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Abstract: Deep learning techniques, such as convolutional neural networks (CNNs), generative
adversarial networks (GANs), and graph neural networks (GNNs) have, over the past decade,
changed the accuracy of prediction in many diverse fields. In recent years, the application of
deep learning techniques in computer vision tasks in pathology has demonstrated extraordinary
potential in assisting clinicians, automating diagnoses, and reducing costs for patients. Formerly
unknown pathological evidence, such as morphological features related to specific biomarkers, copy
number variations, and other molecular features, could also be captured by deep learning models.
In this paper, we review popular deep learning methods and some recent publications about their
applications in pathology.

Keywords: deep learning; machine learning; histopathology; computational pathology; convolu-
tional neural networks; generative adversarial networks

1. Introduction

With the development of artificial intelligence and machine learning techniques in the
past decade, many deep-learning-based computer vision models are playing important
roles in daily life, and have revolutionized various industries through their superior perfor-
mance and efficiency in prediction tasks, such as autopilot, machine translation, electronic
sports, and biometry [1–6]. Recently, these technologies have also shown their extraordinary
potential and capabilities in solving many complicated questions in the biomedical field
by analyzing massive amounts of biomedical data, such as protein structural predictions
with Alphafold which outperforms experimental results [7,8], and tumor segmentation in
MRI scans [1]. In particular, computational pathology, a discipline that involves the effort
of both pathologists and informaticians, has especially benefitted from the advancement
of deep learning in recent years [9–12]. Several models have also been demonstrated to
be useful in clinical diagnoses based on histopathology images [13–15]. In addition, some
model-extracted morphological features show correlations with features at a molecular
level, including single mutations and subtypes, most of which are previously unknown
to human pathologists and clinicians [14]. Here, we discuss these deep learning methods
from a technical perspective and summarize their successful applications in pathology
from recent publications.

2. Deep Learning Techniques
2.1. Convolutional Neural Networks

Deep learning is a type of machine learning method that is using a multi-layer per-
ceptron called artificial neural networks (ANN) [1,2,16]. Training a deep learning model
involves designing and selecting a neural network architecture, loss functions, and eval-
uation metrics, as well as tuning the hyperparameters of batch size, step size, and regu-
larization methods [1,2,17,18]. Convolutional neural networks (CNNs), variants of ANNs,
have proved their power in tackling various computer vision tasks, such as image classi-
fication, segmentation, and object detection [19–23]. The first modern CNN architecture,
LeNet5, was introduced by Yann LeCun et al. in 1998 [24]. This gradient-based six-layer
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convolutional neural network shows its power in recognizing hand-written digits and
characters [24]. However, the development of CNNs was restricted by limited computa-
tional compacities and resources for over a decade. The advancement of computational
hardware in recent years, especially graphical processing units (GPUs) and tensor pro-
cessing units (TPUs), empowers the development of deep neural networks. Many CNN
architectures, such as AlexNet [25], VGG [26], InceptionNet [20], and ResNet [27], can be
trained into models that even outperform human beings in a computer vision classification
challenge called ImageNet, which contains 1.2 million high-resolution images of more than
1000 classes [19,27–30].

AlexNet was introduced in 2012. This architecture is much larger than the previous
LeNet5, with 650,000 neurons and 60 million trainable parameters packed into this design,
with 5 convolutional and 3 fully connected layers [25]. Overlapping max pooling, ReLU
nonlinearity, and dropout regularization are also incorporated. Due to the development
of hardware, AlexNet at that time could only be trained and run on two GPUs [25]. It
achieved a top-five test error rate of 15.3%, which made it the winner of the ILSVRC-
2012 competition and outperformed the second-best model by more than 10% [25]. The
overwhelming success of AlexNet drew people’s attention back to CNNs, and numerous
other new architectures, including the VGG, InceptionNet and ResNet, were developed in
the following years.

