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Abstract: Follicular lymphoma (FL) is one of the most frequent subtypes of non-Hodgkin lym-
phomas. This research predicted the prognosis of 184 untreated follicular lymphoma patients (LLMPP
GSE16131 series), using gene expression data and artificial intelligence (AI) neural networks. A new
strategy based on the random number generation was used to create 120 different and independent
multilayer perceptron (MLP) solutions, and 22,215 gene probes were ranked according to their av-
eraged normalized importance for predicting the overall survival. After dimensionality reduction,
the final neural network architecture included (1) newly identified predictor genes related to cell
adhesion and migration, cell signaling, and metabolism (EPB41L4B, MOCOS, SPIN2A, BTD, SRGAP3,
CTNS, PRB1, L1CAM, and CEP57); (2) the international prognostic index (IPI); and (3) other relevant
immuno-oncology, immune microenvironment, and checkpoint markers (CD163, CSF1R, FOXP3,
PDCD1, TNFRSF14 (HVEM), and IL10). The performance of this neural network was good, with an
area under the curve (AUC) of 0.89. A comparison with other machine learning techniques (C5 tree,
logistic regression, Bayesian network, discriminant analysis, KNN algorithms, LSVM, random trees,
SVM, tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R tree, random forest, and neural
network) was also made. In conclusion, the overall survival of follicular lymphoma was predicted
with a neural network with high accuracy.

Keywords: follicular lymphoma; gene expression; prognosis; overall survival; artificial intelligence;
multilayer perceptron; neural networks; deep learning; immuno-oncology; immune checkpoint

1. Introduction

Follicular lymphoma (FL) is a tumor of the immune system that is derived from ger-
minal center B lymphocytes, which include both centrocytes (small cleaved follicular center
cells), and centroblasts (large noncleaved cells). Histologically, it is also characterized by a
follicular (nodular) growth pattern in most of the cases [1,2]. Centrocytes and centroblasts
form the neoplastic follicles, which also include a tumoral immune microenvironment char-
acterized by a variable infiltration of T lymphocytes (CD4+ helper, PD-1 (PDCD1)+follicular
T helper cells (TFH cells), FOXP3+regulatory T (Tregs), and CD8+ cytotoxic), follicular
dendritic cells, and tumor-associated macrophages (M2-like TAMs) that express CD163,
CSF1R, and HVEM (TNFRSF14) [2–5].

The pathogenesis of FL is still not understood [3–5]. The overexpression of the BCL2
oncogene due to translocation t(14;18) is identified in around 85% of the cases, but other
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factors are involved in the neoplastic transformation, including acquired mutations such as
chromatin-modifying enzymes [6,7].

FL is the second most frequent indolent non-Hodgkin lymphoma (NHLs), which is
characterized by a survival without treatment of several years. FL accounts for 35% of
NHLs, with an estimated frequency of 3.18 cases per 100,000 people, and it affects middle-
aged individuals [5,8,9]. The clinical course of FL is variable. While some patients can
be left without treatment for five years or more, others who have a more disseminated
disease and rapid tumor growth require treatment sooner [2,5,10,11]. At the time of
diagnosis, the FL international prognostic index (FLIPI) [12] and the PRIMA prognostic
index (PRIMA-PI) [13] are two of the most frequently used measures [5]. Nevertheless,
identifying which patients are at higher risk of disease progression and exitus still requires
further investigation.

Artificial neural networks (ANNs) are a subset of machine learning that are inspired
by the human brain, simulating the neuronal network. The structure of ANNs comprises
an input layer, one or more hidden layers, and an output layer. Each node (the artificial
neuron) is connected to another and has an associated weight and threshold. There are
several types of ANNs. The perceptron is the oldest. This research used feedforward neural
networks, or multilayer perceptrons (MLPs) [14].

Because neural networks use random numbers, they create a different model by each
execution. If you wanted to replicate a result of a neural network accurately, four conditions
should be fulfilled: (1) the same data order, (2) the same variable order, (3) the same
procedure setting, and (4) the same initialization value for the random number generator.

