance measurements that were used in this study:

• The sensitivity, often referred to as the True Positive Rate, TPrate, is expressed in
terms of :

TPrate = TP/(TP + FN) (4)

TPrate indicates the ability of a classifier to identify a positive class correctly. It ranges
from 0 to 1, with 1 being the perfect score.

• The specificity, alternatively referred to as the True Negative Rate, TNrate, is deter-
mined as;

TNrate = TN/(TN + FP) (5)

TNrate denotes the ability of a classifier to identify a negative class correctly . The
perfect score is 1, and 0 is the worst measure.

• G-mean (geometric mean), is denoted as;

G-Mean =
√

TPrate ∗ TNrate (6)

G-Mean introduced by [53] quantifies the ability of a classifier to balance classification
accuracy between positive and negative classes. By combining the G-Means of TPrate
and TNrate, a low G-Mean score indicates a highly discriminative classifier toward
one class and vice versa.

• F1 score describes the trade-off between precision (TP/(TP + FP) and recall (TP/(TP +
FN) in the positive class. This well-known metric is perfectly suitable for skewed
dataset problem that is determined as ;

F1score = 2 ∗ (precision ∗ recall)/(precision + recall) (7)

It is a numeric value between 0 and 1, with 1 representing the perfect value.
• Area Under Curve (AUC) is a popular overall model performance evaluation, es-

pecially for rating binary classifiers in the presence of class imbalance. Receiver
operating characteristic (ROC) equals to AUC. To generate the ROC curve, we plotted
the TPrate against the false positive rate FPrate, which is calculated as follows:

TPrate = TP/(TP + FN) (8)

FPrate = FP/(FP + TN) (9)

It should be noted that higher AUC values imply a better ROC curve and, thus
resulting in better performance.

3. Results

The ROC curve and its AUC, TPrate, and TNrate of the evaluated RUSBoost prediction
model on moderate TBI data were shown in Table 4. The ROC curve for each frequency
band computed from the absolute PSD is shown in Figures 3 and 4. In most cases, the AUC
value ranges from 0.5 to 1, where 0.5 means the algorithm performs the same as the chances
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of flipping a coin. The AUC values were low in absolute PSD of β (i.e., AUCβ = 0.51) (i.e.,
see Figure 4b) and γ (i.e., AUCγ = 0.54) (i.e., see Figure 4c) bands; indicating that the TPrate
and TNrate of these frequencies bands were low (i.e., TPrateβ = 40.0%, TNrateβ = 54.5%
(i.e., see Figure 4e); TPrateγ = 80.0%, TNrateγ = 54.5% (i.e., see Figure 4f). The absolute
PSD in δ solely achieved the most significant prediction performance with AUCδ values
was 0.75 (i.e., see Figure 3a), demonstrating that our proposed RUSBoost prediction model
is perfect for dealing with our imbalanced dataset distributions. The AUC values of
absolute PSD in θ had AUCθ = 0.71 (i.e., see Figure 3b), and α had AUCα = 0.73 (i.e., see
Figure 4a), respectively. The TPrate and TNrate of absolute PSD in δ (i.e., TPrateδ = 80.0%,
TNrateδ = 63.6%) and α (i.e., TPrateα = 80.0%, TNrateα= 59.1%) bands were high ((i.e., see
confusion matrix in Figures 3c and 4d); indicating their good prediction performance at
discriminating the TBI outcomes.

Figure 3. ROC curve of (a) δ and (b) θ bands and confusion matrix of (c) δ and (d) θ bands shown the
ability of RUSBoost prediction model to discriminate between poor and good outcomes on TBI data
based on absolute PSD, as measured by AUC.

The results suggested that the prediction of recovery based on the RUSBoost algo-
rithms had efficiently distinguished between patients with poor and good outcomes with
higher AUC values in absolute PSD of δ, α, and θ bands. The absolute PSD in δ, α, and
θ bands provided the most significant predictive value and were the best predictors for
predicting the recovery outcomes of moderate TBI.
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Table 4. RUSBoost prediction model based on absolute PSD in five EEG frequency bands.

Absolute TP FN TN FP TPrate TNrate AUC G-Mean F1 Score
PSD (%) (%) (%)

δ 4 1 14 8 80.0 63.6 0.75 71.33 0.5
θ 4 1 14 8 80.0 63.6 0.71 71.33 0.5
α 4 1 13 9 80.0 59.1 0.73 68.76 0.4
β 2 3 12 10 40.0 54.5 0.51 46.69 0.2
γ 4 1 12 10 80.0 54.5 0.54 66.33 0.4

Figure 4. ROC curve of (a) α, (b) β and (c) γ bands and confusion matrix of (d) α, (e) β and (f) γ bands
show the ability of RUSBoost prediction model to discriminate between good and poor outcomes on
TBI data based on absolute PSD, as measured by AUC.

The G-Mean is the most acceptable metric to replace the accuracy rate due to the
uneven distribution [54,55]. The accuracy rate is a traditional performance indicator for
a predictive model with a perfectly balanced class distribution [56]. Based on the results,
we found the G-Mean most suited for balancing poor and good outcome classes in terms
of total classification accuracy (see Table 4). More specifically, the RUSBoost prediction
model contributed the maximum G-Mean (%) and F1 scores in δ, θ (G-Mean (%) = 71.33),
meanwhile the G-Mean (%) and F1 scores in α (G-Mean (%) = 68.76) were at the above-
average level. The best G-Mean reflects a balanced prediction performance on both positive
(i.e. bad outcomes) and negative classes (i.e., favorable outcomes).

