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Abstract: Drought is one of the most important threats to plants and agriculture. Here, the ef-
fects of four drought levels (90%, 55%, 40%, and 25% field capacity) on the relative water content
(RWC), chlorophyll and carotenoids levels, and mRNA gene expression of metabolic enzymes in
Thymus vulgaris (as sensitive to drought) and Thymus kotschyanus (as a drought-tolerant species) were
evaluated. The physiological results showed that the treatment predominantly affected the RWC,
chlorophyll, and carotenoids content. The gene expression analysis demonstrated that moderate and
severe drought stress had greater effects on the expression of histone deacetylase-6 (HDA-6) and
acetyl-CoA synthetase in both Thymus species. Pyruvate decarboxylase-1 (PDC-1) was upregulated
in Thymus vulgaris at high drought levels. Finally, succinyl CoA ligase was not affected by drought
stress in either species. Data confirmed water stress is able to alter the gene expression of specific
enzymes. Furthermore, our results suggest that PDC-1 expression is independent from HDA-6
and the increased expression of ACS can be due to the activation of new pathways involved in
carbohydrate production.

Keywords: Thymus; water stress; histone deacetylase-6; acetyl CoA synthetase; succinyl CoA ligase;
pyruvate decarboxylase-1; qRT-PCR

1. Introduction

Drought is an abiotic environmental stressor that can limit plant growth, yield,
and productivity [1,2]. During drought, relative water content (RWC) is one parame-
ter that best describes the water status of plants [3–5]. RWC is a factor that assesses both
the effect of the soil−plant−atmosphere water continuum and the effect of membrane
osmotic potentials. Indeed, different cultivars (but plants of the same species) with the
same foliar water potential can have different RWCs [6]. RWC decreases proportionally
with the decrease in water availability [7]. Species sensitive to drought showed lower RWC
values than drought-resistant species.

Water stress can alter not only the plant osmotic potential, but also the stomata opening,
which in turn affects the photosynthetic efficiency [8].

The decrease in photosynthetic yield in plants subjected to water stress is due to the
reduction of the chlorophyll content [8]. The persistence of drought determines the closure
of the stomata in order to avoid water loss. This event blocks the entry of CO2 necessary
for photosynthesis, with a consequent loss of chlorophyll. The leaves turn yellow because
of the dominance of carotenoids compared to the green pigments of chlorophyll [9].
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For aromatic and medicinal plants, a strong water stress occurring before the flowering
phase (vegetative period) can generate lower plants with smaller leaf areas, as observed
in the genus Mentha, Achillea, Calendula, and Melissa [10–13]. The reduction of the foliar
apparatus leads to a reduced production of organic matter because of the lower photo-
synthetic yield [14]. However, some plants have developed resistance and acclimatization
mechanisms to drought, such as some Thymus species [15].

Thymus is one of the most important genera of the Lamiaceae family for the number
of species it contains [16]. It has been used throughout history as a medicinal, aromatic,
and spicy plant [17]. Thyme is distributed in different areas worldwide, such as Mediter-
ranean regions with scarcely rainy climates [18]. Some Thymus species have developed
different resistance-levels to water stress. In particular, previous works have shown that
Thymus kotschyanus (T. kotschyanus) under severe drought stress conditions could grow and
survive more than Thymus vulgaris (T. vulgaris) [19,20]. The different drought tolerability of
Thymus species could be derived from the different regulation of primary and secondary
metabolism. In a previous experiment, we performed a 1H-NMR metabolomics analysis on
T. kotschyanus and T. vulgaris, and found that succinic acid and acetic acid concentrations
were differently affected by drought in both species [19]. Studies have revealed that in water
stress conditions, succinic acid and acetic acid concentrations are involved in growth and
survivability, respectively [21,22]. In particular, succinic acid in plants acts as an osmotic
regulator, favoring a greater adaptability to conditions of abiotic stress, such as drought [23].
At the same time, severe drought affects succinic acid levels in plants [23]. Acetic acid
improves the plant’s resistance to drought by acting on the hormonal response regulated
by jasmonates and abscisic acid [24,25]. Our previous study revealed that T. kotschyanus has
higher levels of succinic acid and lower levels of acetic acid than T. vulgaris [19]. This could
explain the different responses to water stress of the two Thymus species. To date, little is
known about the gene regulation of succinic acid and acetic acid synthesis enzymes in
Thymus under water stress conditions. Environmental stimuli (light, water, mineral salts,
and parasites) can influence the regulation of gene expression and also affect chromatin and
histone proteins [26]. In plants, mutations on the epigenetic regulator histone deacetylase-6
(HDA-6) appear to improve survival in drought conditions [27]. This response is associated
with the expression of genes involved in acetic acid biosynthesis. Therefore, in conditions
of water stress, there would be a relationship between HAD-6 and regulation of genes
involved in acetic acid synthesis [28].