The MLP procedure uses random number generation during the random assignment of
partitions, random subsampling for initialization of synaptic weights, random subsampling
for automatic architecture selection, and the simulated annealing algorithm used in weight
initialization and automatic architecture selection [15].

The main aim of the work was to take advantage of the random number generator to
obtain multiple (n = 120) different and independent neural network solutions. The MLP
procedures correlated the gene expression of follicular lymphoma with the clinicopatho-
logical features of the patients. The gene expression included all the genes of the array.
Using this approach, after averaging the normalized importance for predicting the overall
survival, the most relevant markers were identified.

2. Materials and Methods

Multilayer perceptron analyses were performed as described previously [16–23]. In
summary, the multilayer perceptron architecture was composed of an input layer, a hidden
layer, and an output layer. The input layer included the whole set of genes of the array
(method 1, 22,215 nodes), and used the standardized rescaling method for covariates
(i.e., predictors, genes). The hidden layer had 1 layer of nodes and used the hyperbolic
tangent activation function. The number of nodes of the hidden layer ranged from 1 to 50,
and it was automatically computed to find the best architecture. The output layer had two
nodes, one for the overall survival output of the dead and another for the alive, and used
the softmax activation function.

The cases were randomly assigned to a training set (70%) and test set (30%). A holdout
set was not used. In the final model, the type of training was batch, with a scaled conjugate
gradient optimization algorithm. The training options were the following: initial lambda
(0.0000005), initial sigma (0.00005), interval center (0), interval offset (±0.5)

The gene expression data of follicular lymphoma corresponded to the publicly avail-
able GSE16131 dataset (Affymetrix GPL96/97, HG-U133A/B; Affymetrix Inc., Santa Clara,
CA, 95051-0704 USA). This series comprised 184 untreated patients, with diagnostic biop-
sies from fresh-frozen tumor lymph nodes. This series was last updated on 10 August
2018. The data were analyzed using the microarray suite version 5.0 (MAS 5.0) using the
Affymetrix (ThermoFisher, Waltham, WA, USA), default settings and global scaling as the
normalization method. The trimmed mean target intensity of each array was arbitrarily set
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to 500. The data were normalized and log2 transformed. Each node of the input layer cor-
responded to one gene probe (22,215 probes). For the final integrative analysis, each node
corresponded to one gene; the gene probes were collapsed using the maximum expression
to obtain one gene expression value of each gene.

The MLP procedure was repeated 120 times (because of the random number generator,
120 different and independent solutions were calculated), and the results were averaged
to obtain the final neural network solution. The genes were ranked according to their
averaged normalized importance for predicting the overall survival outcome.

Additional statistics included overall survival analysis using Cox regression with the
method enter and backward conditional (IBM SPSS Statistics for Windows, Version 26.0.
Armonk, NY: IBM Corp).

The clinicopathological characteristics of the series were as follows: age > 60 years
(61/182, 33.5%), stage > 2 (129/180, 71.7%), extranodal sites > 1 (24/184, 13%), LDH level
ratio > 1 (46/160, 28.7%), IPI score 2–3 (74/160, 46.3%), immune response ratio 2:1 high
(≥0.97) (48/184, 26.1%). The cases were mainly BCL2/IGH translocation (14;18) positive
(147/164, 89.6%).

The analysis was performed in a desktop workstation equipped with an AMD Ryzen
9 5900X 12-Core Processor (3.70 GHz, 16.0 GB of RAM), and an Nvidia GeForce RTX 3060
Ti GPU.

3. Results

The summary of the procedure and results is shown in Figure 1.
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Figure 1. Method and summary of the results.