The F1 scores for the δ and θ bands were good, indicating that the F1 scores are insen-
sitive to FN, and therefore, it accurately measures the quality of an algorithm for predicting
the TP. The final PSD in the β (G-Mean (%) = 46.69) band indicates poor performance in
predicting the positive and negative classes. The absolute PSD resulted in higher AUC
values, and G-Mean above 68.7% suggested the suitability of RUSBoost to predict the
moderate TBI outcomes.

In addition, for imbalanced dataset problems, the present study provides a perfor-
mance comparison of three different ML classifiers (i.e., support vector machine (SVM),
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DT, and k-nearest neighbor (k-NN)) to predict the outcomes of moderate TBI. The results
confirmed a superiority in AUC value and a balanced classification performance (i.e.,
G-Mean (%)) for the RUSBoost over other algorithms. The standard rule-based classifiers
(i.e., SVM, DT, and k-NN) had demonstrated algorithm discrimination between a single
class of positive and negative (see Table 5 (DT), Table 6 (SVM) and Table 7 (k-NN) for
prediction performance comparison).

Table 5. Comparison of prediction outcomes results for DT.

Freq.Bands TPrate(%) TNrate(%) G-Mean (%) F1 Score AUC

δ 20.0 77.3 39.3 0.1 0.49
θ 20.0 81.8 40.45 0.1 0.53
α 0.0 68.2 0.0 0.0 0.30
β 20.0 81.8 40.45 0.1 0.70
γ 20.0 72.7 38.13 0.1 0.55

Table 6. Comparison of prediction outcomes results for SVM.

Freq.Bands TPrate(%) TNrate(%) G-Mean (%) F1 Score AUC

δ 20.0 63.6 35.7 0.1 0.38
θ 20.0 59.1 34.4 0.1 0.41
α 0.0 86.36 0.0 0.0 0.42
β 0.0 77.3 0.0 0.0 0.30
γ 20.0 68.2 36.9 0.1 0.57

Table 7. Comparison of prediction outcomes results for k-NN.

Freq.Bands TPrate(%) TNrate(%) G-Mean (%) F1 Score AUC

δ 40.0 77.3 55.6 0.2 0.59
θ 40.0 72.7 53.9 0.2 0.56
α 40.0 77.3 55.6 0.2 0.59
β 40.0 81.8 57.2 0.2 0.61
γ 40.0 86.4 58.7 0.2 0.63

In summary, the results showed that the RUSBoost prediction model was the most
suitable for predicting recovery of moderate TBI patients. The AUC values were low in
absolute PSD of the following models: k-NN, DT, and SVM; representing that the TPrate,
TNrate and G-Mean (%) and F1 scores of these models are low for all frequency bands. The
AUC values of absolute PSDβ of the DT algorithm were higher than the AUC of the RUS-
Boost, SVM, and k-NN. However, it could not indicate its superior prediction performance
because the classifier was biased towards a negative class (i.e., good outcomes).

4. Discussion

In the previous section, we classified the outcomes of moderate TBI using DT, SVM,
k-NN, and the RUSBoost. The recovery models were computed based on the absolute PSD
in five sub-bands to evaluate the most successful qEEG features in predicting TBI outcomes.
We discovered that the RUSBoost prediction model generally outperforms the the DT,
SVM, and k-NN, considering only the optimal total accuracy rather than the distribution
across different classes. However, this condition may be explained because a classification
algorithm that tries to maximize accuracy to meet its objective rule will produce an accuracy
of 99% just by correctly classifying all samples from the larger class but misclassifying one
sample of the smaller class. As illustrated in Figure 5 and the AUC values in Tables 5–7,
the ensemble decision trees (i.e., RUSBoost) outperformed the individual classifier.
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Figure 5. An evaluation of the ROC curves of proposed models in predicting recovery of moderate
TBI patients using the RUSBoost, SVM, k-NN and DT in δ band. The ROC curve shows the most
significant absolute PSD in δ band of RUSBoost model.

The RUSBoost adopted a hybrid approach from AdaBoost [57] (i.e., adaptive boosting)
algorithms that use the combination of sampling and boosting, aiming to achieve higher
performance for the dataset with the class imbalance problem [51,58]. As seen from the
dataset we used in this study, it is unbalanced, which is why the RUSBoost classifier
achieved the highest prediction performance. The learning strategy of the RUSBoost al-
gorithms offered advantages in improving the prediction of the poor outcomes with a
slight decrease in the good outcomes class. The undersampling strategy, which balances
the class distribution in the dataset, is highly beneficial in learning from skewed training
data [40,55]. In sleep spindles detection [59], the RUSBoost algorithms enable an auto-
matic sleep spindles detection with an F-measure of 0.70 and sensitivity of 76.9% without
requiring threshold calibration. RUSBoost used majority voting of weak classifiers for
discrimination spindles from the extracted EEG features (i.e., synchrosqueezeed wavelet
transform (SST)).

In comparison to non-sampling techniques [12], recent findings imply that the hybrid
strategy with resampling (i.e., undersampling) and boosting can significantly improve
model performance [34,60–62]. The ensemble DT technique is more flexible and less prone
to overfitting (i.e., has a high bias but low variance), demonstrating the generalization
power of RUSBoost in predicting outcomes. The present results support the previously
reported development of a predictive model using the ensemble DT and resampling is
better suited in predicting TBI outcomes than using an individual algorithm (i.e., DT, SVM
and k-NN) [40].