The main aim of this manuscript was initially to evaluate some physiological param-
eters of two species of Thymus differently resistant to drought. Subsequently, the gene
expression of some markers directly or indirectly involved in the metabolism of succinic
acid and acetic acid was also evaluated. In particular, the gene expression of succinyl CoA
ligase (SCL), pyruvate decarboxylase-1 (PDC-1), acetyl-CoA synthetase (ACS), and histone
deacetylase-6 (HDAC-6) in T. kotschyanus and T. vulgaris subjected to different degrees of
drought was investigated.

2. Materials and Methods
2.1. Plant Material, Growth Condition, and Treatment

Thymus vulgaris and Thymus kotschyanus seeds were purchased from Pakan Bazr-e-
Esfahan Company (Esfahan, Iran).

The seeds were washed and sanitized following a previously reported protocol [8,29].
Subsequently, the seeds were sown in 10 cm diameter pots filled with approximately
285 g of soil mixture (ratio of 0.5:1:1:2 of perlite/sand/vermicompost/compost, respec-
tively). The experiment was performed in triplicate per treatment and was conducted in
a greenhouse with a day/night period of 18/6 h and an average day/night temperature
of 24/20 ◦C. Initially, the pots were irrigated daily at 90% of the field capacity (FC) for
two months. Subsequently, four levels of irrigation regimen were applied, including nor-
mal irrigation (90% FC) and varying degrees of stress: mild (55% FC), moderate (40% FC)
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and severe (25% FC). Two days after reaching severe stress, the leaves were harvested for
further analysis.

2.2. Physiological Measurements

Relative water content (RWC) was measured by the method of Barrs and Weather-
ley [30,31]. Briefly, the thyme leaflets were collected and weighed (fresh weight (FW)) and
then soaked overnight in distilled water at 4 ◦C. After cold incubation, the leaves were
dried with paper and weighed (turgid weight (TW)) and subsequently dried in an oven at
80 ◦C for 48 h. The dry weight (DW) of the leaves was then measured. The relative water
content of the leaves was calculated using Equation (1).

RWC = (FW − DW)/(TW − DW)) × 100 (1)

The chlorophyll and carotenoids contents were measured using the Arnon and Lich-
tenthaler and Wellburn methods, respectively [29,30,32]. In brief, about 100 mg of leave
samples were ground in liquid nitrogen using a mortar and pestle. Then, exactly 4 mL of
80% acetone was added to the ground sample and the resulting solution was centrifuged at
6000 rpm for 10 min at 4 ◦C. The aqueous phase was placed in a glass tube. In the next step,
the absorbance at 663 nm (for chlorophyll a), 645 nm (for chlorophyll b), and at 470 nm (for
carotenoids) were determined spectrophotometrically.

Finally, the following equations

Chlorophyll a = (19.3 × A663−0.86 × A645) V/100 W (2)

Chlorophyll b = (19.3 × A645−3.6 × A663) V/100 W (3)

Carotenoids = 100(A470) − 3.27(mg chl. a) − 104(mg chl. b)/227 (4)

were used for calculation of chlorophylls a and b, as well as carotenoids, in which
V= aqueous phase volume; A= absorbance at 663, 645, and 470 nm; and W= fresh weight
of sample.

2.3. Total RNA Isolation, Quality Controls, and First Strand cDNA Synthesis

The total RNA was isolated from the leaves (100 mg) of T. kotschyanus and T. vulgaris us-
ing the method of Chomczynski and Sacchi [33]. The RNA quality and concentration were
determined using a Nanodrop ND-2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA). Subsequently, 4.0 µg of total RNA was treated with DNase I (Thermo Fisher
Scientific, Waltham, MA, USA) and was reverse-transcribed using Hyperscript RT-PCR
Mastermix (GeneAll, Seoul, South Korea) and the oligo-dT primer according to the in-
structions of the manufacturer. Finally, the cDNA was diluted to a final concentration of
100 ng/µL with sterile MilliQ water prior to te qRT-PCR analysis.

2.4. Gene Selection, Amplification, and Direct Sequencing

A set of four genes were selected, including succinyl CoA ligase (SCL), pyruvate
decarboxylase-1 (PDC-1), acetyl-CoA synthetase (ACS), and histone deacetylase-6 (HDA-6).