The analysis took advantage of the random number generator to create 120 differ-
ent and independent MLP neural network solutions. The MLP was characterized by
22,215 input nodes (gene probes) and 2 output nodes (overall survival outcome, dead vs.
alive). Each solution ranked the 22,215 gene probes according to their normalized im-
portance for predicting the overall survival. Once the normalized importances for each
gene probe were averaged, 1 solution/model remained. Further dimensionality reduction
led to 17 gene probes. The explainability of the model relied on Cox regression analyses,
Hazar Risks, and correlation with the International Prognostic Index as well as the Immune
Response signatures (Explainable Artificial Intelligence (XAI)).
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3.1. Generation of 120 Different Predictive Models for Overall Survival Using MLP
Neural Networks

Based on the gene expression of 22,215 gene probes, an MLP analysis was repeated
120 times to predict the overall survival outcome (dead vs. alive). The results of each
120 MLPs included the network structure (diagram and synaptic weights), the network
performance (model summary, classification results, ROC curve, cumulative gains chart, lift
chart, predicted by observed chart, and residual by predicted chart), and the independent
variable (i.e., gene probes, predictors) independent variable importance analysis. As a result,
the 22,215 probes were ranked according to their normalized importance for predicting the
overall survival outcome. In total, 120 ranks were obtained.

Figure 2 shows the variability of the normalized importance for the top 10 most important
probes and the bottom 10 less relevant probes based on the normalized importance values.
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Figure 2. Variability of the normalized importance of gene probes. The top 10 most important probes
had higher normalized importance variability (A) than the bottom less relevant probes (B), due to
positive correlations between them.

Normalized importance of the top 10 most important gene probes against the bottom
10 least relevant ones. The MLP analysis was repeated 120 times, and all the gene probes
were ranked according to their normalized importance for predicting the overall survival
outcome (dead vs. alive). Each MLP analysis created a different valid prognostic model
because of the random number generation process. This figure shows how the normalized
importance for the top 10 gene probes had higher variability than the top least relevant
probes. For instance, for the most relevant probe (211748_x_at, num 1), the normalized
importance ranged from 0.25 to 1, with a range of 0.75, median of 0.64, and average of
0.63 ±0.24 STD. For the least relevant probe (204409_s_at, num. 22,215), the normalized
importance ranged from 0.045 to 0.27, with a range of 0.22, median of 0.12, and average
of 0.12 ±0.05 STD. For each gen probe, the 120 values of the normalized importance were
averaged and ranked to create a final prognostic model.

For each probe, the 120 normalized importance values were averaged. Finally, all the
22,215 probes were ranked according to their averaged normalized importance for predict-
ing the overall survival. The top 5 probes more relevant for prediction were 211748_x_at
(averaged normalized importance 0.63), 212187_x_at (0.61), 219971_at (0.59), 203788_s_at
(0.59), and 203892_at (0.57).

The correlations between the top 10 gene probes were tested using a covariance matrix.
The results showed that some gene probes had positive values (e.g., 211748_x_at and
212187_x_at had a covariance of 0.28). Therefore, both variables tend to increase or decrease
in tandem. The covariance matrix is shown in Table A1.

Of note, the differential gene expression was also analyzed using the GEO2R software
of the NCBI under the standard setup (GPL96). The groups were defined according to the
follow-up status: (overall survival) dead vs alive. The significance level cut-off was 0.05,
the volcano and MA plot contrasts were alive vs dead, and the adjustment to the p-values
used the Benjamini and Hochberg false discovery rate. The results showed significant
p values, but the adjusted p values were not significant. The 5th most significant gene
probes were 216965_x_at, 220650_s_at, 216542_x_at, 211130_x_at, and 221600_s_at that in
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the MLP neural network had a rank based on the normalized importance (NI) of 16,193
of 22,215 (0.23 NI), 2,709 (0.32 NI), 7,252 (0.27 NI), 3,641 (0.3 NI), and 11,666 (0.25 NI),
respectively. Generally, this method failed to provide useful results for our situation.
Therefore, our MLP neural network strategy is a more promising analysis strategy.

3.2. Dimensionality Reduction for Predicting the Overall Survival

The 100 topmost important gene probes were selected from the previous step, and
a survival analysis was undertaken for overall survival using Cox regression, with the
method backward stepwise (conditional LR). In the last step, num. 53, only 48 gene probes
remained in the model. Next, an MLP analysis for overall survival was performed using the
48 gene probes, and the gene probes were ranked according to their normalized importance
for predicting the overall survival (the performance of this MLP neural network was good,
with an area under the curve of 0.832) (Table A2).