In this work, the automated artifacts rejection method, which is the MARA, was per-
formed on our continuous EEG of moderate TBI data to separate the contributing sources
to the scalp EEG [47]. Artifacts in EEG signals might make interpretation difficult and
lead to incorrect analytical judgments. Numerous algorithms and preprocessing pipelines
have been developed to address the problem of artifact rejection in electrophysiological
data [32,49,63–67]. Each of these algorithms has its own set of strengths and focuses on
a different area of artifact rejection than the others. In recent studies, Pedroni et al. [68]
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suggested that applying a preprocessing pipeline of algorithms to detect defective channels
in combination with MARA, which is an ICA-based artifact rejection method, effectively
removes a large extent of artifacts.

The MARA was initially designed to distinguish the ICA components that origi-
nated from the brain and non-brain sources and reject artifactual ICA components in EEG
data [46] . The development of the prediction outcomes algorithm is based on an automated
EEG artifact rejection method (i.e., MARA) shown to be efficient in identifying artifacts
with intelligence ICs selection and provided a good generalization performance of the
RUSBoost prediction model. The model obtained the highest prediction performance in
δ band (i.e., AUC = 0.75, G-Mean (%) = 71.33) compared to other classifiers. Our results
support the claims made in the literature [33,48,68,69] that the automated ICA-artifact
preprocessing pipeline offered substantial benefits by increasing consistency and efficiency
for classifying artifacts or non-artifacts ICs. On the contrary, Alam et al. [49] have found
that the selection of artifact removal had distinct effects on the PSD calculation. However,
the recent findings in Noor et al. [40] showed that the artifacts rejection by the automatic
continuous rejection and experts confirmation provided promising results in predicting
TBI outcomes of specific frequency bands. Although an automated artifacts rejection can
help isolate between the neural or non-neural source components from ICA decomposition,
subjective method (i.e., visual classification by experts) is still typically advisable [33,70].

Designing a clinically useful predictive model is difficult due to the high complexity
of EEG measurements. Preprocessing and feature extraction must be done carefully to
ensure that high-quality discriminative features can be retrieved to attain a high model
performance. Therefore, feature selection and suitable ML algorithms are required to
deduce the significant qEEG predictors. Poor data extraction thereby directly affects the
accuracy of classification. The great majority of research included in the review [23,28]
found that identifying the most informative qEEG that characterizes the recovery outcome
level is crucial to ensure early targeted prediction after TBI post-injury. More recently,
Noor et al. [40] have demonstrated that qEEG features of PSD in δ, θ, α, and γ showed
promising results in the prediction of recovery outcome of moderate TBI patients. A key
strength is that the frequency distribution of neuronal activity provides information on the
patient level of arousal, restful alertness, and general capacity for focus mental activity [8].
In support, the specific qEEG features are confirmed as invaluable predictors of recovery
in TBI, which can complement demographic and clinical information [4,9,71,72].

Several studies have suggested that spectrum EEG features may predict the level of
consciousness in patients suffering from the disorder of consciousness (DOC) following
severe TBI. In comparative studies, a significant reduction in the amplitude oscillations
of the α and β bands among patients with DOC but there was a concurrent improve-
ment in θ and δ amplitude for fully conscious participants [73–75]. The systematic review
by Pauli et al. [22] examined a number of studies exploring continuous EEG as a prog-
nostic measure in DOC following TBI. The resting-state EEG (i.e., continuous EEG) is
particularly promising within the 12-month post-injury. Several studies have shown that
the α power and variability are significant for modeling the functional outcomes during
periods [72,76,77].

The α and δ power were extracted from the EEG to be utilized in the random forest
(RF) [9], generalized linear model (GLM) [11], and linear regression (LR) [10,72] training
features in the previous studies to predict outcomes in severe TBI patients. They have a
lower classification performance than our proposed model method (i.e., RUSBoost) [40].
However, we believe this cannot be a fair indicator for a method comparison because their
proposed algorithms were mainly suitable for balanced TBI data distribution. The simi-
larities in our findings suggest that modeling prediction models based on computational
EEG approaches (i.e., ML and qEEG features) allowed the researchers to identify the most
explanatory predictors for a reliable TBI outcome prediction. In support of this, ref. [74]
found that spectral density in a specific frequency band provides a strong connection
between severe TBI outcomes. The results highlighted that spectral density at different
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frequency bands has the utmost predictive value, especially two to three months after
injury [9–11,72]. Overall, this work demonstrates that the association between PSD features
in a specific frequency and the clinical outcomes (i.e., GOS scores) is robust enough to
develop a reliable TBI prediction outcomes model with multiple combinations of qEEG
features and different ML approaches.

5. Conclusions

In conclusion, this study presented a RUSBoost prediction outcomes model that inte-
grates MARA ICA-based into the resting-state eyes-closed EEG preprocessing of moderate
TBI data to eliminate artifacts automatically. The prediction performance obtained and
reported in this paper is higher than previous studies [8–10,66] in predicting TBI outcomes;
however, the model’s performance is lower than our prior work [40]. A robust model
performance requires rigorous EEG preprocessing and feature extraction techniques to
ensure the retrieval of high-quality discriminative features. In addition to that, distortions
in EEG signals can significantly diminish the trustworthiness of clinical decisions based on
the signals. We believe that the development of a moderate TBI outcomes prediction model
based on MARA for automatic tracking and eliminating artifactual ICA components has
been demonstrated to be effective in identifying artifacts with intelligence ICs selection,
thus providing a good generalization performance of the RUSBoost prediction model. The
robustness of RUSBoost algorithms (i.e., ensembles DT) compensated for the inadequacies
of single classifiers (i.e., DT, SVM, and k-NN) in classifying the outcomes even with small
samples and a minimal set of qEEG features (i.e., PSD). Future research could involve
predictive modeling with various parameters (e.g., coherence, connectivity, relative power,
spectrum asymmetry) to classify the unique qEEG properties to moderate TBI outcomes.