VGG architecture was introduced in 2014, when it won the ImageNet challenge [26].
Compared with AlexNet, VGG increases the depth of the model by adding more convo-
lutional layers with smaller convolutional filters [26]. However, with the introduction of
newer architectures in the following years, VGG architecture has lost its popularity due to
the gigantic size, high complexity to train, and less accurate performance.

InceptionV1 architecture was announced in 2015, with the name GoogLeNet, which
is a 22-layer deep CNN (Figure 1) [20]. The two key innovations that make Inception
architectures outstanding are the inception module and auxiliary classifier. The inception
module consists of multiple convolutional kernels with different sizes on the same layer [20].
This design allows the model to capture similar features of various sizes. Deep CNNs
are prone to overfitting and passing gradient updates through the entire network is hard,
which is often referred to as the vanishing gradient problem. By adding auxiliary classifiers
in the middle of the network, the auxiliary loss from the middle of the model is taken
in the final loss calculation, so that the gradients also represent the middle part of the
network [20]. InceptionV2 and InceptionV3 were introduced in 2016, which modified the
inception module by factorizing the larger kernels into a stack of smaller kernels to make
the architecture more computationally efficient [28]. In addition, InceptionV3 uses the
RMSProp optimizer and adds batch normalization into the auxiliary classifiers, significantly
improving the performance, with a top-five error of 3.57% and top-one error of 17.2% on
ImageNet, much better than a human [28]. InceptionV4 further refined the architecture by
adding reduction blocks and unifying the inception modules [29].

A major competitor of InceptionNet is Resnet, which applies the idea of residual con-
nection (Figure 2) [27]. In this architecture, each layer learns the residuals from the previous
layer with reference to the layer inputs [27]. The top-five error on ImageNet is 3.57%, which
is similar to the performance of InceptionV3 [27]. Interestingly, this residual connection
idea was later adapted by the InceptionNet team to develop InceptionResNetV1, a modified
version of InceptionV3, and InceptionResNetV2, a modified version of InceptionV4 [29].
Using the residual connection, InceptionResNetV2 achieved a markedly improved 3.1%
top-five error on ImageNet [29].
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Figure 1. Diagram of the inception module [19], containing 4 branches with convolutional kernels of
different sizes.

Figure 2. The concept of residual connection in ResNet [27]. Here, the middle 2 convolutional layers
are skipped by the residual connection.

2.2. Visualization of CNN Models

Ever since the introduction of deep neural networks, people have been eager to know
what their models have learned [31]. For image-based tasks with CNN models, visualizing
the captured features is the most straightforward way. Class activation mapping (CAM)
and saliency maps are two simple ways to visualize the learned features by projecting
the weights and gradients of the output layer back to the input image [32–34]. However,
these visualization methods are image-specific and will only roughly imply where the
models are focusing. In addition, many saliency methods have been criticized recently for
giving misleading visualization interpretations, and researchers are advised to use them
with caution [35]. To unveil the CNN models further, direct deconvolution and indirect
optimization are the two major approaches [36]. Deconvolution starts with finding an
image from the dataset that triggers high activity to the neuron of interest and the gradient
of neuron activity is calculated [36]. In general, a deconvolutional network is a reversed
convolutional network, which maps features back to pixels [37]. However, deconvolution
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visualization can be noisy and may contain features that are not easy to interpret [38].
The indirect optimization approach can provide more accurate visualization than that
from deconvolution [39]. The algorithms optimize the colors of the pixels of an image to
maximize activation of the neuron of interest [38–40]. Once a set of optimized images for
many neurons has been obtained, a dimensional reduction visualization method, such as
UMAP and tSNE, can create an atlas that systematically displays the correlations of features
captured by different neurons at the same layer [38,41–43].

2.3. Graph Neural Networks

Graph neural networks (GNNs) are a type of neural network which deal with data
consisting of relational information [44]. Data with a non-Euclidean structure of informa-
tion, such as particle interactions, molecular structures, and object relationships in images,
could be modeled by GNNs [45]. In general, GNNs can be further classified into four cate-
gories: recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal
GNNs [45].