Further dimensionality reduction consisted of searching for the minimal number of
gene probes necessary to obtain the highest area under the curve (AUC) using an MLP
analysis: the optimal minimum number of genes were using the first 17th gene probes
that provided an AUC of 0.842. The 17 genes were the following: IGLJ3, SPIN2A/B, BTD,
SRGAP3, CTNS, EPB41L4B, CTAG1A, PRB1, MOCOS, L1CAM, COBL, 215507_x_at, CEP57,
UGCG, KIAA0100, TMEM159, and PTGDS (Figure 3).
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Figure 3. Minimal number of genes probes and dimensionality reduction strategy. Based on the
48 gene probes, further dimensionality reduction consisted of searching for the minimal number of
gene probes necessary to obtain the highest area under the curve (AUC) using an MLP analysis (A).
The optimal minimum number of genes were using the first 17th gene probes (B), which pro-
vided an AUC of 0.842 (C). The 17 genes were the following: IGLJ3, SPIN2A/B, BTD, SRGAP3,
CTNS, EPB41L4B, CTAG1A, PRB1, MOCOS, L1CAM, COBL, 215507_x_at, CEP57, UGCG, KIAA0100,
TMEM159, and PTGDS (D).
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Based on 48 gene probes previously identified using the MLP neural network and
Cox regression analysis, the minimal reasonable (defined as AUC > 0.8) number of gene
probes to predict the overall survival was identified with multiple MLPs. With 17 genes
(A) an MLP neural network (B) predicted the overall survival outcome (dead vs. alive)
with an area under the curve (AUC) of 0.842 (C). The most relevant genes according to
the normalized importance for predicting the overall survival were IGLJ3, SPIN2A/B, BTD,
SRGAP3, and CTNS (D).

3.3. Correlation with the International Prognostic Index (IPI) and the Immune Response (IR)

The prognostic value for predicting the overall survival of the set of 17 genes was
correlated with other known follicular lymphoma prognostic markers, including the In-
ternational Prognostic Index (IPI) score and the Immune Response (IR). The analysis was
performed using Cox regression for overall survival, with the gene expression of the
17 gene probes, IPI, and the IR (method, backward conditional). In the final model (step 14),
only IPI, IR, and four gene probes kept the significance: high IPI (Hazard Risk (HR) = 3.3,
p < 0.001), IR type 2 (HR = 3.0, p < 0.001), SRGAP3 (HR = 0.47, p = 0.006), PRB1 (HR = 1.47,
p < 0.001), L1CAM (HR = 0.7, p = 0.016), and CEP57 (HR = 0.654, p < 0.001).

3.4. Gene Set Enrichment Analysis (GSEA)

The prognostic values of the highlighted 48 and 17 gene sets were evaluated using the
Gene Set Enrichment Analysis (GSEA) technique, in the same database. In case of genes
with multiple probes, the probes were collapsed to the maximum expression values. The
GSEA technique showed enrichment toward the dead phenotype of the overall survival
(Figure 4).
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The GSEA technique was used to confirm the results of the MLP neural network and
the Cox regression analysis. The GSEA plots showed enrichment of the part of the genes
toward the overall survival outcome of the dead. When using the set of 17 genes, in the core
enrichment the EPB41L4B, MOCOS, and SPIN2A genes were found. Of note, the Hazard
Risks of these genes were 2.9, 2.0, and 1.9 in the Cox regression analysis (Table A1).

3.5. Final Integrative Analysis

A final integrative analysis was performed using an MLP neural network. The input
layer included the previously highlighted predictor genes (EPB41L4B, MOCOS, SPIN2A,
BTD, SRGAP3, CTNS, PRB1, L1CAM, and CEP57), the international prognostic index (IPI),
and other relevant genes of the immune microenvironment and immune response (CD163,
CSF1R, FOXP3, PDCD1, TNFRSF14, and IL10). In this analysis, each gene had a gene
expression value which corresponded to the collapsed maximum gene expression in the
case of multiple probes for one gene symbol. The performance of this neural network
was good, with an area under the curve (AUC) of 0.89. The genes and IPI were ranked
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according to their normalized importance for predicting the overall survival of the patients
(Figure 5). The most relevant were SRGAP3, CEP57, EPB41L4B, the international prognostic
index (IPI), and SPIN2A, IL10, MOCOS and CD163 (normalized importance >60%).
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Figure 5. The final integrative model of the MLP neural network.