Author Contributions: Conceptualization, designed methodology and implemented the algorithm,
writing—original draft preparation and revision, N.S.E.M.N.; proposed the idea, editing and super-
vision, H.I.; writing—review and revision, editing, M.H.C.L.; project administration and funding
acquisition, J.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Higher Education (MoHE), Malaysia, via the
Trans-disciplinary Research Grant Scheme (TRGS) with grant number TRGS/1/2015/USM/01/6/2
and in part by MoHE through Skim Latihan Akademik Bumiputra (SLAB).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Human Research Ethics Committee, Universiti Sains
Malaysia (USM), with an approval number USM/JEPeM/1511045.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Acknowledgments: The authors would like to thank Hazim Omar, Muhammad Ridda for collecting
the experimental data, Diana Norma Fitzrol for providing the GOS scores for clinical TBI outcomes
assessments and Lai Chi Qin for discussion on algorithm development.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moppett, I.K. Traumatic brain injury: Assessment, resuscitation and early management. Br. J. Anesth. 2007, 99, 18–31.

[CrossRef] [PubMed]
2. MRC CRASH Trial Collaborators. Predicting outcome after traumatic brain injury: Practical prognostic models based on large

cohort of international patients. BMJ 2008, 336, 425–429. [CrossRef] [PubMed]
3. Noor, N.S.E.M.; Ibrahim, H. Predicting outcomes in patients with traumatic brain injury using machine learning models.

In Proceedings of the Intelligent Manufacturing and Mechatronics, Melaka, Malaysia, 8 July 2019; Jamaludin, Z., Mokhtar, M.N.A.,
Eds.; Springer: Singapore, 2019; pp. 12–20.

4. Lee, H.; Mizrahi, M.A.; Hartings, J.A.; Sharma, S.; Pahren, L.; Ngwenya, L.B.; Moseley, B.D.; Privitera, M.; Tortella, F.C.;
Foreman, B. Continuous electroencephalography after moderate to severe traumatic brain injury. Crit. Care Med. 2019, 47,
574–582. [CrossRef]

http://doi.org/10.1093/bja/aem128
http://www.ncbi.nlm.nih.gov/pubmed/17545555
http://dx.doi.org/10.1136/bmj.39461.643438.25
http://www.ncbi.nlm.nih.gov/pubmed/18270239
http://dx.doi.org/10.1097/CCM.0000000000003639


Biomedinformatics 2022, 2 121

5. Maas, A.I.R.; Marmarou, A.; Murray, G.D.; Teasdale, S.G.M.; Steyerberg, E.W. Prognosis and clinical trial design in traumatic
brain injury: The IMPACT study. J. Neurotrauma 2007, 24, 232–238. [CrossRef]

6. Fidali, B.C.; Stevens, R.D.; Claassen, J. Novel approaches to prediction in severe brain injury. Curr. Opin. Neurol. 2020, 33, 669–675.
[CrossRef] [PubMed]

7. Emami, P.; Czorlich, P.; Fritzsche, F.S.; Westphal, M.; Rueger, J.M.; Lefering, R.; Hoffmann, M. Impact of Glasgow Coma Scale
score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: A retrospective,
multicenter cohort study. J. Neurosurg. 2017, 126, 760–767. [CrossRef]

8. Duncan, C.C.; Summers, A.C.; Perla, E.J.; Coburn, K.L.; Mirsky, A.F. Evaluation of traumatic brain injury: Brain potentials in
diagnosis, function, and prognosis. Int. J. Psychophysiol. 2011, 82, 24–40. [CrossRef]

9. Haveman, M.E.; Putten, M.J.A.M.V.; Hom, H.W.; Eertman-Meyer, C.J.; Beishuizen, A.; Tjepkema-Cloostermans, M.C. Pre-
dicting outcome in patients with moderate to severe traumatic brain injury using electroencephalography. Crit. Care 2019,
23, 401. [CrossRef]

10. Mikola, A.; Ratsep, I.; Sarkela, M.; Lipping, T. Prediction of outcome in traumatic brain injury patients using long-term qEEG
features. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,
Milan, Italy, 25–29 August 2015; pp. 1532–1535.

11. Stefan, S.; Schorr, B.; Lopez-Rolon, A.; Kolassa, I.-T.; Shock, J.P.; Rosenfelder, M.; Heck, S.; Bender, A. Consciousness indexing and
outcome prediction with resting-state EEG in severe disorders of consciousness. Brain Topogr. 2018, 31, 848–862. [CrossRef]

12. McNerney, M.W.; Hobday, T.; Cole, B.; Ganong, R.; Winans, N.; Matthews, D.; Hood, J.; Lane, S. Objective classification of mTBI
using machine learning on a combination of frontopolar electroencephalography measurements and self-reported symptoms.
Sports Med. Open 2019, 5, 14. [CrossRef]

13. Lai, C.Q.; Abdullah, M.Z.; Abdullah, J.M.; Azman, A.; Ibrahim, H. Screening of Moderate Traumatic Brain Injury from Power
Feature of Resting-State Electroencephalography using Support Vector Machine. In Proceedings of the 2nd International
Conference on Electronics and Electrical Engineering Technology, Penang, Malaysia, 25–27 September 2019; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 99–103.