2.4. Generative Adversarial Networks

Generative adversarial networks (GANs) are a type of neural network consisting
of two networks that are trained at the same time [46]. The generator part is trained to
create fake images which tries to fool the discriminator, while the discriminator, trained
with both real and generated fake images, is able to distinguish them [46]. Many variants
of GANs have been applied to different tasks, such as style transfer, the visualization of
neural networks, and object segmentation [46–53]. Cycle-GAN, a GAN variant using cycle-
consistence loss to train two pairs of generators and discriminators simultaneously, has
become increasingly popular for image-to-image translation tasks [50]. Unlike conditional
GANs, which require two styles of paired data, cycle-GANs only need two sets of images
of two styles, which significantly lowers the data requirements while preserving the quality
of style transfer [50].

3. Applications in Computational Pathology
3.1. Classification and Feature Prediction

With the success of CNN models in various real-world computer-vision classification
tasks, researchers and scientists have also trained and tested these models in case scenarios
in biomedical fields, including pathology. These studies may involve training an existing
CNN architecture from scratch. However, it requires more data, and the data augmentation
techniques may not always be suitable for biomedical images. Alternatively, transfer
learning techniques, which freeze most of the parameters from a model often pre-trained
on ImageNet, have more advantages in terms of the data size requirements. For example, an
InceptionV3-based ImageNet pre-trained CNN model can achieve a high level of accuracy
in determining skin lesion malignancy and the possibility of melanoma [13,54].

In clinical settings, pathologists typically examine histopathology slides under micro-
scopes to provide diagnosis or other clinical information. Due to the development of digital
pathology equipment, digitizing histopathology slides is cheaper and more accessible. As
a result, more and more deidentified digital histopathology slide images have become
available in many databases. These images, often with extremely large dimensions, are
saved in special image file formats (e.g., .svs or .scn), which is a tuple of the same image
with different resolutions [55]. Thus, in order to fit these digital histopathology images
into CNN architectures, people usually develop their own customized pipelines with com-
monly used techniques, such as tiling the whole slide images (WSI) or sampling regions
of interest (ROIs) (Figure 3) [56]. In the past few years, classification CNN models trained
on histopathology images have shown phenomenally high performance and promising
clinical potential in predicting both morphological features and molecular features. The
visualization techniques also reveal results that often match pathologists’ expectations and
many models are generalizable to independent real-world clinical images. For example,
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Inception and InceptionResNet architectural models demonstrate high accuracy and other
statistical metrics in predicting subtypes and key biomarker mutations, such as STK11 and
EGFR, in non-small-cell lung cancer histopathology slides [14,57,58]. With the integration of
other critical clinical variables and images, immune response, G-CIMP, and telomere length
can be predicted in glioblastoma patients [59]. BRAF mutation, a well-known biomarker
in malignant melanoma, can also be accurately predicted with a CNN-based model [60].
Other molecular and genomic features, such as microsatellite instability (MSI), can be
predicted from histopathology slides with a reasonable accuracy as well [15]. The critical
gene expression level could also be inferred by applying these CNN classification models
to WSI [61]. Some contemporary models also show successful classification results in the
histopathology images of multiple tissue types [62,63]. These successful cases indicate that
CNNs represent a suitable approach to study the correlation between molecular features
and morphological features in histopathology slides, some of which may be undetectable
or often ignored by human pathologists.

Figure 3. Typical classification model pipeline for histopathology images.

However, histopathology images are quite different from the images in the Ima-
geNet because of their extremely large sizes, higher resolution, and sparser useful feature
distributions [11,55,64]. Deep learning architectures that could take advantage of these
characteristics are very likely to achieve better results, unveiling more interesting hidden
features in histopathology image classification tasks. For instance, a multi-resolution CNN
model, which takes advantage of the data structure of .svs and .scn image files, achieves
higher performance in classifying endometrial cancer molecular features than its single
resolution counterparts [65]. Weakly supervised techniques, such as multiple instance
learning, also demonstrate decent performance in classification tasks of histopathology
images, and have gained popularity in recent years [64,66,67]. The innovative idea of
bringing GNN models into solving histopathology classification problems develops greater
capacity in understanding the subtle relationships between features of different tissue
structures and at different locations on giant digital histopathology slides [68,69].