A final overall survival model was created using the previously highlighted genes,
the international prognostic index (IPI), and relevant genes of the immune response and
microenvironment. The performance of this network was good, with an area under the
curve (AUC) of 0.89. In the model, the most relevant gene was SRGAP3, which had an
importance of 0.103 and a normalized importance of 100%. It was followed by CEP57, with
importance of 0.094 and normalized importance of 90.7%.

This final integrative analysis was based on the MLP neural network. Nevertheless,
there are other machine learning methods that can also contribute to the modeling of the
pathogenesis of follicular lymphoma. Therefore, the overall survival outcome (dead vs
alive, target) was predicted using the same 16 variables (inputs) of the analysis of Figure 5.
Among all available models, the overall survival prediction was tested using 16 methods
including C5 Tree, logistic regression, Bayesian network, discriminant analysis, KNN
algorithms, LSVM, random trees, SVM, Tree-AS, XGBoost linear, XGBoost tree, CHAID,
Quest, C&R Tree, Random forest, and neural net. Among these, 10 models were successfully
used. The models were ranked according to their overall accuracy for predicting the overall
survival. The results are shown in Table 1.

The final integrative model of MLP neural network (Figure 5) was compared to other
machine learning techniques.
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Table 1. Modeling the overall survival outcome using other machine learning models.

Num. Model Overall Accuracy (%) No. Fields Used Variables Used in the Final Model

1 XGBoost tree 100 16 16

2 Random trees 97.2 16
13 (predictor importance: PRB1, CSF1R, IL10,

L1CAM, BTD, MOCOS, FOXP3, PDCD1,
EPB41L4B, and IPI score; top 10 inputs)

3 Random forest 86.9 16

Predictor importance: IPI score 1, CEP57,
L1CAM, EPB41L4B, TNFRSF14, BTD, SPIN2A,
PDCD1, CTNS, SRGAP3, IL10, MOCOS, PRB1,

FOXP3, CD163, CSF1R, and IPI score 2

4 LSVM 74.4 16
Predictor importance: SRGAP3, IPI score,

L1CAM, CD163, EPB41L4B, PDCD1, CSF1R,
IL10, MOCOS, BTD; top 10 inputs

5 Neural network 69.4 (79.9% of overall
percent correct) 16

Predictor importance: SRGAP3, IL10,
TNFRSF14, EPB41L4B, CD163, SPIN2A, IPI

score, CEP57, MOCOS, PDCD1, PRB1, L1CAM,
CTNS, FOXP3, CSF1R, BTD

6 SVM 68.9 16 16

7 C&R tree 68.9 6 IPI score

8 C5 tree 67.8 1 IPI score

9 XGBoost linear 67.8 16 16

10 Quest 67.8 6 IPI score

11 Tree-AS 67.2 1 IPI score

12 CHAID 67.2 1 IPI score

13 Logistic regression 66.7 16

Equation for dead outcome: −1.8*SRGAP3 +
−0.9*CEP57 + 1.0*EPB41L4B + 0.8*SPIN2A +

0.7*IL10 + 0.15*MOCOS + 0.3*CD163 +
0.9*CTNS + 0.1*BTD + −0.01*PDCD1 +

−0.4*L1CAM + −0.1*PRB1 + 0.5*TNFRSF14 +
−0.4*CSF1R + 0.03*FOXP3 + −1.1*IPI score = 1

+ 0.7*IPI score = 2 + −3.8.

14 Discriminant
analysis 66.7 15 16, except IPI score

15 KNN algorithm 63.4 16 16

16 Bayesian network 57.4 16 16

4. Discussion

Follicular lymphoma is one of the most frequent non-Hodgkin lymphomas in Western
countries. The pathogenesis of follicular lymphoma is still not fully understood. Currently,
it is considered that the malignant transformation of follicular B lymphocytes is a complex,
multistep process during which genetic and epigenetic modifications occur [24].