14. Lai, C.Q.; Abdullah, M.Z.; Hamid, A.A.; Abdullah, J.M.; Azman, A.; Ibrahim, H. Moderate Traumatic Brain Injury Identification
from Power Spectral Density of Electroencephalography’s Frequency Bands using Support Vector Machine. In Proceedings of the
IEEE International Circuits and Systems Symposium (ICSyS), Kuantan, Malaysia, 18–19 September 2019; pp. 1–4.

15. Lai, C.Q.; Ibrahim, H.; Hamid, A.I.A.; Abdullah, J.M. Classification of Non-Severe Traumatic Brain Injury from Resting-State EEG
Signal Using LSTM Network with ECOC-SVM. Sensors 2020, 20, 5234. [CrossRef]

16. Lai, C.Q.; Ibrahim, H.; Abdullah, M.Z.; Azman, A.; Abdullah, J.M. Detection of moderate traumatic brain injury from resting-state
eye-closed electroencephalography. Comput. Intell. Neurosci. 2020, 2020, 8923906. [CrossRef] [PubMed]

17. Lai, C.Q.; Ibrahim, H.; Abdullah, J.M.; Azman, A.; Abdullah, M.Z. Convolutional Neural Network Utilizing Error-Correcting
Output Codes Support Vector Machine for Classification of Non-Severe Traumatic Brain Injury From Electroencephalogram
Signal. IEEE Access 2021, 9, 24946. [CrossRef]

18. Brink, R.L.V.; Nieuwenhuis, S.; Boxtel, G.J.M.V.; Luijtelaar, G.V.; Eilander, H.J.; Wijnen, V.J.M. Task-free spectral EEG dynamics
track and predict patient recovery from severe acquired brain injury. Neuroimage Clin. 2018, 17, 43–52. [CrossRef] [PubMed]

19. Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency
domains. ISRN Neurosci. 2014, 2014, 1–7. [CrossRef] [PubMed]

20. Mushkudiani, N.A.; Hukkelhoven, C.W.P.M.; Hernández, A.V.; Murray, G.D.; Choi, S.C.; Maas, A.I.R.; Steyerberg, E.W. A
systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury
outcomes. J. Clin. Epidemiol. 2008, 61, 331–343. [CrossRef]

21. Rapp, P.E.; Keyser, D.O.; Albano, A.; Hernandez, R.; Gibson, D.B.; Zambon, R.A.; Hairston, W.D.; Hughes, J.D.; Krystal, A.;
Nichols, A.S. Traumatic brain injury detection using electrophysiological methods. Front. Hum. Neurosci. 2015, 9, 11. [CrossRef]

22. Pauli, R.; O’Donnell, A.; Cruse, D. Resting-State Electroencephalography for Prognosis in Disorders of Consciousness Following
Traumatic Brain Injury. Front. Neurol. 2020, 11, 586945. [CrossRef]

23. Noor, N.S.E.M.; Ibrahim, H. Machine learning algorithms and quantitative electroencephalography predictors for outcome
prediction in traumatic brain injury: A systematic review. IEEE Access 2020, 8, 102075–102092. [CrossRef]

24. Ramos-Lima, L.F.; Waikamp, V.; Salgado, T.A.; Passos, I.C.; Freitas, L.H.M. The use of machine learning techniques in trauma-
related disorders: A systematic review. J. Psychiatr. Res. 2020, 121, 159–172. [CrossRef]

25. Subasi, A. Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach, 1st ed.;
Academic Press: Cambridge, MA, USA, 2019; p. 456.

26. Sakai, K.; Yamada, K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. J. Jpn. Rad. 2019, 37,
34–72. [CrossRef]

27. Feng, J.-Z.; Wang, Y.; Peng, J.; Sun, M.-W.; Zeng, J.; Jiang, H. Comparison between logistic regression and machine learning
algorithms on survival prediction of traumatic brain injuries. J. Crit. Care 2019, 54, 110–116. [CrossRef] [PubMed]

28. Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.L.D.; Smith, T.R.; Arnaout, O. Machine
Learning and neurosurgical outcome prediction: A systematic review. World Neurosurg. 2018, 109, 476–486.e1. [CrossRef]

29. Celtikci, E. A systematic review on machine learning in neurosurgery: The future of decision-making in patient care. Turk.
Neurosurg. Soc. 2018, 28, 167–173. [CrossRef] [PubMed]