3.2. Segmentation

In addition to classification tasks, CNN models are also capable of segmenting cells
or tissue in histopathology slides [9,55]. The segmented cells or tissue could then be used
to train classification models for different prediction tasks, including the recurrence of
non-small-cell lung cancer [70] and endometrial tissue types [71]. A popular segmentation
CNN architecture used in the biomedical field is U-net, which has a similar structure to
an autoencoder [72]. A 3D version of U-net, which has 3D convolutional layers instead of
2D convolutional layers, is capable of segmenting volumetric images [22]. Modified U-net
architectures, such as USE-net [73], Focus U-net [74], and U-net with attention gate [75],
have achieved even better performance in various biomedical image segmentation tasks
than vanilla U-net. Other autoencoder-based methods have also achieved promising
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results in segmentation tasks of histopathology images, such as highlighting tumor regions
in liver cancer WSI [76]. Well-trained style transfer models are also viable options for
segmentation tasks [48]. With the introduction of GAN, using conditional-GAN or cycle-
GAN models and in combination with CNN models for segmentation problems is also
shown to be viable, with less stringent training data requirements [46,53,77]. Unlike most
classification models, the segmentation models can be more adaptive to different types of
tissues due to the similarities of the stained features and textures of the histopathology
slides [78]. Additionally, the evaluation metrics of these classification models can be
drastically different from those of the classification models. The segmentation labels are
also usually images; therefore, it is not easy to determine a binary prediction or even a
prediction score at the per-image level. Hence, typical statistical metrics, such as AUROC
or precision and recall, are often not capable of fairly evaluating segmentation tasks. Pixel-
level metrics, such as intersection over the union (IoU), also pose weaknesses because
it cannot objectively give relative importance to pixels of different regions. Object-level
metrics can be an optimal alternative, but the requirement of identifying all objects on the
label images prohibits its adoption in real-world model evaluation. Therefore, researchers
often use customized evaluation metrics with a combination of customized pixel weights,
dice loss, and IoU with specific thresholds [79,80].

4. Summary

In this review paper, we have introduced popular deep learning algorithms, CNN,
GNN, and GAN, and also highlighted mechanisms of how they work and how they can
be applied to solve clinical and scientific questions in pathology. We have also discussed
recent publications which show that these deep learning techniques have the potential to
be useful in classifying or segmenting histopathology imaging data. With the continuing
advancement of machine learning and deep learning techniques and the development of
hardware and software, it is realistic to believe that the integration of artificial intelligence
and pathology will become an even more attractive field to explore. Compared with
conventional computational methods, deep learning techniques generally run faster and
have much better performance in pathology tasks. Although one has to be rigorous and
ethical about translating these AI-based technologies into clinical settings, we still hold an
optimistic view that they will eventually revolutionize medical diagnosis processes and
really push the development of precision medicine forward. Above all, the ultimate goal
of introducing AI into pathology and biomedicine in general is to make healthcare more
accessible, affordable, and agreeable.

Nevertheless, there are still a number of limitations of the current studies and potential
obstacles which prevent these models from implementation in contemporary real-world
clinical settings. For example, only patterns with prior understanding from pathologists
can be used as reliable evidence for prediction, which significantly limits the tasks for
which deep learning models can be applied. In addition, the patient samples that can
be used as training, validation, and test sets are also very limited for each of the specific
tasks of interests. Moreover, detailed labels of medical images are often not available,
and the labeling standards among clinicians also vary significantly in different countries.
Additionally, the interpretability of deep learning models applied to histopathology images
remains debatable, especially among clinicians. More advanced self-supervised or semi-
supervised methods may solve some of these problems from a technical perspective in
the future.
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