In adults, the development of follicular lymphoma starts with the overexpression of
BCL2 due to the translocation with the immunoglobulin promoter/enhancer elements,
the t(14;18)(q32;q21) [25]. In follicular lymphoma, other gene translocations are found
such as BCL6 and MYC translocations that have prognostic relevance. For instance, the
presence of BCL6 translocation and/or copy number gains of BCL6 is associated with a
favorable prognosis [25]. Many other genetic lesions are identified in follicular lymphoma:
1p, 6q, 10q, and 17p copy number losses, and 1, 6p, 7, 8, 12q, X copy number gains, and
18q/dup [1,5,24]. Somatic mutations have also been identified, including mutations of
KMT2D, CREBBP, EZH2, EP300, HIST1H1E, KMT2C, ARID1A, and SMARCA4 [6,24–33].
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The tumor immune microenvironment, host immune response, and immune check-
point are also relevant in the pathogenesis of follicular lymphoma. For example, we
previously reported that high percentages of FOXP3+regulative T lymphocytes (Tregs) and
high Programmed cell death protein 1 (PD-1)+follicular T lymphocytes (TFH cells) were
associated with a good overall survival of the follicular lymphoma patients and higher
risk of transformation to diffuse large B-cell lymphoma (DLBCL) [3,4]. Conversely, high
frequencies of HVEM (TNFRSF14)+cells, mainly including macrophages and follicular
lymphoma B centroblasts, but low B- and T-lymphocyte attenuator (BTLA) were associ-
ated with a poor overall survival [34]. Another marker related to macrophages [21], the
Macrophage colony-stimulating factor 1 receptor (CSF1R) and interleukin-10 (IL10) were
also associated with the prognosis of follicular lymphoma [35] and diffuse large B-cell
lymphoma [36]. In the final model, the input nodes of the input layer of the MLP neural
network included (1) immune microenvironment markers (i.e., CD163, CSF1R, FOXP3,
PDCD1, TNFRSF14, and IL10); (2) the most relevant genes identified in the MLP neural net-
work that had used the random number generator for the artificial intelligence analysis and
dimensionality reduction (i.e., EPB41L4B, MOCOS, SPIN2A, BTD, SRGAP3, CTNS, PRB1,
L1CAM, and CEP57); and (3) the international prognostic index (IPI) as the most relevant
clinical variable. As a result, the neural network managed to predict the overall survival
of the follicular lymphoma patients with high performance, with an area under the curve
of 0.89. Therefore, this research managed to combine previously identified clinical and
tumor immune microenvironment markers with newly highlighted genes. The biological
functions of these genes are shown in Table 2. Generally, these genes had a function in cell
adhesion and migration, cell signaling, and metabolism.

Table 2. The biological function of the highlighted genes using the MLP neural network.

Gene Protein Function

EPB41L4B Band 4.1-like protein 4B Promotes cellular adhesion,
migration, and motility

MOCOS Molybdenum cofactor sulfurase Molybdopterin cofactor
metabolic process

SPIN2A Spindlin-2A Regulation of cell cycle progression

BTD Biotinidase Biotin metabolic process

SRGAP3 SLIT-ROBO Rho GTPase-activating
protein 3 Negative regulation of cell migration

CTNS Cystinosin Positive regulation of
TORC1 signaling

PRB1 Basic salivary proline-rich protein 1 Glycoprotein

L1CAM Neural cell adhesion molecule L1
Cell adhesion and in the generation of

transmembrane signals at tyrosine
kinase receptors

CEP57 Centrosomal protein CEP57L1
Centrosomal protein, which may be
required for microtubule attachment

to centrosomes.
Information obtained from UniProt.