http://dx.doi.org/10.1089/neu.2006.0024
http://dx.doi.org/10.1097/WCO.0000000000000875
http://www.ncbi.nlm.nih.gov/pubmed/33105151
http://dx.doi.org/10.3171/2016.1.JNS152385
http://dx.doi.org/10.1016/j.ijpsycho.2011.02.013
http://dx.doi.org/10.1186/s13054-019-2656-6
http://dx.doi.org/10.1007/s10548-018-0643-x
http://dx.doi.org/10.1186/s40798-019-0187-y
http://dx.doi.org/10.3390/s20185234
http://dx.doi.org/10.1155/2020/8923906
http://www.ncbi.nlm.nih.gov/pubmed/32256555
http://dx.doi.org/10.1109/ACCESS.2021.3056724
http://dx.doi.org/10.1016/j.nicl.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/29527471
http://dx.doi.org/10.1155/2014/730218
http://www.ncbi.nlm.nih.gov/pubmed/24967316
http://dx.doi.org/10.1016/j.jclinepi.2007.06.011
http://dx.doi.org/10.3389/fnhum.2015.00011
http://dx.doi.org/10.3389/fneur.2020.586945
http://dx.doi.org/10.1109/ACCESS.2020.2998934
http://dx.doi.org/10.1016/j.jpsychires.2019.12.001
http://dx.doi.org/10.1007/s11604-018-0794-4
http://dx.doi.org/10.1016/j.jcrc.2019.08.010
http://www.ncbi.nlm.nih.gov/pubmed/31408805
http://dx.doi.org/10.1016/j.wneu.2017.09.149
http://dx.doi.org/10.5137/1019-5149.JTN.20059-17.1
http://www.ncbi.nlm.nih.gov/pubmed/28481395


Biomedinformatics 2022, 2 122

30. Liu, N.T.; Salinas, J. Machine learning for predicting outcomes in trauma. Turk. Neurosurg. Soc. 2017, 48, 504–510. [CrossRef] [PubMed]
31. Saeidi, M.; Karwowski, W.; Farahani, F.V.; Fiok, K.; Taiar, R.; Hancock, P.A.; Al-Juaid, A. Neural Decoding of EEG Signals with

Machine Learning: A Systematic Review. Brain Sci. 2021, 11, 1525. [CrossRef] [PubMed]
32. Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Brain Sci. 2019, 19, 987. [CrossRef]
33. Radüntz, T.; Scouten, J.; Hochmuth, O.; Meffert, B. EEG artifact elimination by extraction of ICA-component features using image

processing algorithms. J. Neurosci. Methods 2015, 243, 84–93. [CrossRef] [PubMed]
34. Khoshnevis, S.A.; Sankar, R. Classification of the stages of Parkinson’s disease using novel higher-order statistical features of EEG

signals. Neural Comput. Appl. 2021, 33, 7615–7627. [CrossRef]
35. Barros, A.K.; Vigário, R.; Jousmaki, V.; Ohnishi, N. Extraction of event-related signals from multichannel bioelectrical measure-

ments. IEEE Trans. Biomed. Eng. 2000, 47, 583–588. [CrossRef]
36. Lee, S.; Zhao, X.; Davis, K.A.; Topjian, A.A.; Litt, B.; Abend, N.S. Quantitative EEG predicts outcomes in children after cardiac

arrest. Neurology 2019, 92, e2329–e2338. [CrossRef]
37. Vigário, R.N. Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol.

1997, 103, 395–404. [CrossRef]
38. Vigário, R.; Sarela, J.; Jousmiki, V.; Hamalainen, M.; Oja, E. Independent component approach to the analysis of EEG and MEG

recordings. IEEE Trans. Biomed. Eng. 2000, 47, 589–593. [CrossRef]
39. Romero, S.; Mananas, M.; Clos, S.; Gimenez, S.; Barbanoj, M. Reduction of EEG artifacts by ICA in different sleep stages. In

Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Cat. No.
03CH37439, Cancun, Mexico, 17–21 September 2003; pp. 675–2678.

40. Noor, N.S.E.M.; Ibrahim, H.; Lah, M.H.C.; Abdullah, J.M. Improving Outcome Prediction for Traumatic Brain Injury
From Imbalanced Datasets Using RUSBoosted Trees on Electroencephalography Spectral Power. IEEE Access 2021, 9,
121608–121631. [CrossRef]

41. Jennett, B.; Snoek, J.; Bond, M.R.; Brooks, N. Disability after severe head injury: Observations on the use of the glasgow outcome
scale. J. Neurol. Neurosurg. Psychiatry 1981, 44, 285–293. [CrossRef] [PubMed]

42. Jennett, B.; Snoek, J.; Bond, M.R.; Brooks, N. Assessment of outcome after severe brain damage: A practical scale. J. Neurol.
Neurosurg. 1975, 305, 480–484. [CrossRef]

43. Lai, C.Q.; Ibrahim, H.; Abdullah, M.Z.; Abdullah, J.M.; Suandi, S.A.; Azman, A. Arrangements of Resting State Electroencephalog-
raphy as the Input to Convolutional Neural Network for Biometric Identification. Comput. Intell. Neurosci. 2019, 2019, 7895924.
[CrossRef] [PubMed]

44. Delorme, A.; Mullen, T.; Kothe, C.; Acar, Z.A.; Bigdely-shamlo, N.; Vankov, A.; Makeig, S. EEGLAB , SIFT, NFT, BCILAB, and
ERICA: New Tools for Advanced EEG Processing. Comput. Intell. Neurosci. 2011, 2011, 130714. [CrossRef] [PubMed]

45. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent
component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]

46. Winkler, I.; Haufe, S.; Tangermann, M. Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG
Signals. Behav. Brain Funct. 2011, 7, 30. [CrossRef]

47. Winkler, I.; Brandl, S.; Horn, F.; Waldburger, E.; Allefeld, C.; Tangermann, M. Robust artifactual independent component
classification for BCI practitioners. J. Neural Eng. 2014, 11, 035013. [CrossRef] [PubMed]

48. Haresign, I.M.; Phillips, E.; Whitehorn, M.; Noreika, V.; Jones, E.J.H.; Leong, V.; Wass, S.V. Automatic classification of ICA
components from infant EEG using MARA. Dev. Cogn. Neurosci. 2021, 52, 1–43.