In our analysis setup, each time a neural network was performed produced a different
result. To replicate the results exactly, the same procedure set up, the same order of the data,
the same variable order, in addition to using the same initialization value for the random
number generator, is necessary. In this study, all the parameters were the same except
for the random number generator. The MLP procedure uses random number generation
during the random assignment of partitions, random subsampling for the initialization
of synaptic weights, random subsampling for automatic architecture selection, and the
simulated annealing algorithm used in weight initialization and automatic architecture
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selection [14–16,19,22,37,38]. This methodology design is very similar to ensemble learning,
such as random forest. As a result, 120 different and independent solutions were calculated
to predict the overall survival outcome (dead vs alive). Therefore, 120 neural networks
predicted the survival of the patients with different combinations of 22,215 gene probes.
Since the dataset was the same for each calculation, the averaged solution may be the “most
adequate” to explain the pathogenesis of follicular lymphoma. From an initial number
of 22,215 gene probes, the dimensionality reduction strategy highlighted 48 genes. These
genes represent the averaged solution of all MLP analyses. Therefore, these genes are
expected to play an important role in the pathogenesis of follicular lymphoma. This fact
was confirmed in the GSEA analysis and in the final MLP network, as shown in Figure 5. In
summary, we took advantage of the random number generator to highlight new pathogenic
markers of follicular lymphoma.

5. Conclusions

This research took advantage of the random number generator to create multiple
different and independent artificial neural networks that after dimensionality reduction
highlighted a small set of prognostic genes. A final model integrated these genes with
known immune tumor microenvironment markers and the international prognostic index
to create a neural network that predicted the overall survival of follicular lymphoma with
high performance.
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Appendix A

Table A1. Covariate matrix between the top 10 gene probes.

211748_x_at 212187_x_at 219971_at 203788_s_at 203892_at 214461_at 202540_s_at 205272_s_at 207436_x_at 208791_at

211748_x_at 0.3106
212187_x_at 0.2817 0.2752

219971_at 0.1735 0.1674 0.4121
203788_s_at −0.0123 −0.0129 −0.0106 0.2564
203892_at 0.0289 0.0205 0.0366 0.0398 0.2449
214461_at 0.0358 0.0197 −0.0193 0.0213 0.0014 0.3596

202540_s_at −0.0227 −0.0267 −0.0402 −0.0227 −0.0487 0.0061 0.2111
205272_s_at 0.0171 0.0166 0.0245 −0.0139 0.3841 −0.0534 −0.1129 2.0909
207436_x_at −0.0199 −0.0204 −0.0959 0.0190 −0.0261 0.0134 0.1088 −0.0626 0.1878

208791_at 0.3040 0.2744 0.1746 −0.0392 0.0364 0.0512 −0.0148 0.0290 −0.0163 0.6622

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
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Table A2. Correlation between the gene expression and the overall survival using Cox regression
analysis and MLP neural network.

Num. Gene
Probe

Gene
Symbol B p Value Hazard

Risk (HR)
95.0% CI for HR MLP

Lower Upper NI

1 216846_at IGLJ3 2.0 2.35 × 10−7 7.5 3.5 16.1 1.000
2 211704_s_at SPIN2A/B 0.6 0.083002 1.9 0.9 3.8 0.881
3 214116_at BTD −1.6 7.6 × 10−8 0.2 0.1 0.4 0.876
4 209794_at SRGAP3 −1.1 0.033109 0.3 0.1 0.9 0.839
5 204925_at CTNS 1.7 0.000263 5.3 2.2 13.1 0.838
6 220161_s_at EPB41L4B 1.6 4.7 × 10−9 5.0 2.9 8.5 0.767
7 210546_x_at CTAG1A 1.0 3.23 × 10−6 2.7 1.8 4.0 0.757
8 210597_x_at PRB1 1.0 1.46 × 10−5 2.7 1.7 4.3 0.701
9 219959_at MOCOS 0.7 0.001377 2.0 1.3 3.0 0.689