49. Alam, R.-U.; Zhao, H.; Goodwin, A.; Kavehei, O.; McEwan, A. Differences in Power Spectral Densities and Phase Quantities Due
to Processing of EEG Signals. Sensors 2020, 20, 6285. [CrossRef]

50. Seiffert, C.; Khoshgoftaar, T.M.; Hulse, J.V.; Napolitano, A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE
Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 185–197. [CrossRef]

51. Seiffert, C.; Khoshgoftaar, T.M.; Hulse, J.V.; Napolitano, A. RUSBoost: Improving classification performance when training data
is skewed. In Proceedings of the 19th International Conference on Pattern Recognition, Tampa, FL, USA 8–11 December 2008;
pp. 185–197.

52. Ahlawat, K.; Chug, A.; Singh, A.P. Benchmarking framework for class imbalance problem using novel sampling approach for big
data. Int. J. Syst. Assur. Eng. Manag. 2019, 10, 824–835. [CrossRef]

53. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach.
Learn. Technol. 2011, 2, 63.

54. Chen, W.; Liu, G.; Su, Y.; Zhang, Y.; Lin, Y.; Jiang, M.; Huang, H.; Ren, G.; Yan, J. EEG signal varies with different outcomes
in comatose patients: A quantitative method of electroencephalography reactivity. J. Neurosci. Methods 2020, 342, 108812.
[CrossRef] [PubMed]

55. Tanha, J.; Abdi, Y.; Samadi, N.; Razzaghi, N.; Asadpour, M. Boosting methods for multi-class imbalanced data classification: An
experimental review. J. Big Data 2020, 7, 1–47. [CrossRef]

56. Ali, A.; Shamsuddin, S.M.; Ralescu, A.L. Classification with class imbalance problem: A review. Int. J. Soft Comput. Its Appl. 2015,
7, 1–30.

57. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the International Conference of Machine
Learning, Bari, Italy, 22 January 1996; pp. 148–156.

http://dx.doi.org/10.1097/SHK.0000000000000898
http://www.ncbi.nlm.nih.gov/pubmed/28498299
http://dx.doi.org/10.3390/brainsci11111525
http://www.ncbi.nlm.nih.gov/pubmed/34827524
http://dx.doi.org/10.3390/s19050987
http://dx.doi.org/10.1016/j.jneumeth.2015.01.030
http://www.ncbi.nlm.nih.gov/pubmed/25666892
http://dx.doi.org/10.1007/s00521-020-05505-2
http://dx.doi.org/10.1109/10.841329
http://dx.doi.org/10.1212/WNL.0000000000007504
http://dx.doi.org/10.1016/S0013-4694(97)00042-8
http://dx.doi.org/10.1109/10.841330
http://dx.doi.org/10.1109/ACCESS.2021.3109780
http://dx.doi.org/10.1136/jnnp.44.4.285
http://www.ncbi.nlm.nih.gov/pubmed/6453957
http://dx.doi.org/10.1016/S0140-6736(75)92830-5
http://dx.doi.org/10.1155/2019/7895924
http://www.ncbi.nlm.nih.gov/pubmed/31281339
http://dx.doi.org/10.1155/2011/130714
http://www.ncbi.nlm.nih.gov/pubmed/21687590
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1186/1744-9081-7-30
http://dx.doi.org/10.1088/1741-2560/11/3/035013
http://www.ncbi.nlm.nih.gov/pubmed/24836294
http://dx.doi.org/10.3390/s20216285
http://dx.doi.org/10.1109/TSMCA.2009.2029559
http://dx.doi.org/10.1007/s13198-019-00817-6
http://dx.doi.org/10.1016/j.jneumeth.2020.108812
http://www.ncbi.nlm.nih.gov/pubmed/32565224
http://dx.doi.org/10.1186/s40537-020-00349-y


Biomedinformatics 2022, 2 123

58. Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 42, 463–484. [CrossRef]

59. Kinoshita, T.; Fujiwara, K.; Kano, M.; Ogawa, K.; Sumi, Y.; Matsuo, M.; Kadotani, H. Sleep Spindle detection using RUSBoost and
synchrosqueezed wavelet transform. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 390–398. [CrossRef] [PubMed]

60. Rahman, M.M.; Bhuiyan, M.I.H.; Hassan, A.R. Sleep stage classification using single-channel EOG. Comput. Biol. Med. 2018, 102,
211–220. [CrossRef] [PubMed]

61. Rahman, M.M.; Bhuiyan, M.I.H.; Hassan, A.R. Automated identification of sleep states from EEG signals by means of ensemble
empirical mode decomposition and random under sampling boosting. Comput. Methods Programs Biomed. 2017, 140, 201–210.

62. Tahir, M.A.U.H.; Asghar, S.; Manzoor, A.; Noor, M.A. A classification model for class imbalance dataset using genetic program-
ming. IEEE Access 2019, 7, 71013–71037. [CrossRef]

63. Tahir, M.A.U.H.; Asghar, S.; Manzoor, A.; Noor, M.A. ADJUST: An automatic EEG artifact detector based on the joint use of
spatial and temporal features. Psychophysiology 2011, 48, 229–240.