10 204584_at L1CAM −0.9 0.000622 0.4 0.2 0.7 0.661
11 213050_at COBL −1.1 0.001523 0.3 0.2 0.7 0.646
12 215507_x_at - −0.5 0.082379 0.6 0.4 1.1 0.645
13 203491_s_at CEP57 −0.5 0.016744 0.6 0.4 0.9 0.629
14 221765_at UGCG −0.4 0.069669 0.7 0.5 1.0 0.599
15 201729_s_at KIAA0100 3.1 6.79 × 10−6 22.4 5.8 86.5 0.547
16 213272_s_at TMEM159 1.3 0.003146 3.8 1.6 9.4 0.525
17 212187_x_at PTGDS 1.9 0.000211 6.7 2.4 18.2 0.521
18 220600_at ELP6 0.9 0.002653 2.4 1.4 4.3 0.519
19 205839_s_at BZRAP1 −0.9 0.015594 0.4 0.2 0.8 0.503
20 204738_s_at KRIT1 −1.3 0.000619 0.3 0.1 0.6 0.493
21 221196_x_at BRCC3 1.2 0.001986 3.3 1.6 7.2 0.470
22 215788_at CFAP74 −0.7 0.02512 0.5 0.3 0.9 0.465
23 203892_at WFDC2 1.3 0.001288 3.6 1.6 7.7 0.459
24 219349_s_at EXOC2 −0.8 0.045831 0.4 0.2 1.0 0.452
25 208791_at CLU 1.2 0.000159 3.4 1.8 6.5 0.450
26 215287_at STRN 0.9 0.002545 2.4 1.4 4.2 0.443
27 219361_s_at AEN 1.6 0.000405 4.8 2.0 11.4 0.439
28 207436_x_at SORBS1 −0.8 0.07232 0.4 0.2 1.1 0.436
29 219815_at GAL3ST4 −1.9 2.15 × 10−5 0.1 0.1 0.4 0.418
30 215183_at - −1.3 0.001 0.3 0.1 0.6 0.416
31 207356_at DEFB4A −1.4 0.000927 0.2 0.1 0.6 0.405
32 218268_at TBC1D15 2.2 0.000131 8.9 2.9 27.5 0.388
33 215867_x_at CA12 −1.8 4.6 × 10−5 0.2 0.1 0.4 0.342
34 214876_s_at TUBGCP5 −0.9 0.000816 0.4 0.2 0.7 0.332
35 213539_at CD3D −2.8 5.16 × 10−8 0.1 0.0 0.2 0.332
36 207752_x_at PRB1 −0.7 0.002323 0.5 0.3 0.8 0.292
37 210312_s_at IFT20 −1.8 0.002342 0.2 0.1 0.5 0.273
38 41397_at ZNF821 −1.2 0.000852 0.3 0.1 0.6 0.260
39 204547_at RAB40B 0.8 0.019527 2.2 1.1 4.4 0.252
40 214465_at ORM1 1.3 1.14 × 10−5 3.7 2.1 6.6 0.242
41 201131_s_at CDH1 −0.7 0.008031 0.5 0.3 0.8 0.231
42 210039_s_at PRKCQ 1.0 0.089034 2.7 0.9 8.2 0.224
43 207377_at PPP1R2P9 −0.8 0.037392 0.4 0.2 1.0 0.210
44 206994_at CST4 0.7 0.006194 1.9 1.2 3.1 0.200
45 214408_s_at RFPL1S 0.7 0.014436 2.0 1.1 3.5 0.200
46 216699_s_at KLK1 −0.7 0.045702 0.5 0.3 1.0 0.119
47 221004_s_at ITM2C −0.5 0.077654 0.6 0.4 1.1 0.080
48 211262_at PCSK6 −1.0 0.02704 0.4 0.1 0.9 0.028

Cox regression analysis for predicting the overall survival. The analysis included as predictors the gene expression
of the top 100 gene probes, previously identified as prognostic value in the multiple 120 MLP neural network
analyses. A Cox regression, backward stepwise (conditional LR), correlated the gene expression of the 100 gene
probes with the overall survival of the patients. As a result, 48 gene probes were identified. Additionally, the
48 gene probes were ranked according to their normalized importance (NI) for predicting the overall survival
outcome using a MLP neural network. B, beta; SE, standard error; HR, hazard risk; MLP, multilayer perceptron;
NI, normalized importance.
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