64. Li, Y.; Wang, P.T.; Vaidya, M.P.; Liu, Y.C.; Slutzky, M.W.; Do, A.H. A novel algorithm for removing artifacts from EEG data. In
Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Honolulu, HI, USA, 18–21 July 2018; pp. 229–240.

65. Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12, 031001. [CrossRef]
66. Zhang, C.; Tong, L.; Zeng, Y.; Jiang, J.; Bu, H.; Yan, B.; Li, J. Automatic Artifact Removal from Electroencephalogram Data Based

on A Priori Artifact Information. BioMed Res. Int. 2015, 2015, 720450. [CrossRef]
67. Bilal, M.; Rizwan, M.; Saleem, S.; Khan, M.M.; Alkatheir, M.S.; Alqarni, M. Automatic seizure detection using multi-resolution

dynamic mode decomposition. IEEE Access 2019, 7, 61180–61194. [CrossRef]
68. Pedroni, A.; Bahreini, A.; Langer, N. Automagic: Standardized preprocessing of big EEG data. NeuroImage 2019, 200,

460–473. [CrossRef]
69. Trigui, O.; Daoud, S.; Ghorbel, M.; Dammak, M.; Mhiri, C.; Hamida, A.B. Removal of eye blink artifacts from EEG signal using

morphological modeling and orthogonal projection. Signal Image Video Process. 2021, 14, 1–9. [CrossRef]
70. Song, S.; Nordin, A.D. Mobile Electroencephalography for Studying Neural Control of Human Locomotion. Front. Hum. Neurosci.

2021, 15, 1–9. [CrossRef] [PubMed]
71. Chennu, S.; Annen, J.; Wannez, S.; Thibaut, A.; Chatelle, C.; Cassol, H.; Martens, G.; Schnakers, C.; Gosseries, O.; Menon, D. Brain

networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain 2017, 140, 2120–2132.
[CrossRef] [PubMed]

72. Tolonen, A.; Särkelä, M.O.K.; Takala, R.S.K.; Katila, A.; Frantzén, J.; Posti, J.P.; Müller, M.; van Gils, M.; Tenovuo, O. Quantitative
EEG parameters for prediction of outcome in severe traumatic brain injury: Development study. Clin. EEG Neurosci. 2018, 49,
248–257. [CrossRef]

73. Chennu, S.; Finoia, P.; Kamau, E.; Allanson, J.; Williams, G.B.; Monti, M.M.; Noreika, V.; Arnatkeviciute, A.; Canales-Johnson, A.;
Olivares, F.; et al. Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness. PLoS Comput. Biol. 2014, 10,
e1003887. [CrossRef] [PubMed]

74. Sharova, E.V.; Chelyapina, M.V.; Korobkova, E.V.; Kulikov, M.A.; Zaitsev, O.S. EEG-correlates of consciousness recovery after
traumatic brain injury. Zh. Vopr. Neirokhir. Im. N. N. Burdenko 2014, 78, 14–25.

75. Edlow, B.L.; Chatelle, C.; Spencer, C.A.; Chu, C.J.; Bodien, Y.G.; O’Connor, K.L.; Hirschberg, R.E.; Hochberg, L.R.; Giacino,
J.T.; Rosenthal, E.S. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain 2017, 140,
2399–2414. [CrossRef]

76. Schorr, B.; Schlee, W.; Arndt, M.; Bender, A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive
wakefulness syndrome. J. Neurol. 2017, 263, 937–953. [CrossRef] [PubMed]

77. Hebb, M.O.; McArthur, D.L.; Alger, J.; Etchepare, M.; Glenn, T.C.; Bergsneider, M.; Martin, N.; Vespa, P.M. Impaired percent alpha
variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after
human traumatic brain injury. J. Neurotrauma 2007, 24, 579–590. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TSMCC.2011.2161285
http://dx.doi.org/10.1109/TNSRE.2020.2964597
http://www.ncbi.nlm.nih.gov/pubmed/31944960
http://dx.doi.org/10.1016/j.compbiomed.2018.08.022
http://www.ncbi.nlm.nih.gov/pubmed/30170769
http://dx.doi.org/10.1109/ACCESS.2019.2915611
http://dx.doi.org/10.1088/1741-2560/12/3/031001
http://dx.doi.org/10.1155/2015/720450
http://dx.doi.org/10.1109/ACCESS.2019.2915609
http://dx.doi.org/10.1016/j.neuroimage.2019.06.046
http://dx.doi.org/10.1007/s11760-021-01947-w
http://dx.doi.org/10.3389/fnhum.2021.749017
http://www.ncbi.nlm.nih.gov/pubmed/34858154
http://dx.doi.org/10.1093/brain/awx163
http://www.ncbi.nlm.nih.gov/pubmed/28666351
http://dx.doi.org/10.1177/1550059417742232
http://dx.doi.org/10.1371/journal.pcbi.1003887
http://www.ncbi.nlm.nih.gov/pubmed/25329398
http://dx.doi.org/10.1093/brain/awx176
http://dx.doi.org/10.1007/s00415-016-8084-5
http://www.ncbi.nlm.nih.gov/pubmed/26984609
http://dx.doi.org/10.1089/neu.2006.0146
http://www.ncbi.nlm.nih.gov/pubmed/17439342

	Introduction
	Materials and Methods
	Outcome Assessment
	TBI Patients
	EEG Recordings
	EEG Data Preprocessing
	Data Preparation
	EEG Feature Extraction
	RUSBoost Prediction Model
	Evaluation in Imbalanced Dataset

	Results
	Discussion
	Conclusions
	References