The mRNA sequence of SCL, ACS, PCD-1, and HDA-6 genes was not available for
these two species; therefore, the conserved domain of known sequences of the Lamiids clade
was used for designing of degenerate primers (Table 1).

PCR was used for amplification of the selected segment of the mentioned genes.
PCR amplification reactions (25 µL) contained 2.5 µL of 10x enzyme buffer, 1 mM MgCl2,
200 µM each of dATP, dCTP, dGTP, and dTTP (Sinaclon, Tehran, Iran), 0.4 µM each primer
(Macrogen, Seoul, South Korea) (Table 1), 1 unit of Taq polymerase (Sinaclon, Tehran, Iran),
and 100 ng of cDNA. The PCR cycles consisted of initial denaturation at 94 ◦C for 4 min, fol-
lowed by 35 cycles of denaturation at 94 ◦C for 60 s, annealing at 46–56 ◦C for 45 s (Table 1),
and extension at 72 ◦C for 1 min with a final extension at 72 ◦C for 5 min. The amplicons
were later resolved on 1.2% agarose gel and then reverse primers were used for direct se-
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quencing using the Sanger method (Macrogen, Seoul, South Korea). Next, these sequences
were deposited on the NCBI database (SCL: MH444601, MH444602; ACS: MH444599,
MH444600; PDC-1: MH602964, MH602965; and HDA-6: MH444603, MH570448).

Table 1. Characteristics of degenerate primers and GenBank accession ID of sequences used for
finding the conserved region.

Gene Primer Sequence (5′ → 3′) Accession Id Product Length Ta *

SCL
Forward
Reverse

TCTATGTHCCTCCDCCWTTTGC
TCTGCYGTRCCACCRATYTCAC

NM_001324746.1
XM_006350317.2
XM_015211494.1
NM_001247645.2
XM_019302845.1

436 53

PDC Forward
Reverse

CAAACTGTBACTTGCTAYCAGG
GCCCRTCRTGGATYTCTACTTC

JF775376.1
XM_023031688.1
XM_006362311.2
XM_019399015.1

1060 52

ACS Forward
Reverse

MABATAGAGTGGTTCAARGGTG
DAARGTAGCAGAGCCAGGTTTC

XM_012988613.1
XM_020698950.1

KJ531400.1
XM_022985897.1
XM_019315775.1

1143 52

HDA-6 Forward
Reverse

ATCGGCGAYTACTACTACGG
ATGACYTTYTGGATKATGGGAC

XM_023030385.1
XM_011102990.2
XR_002286330.1
XM_020691311.1
XM_012973837.1

698 52

* Annealing temperature.

2.5. qRT-PCR

The qRT-PCR primers (Table 2) for SCL, PDC, ACS, and HDA-6 were designed with
premier 5 software (Premier Biosoft, Palo Alto, CA, USA). The reaction mix (20 µL) con-
tained 100 ng of cDNA, 0.2 µM of each primer, and 4 µL of HOT FIREPol® EvaGreen®

qPCR Mix Plus (no ROX) (Solis BioDyne, Tartu, Estonia). The reaction was performed
on the Rotor-Gene Q Real-Time PCR system (Qiagen, Hilden, Germany). The negative
control had no cDNA, which did not produce any noticeable fluorescence signals from
the reaction. The qRT-PCR conditions were set as follows: initial denaturation for 30 s at
95 ◦C, followed by 40 cycles of denaturation at 95 ◦C for 15 s, annealing at 55 ◦C for 20 s,
and extension at 72 ◦C for 15 s. After the amplification cycles, the melting curves for each
reaction were evaluated to confirm the specificity of the amplified products. EF-1A and
GAPDH for T. kotschyanus and Act and GAPDH for T. vulgaris were used as housekeeping
genes. Relative quantification was performed using the comparative Ct method.

2.6. Experimental Design and Statistical Analysis

The experimental design was a factorial experiment in completely randomized design,
in which water treatment and plant species were the factors. Analyses of variance (ANOVA)
were computed for physiological criteria. ANOVA and mean comparison were performed
using R and Agricolaa Package.
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Table 2. Primer sequences for genes used in RT-qPCR and their features.

Gene Primer Sequence (5′ → 3′) Product
Length nt Efficiency TA *

SCL
Forward CTGGTTTGTGAATGTATCCC

105 1.9 55Reverse TGAATCAGCAGAAAAAGACTC

PDC
Forward CCGATGAAATGAGGGTGA

123 2.03 55Reverse GAAACTGTGTGTGGCGAAAG

ACS
Forward TCAAGCAAACATCTACGACTG

99 2.06 55Reverse CTGTAAAACGAGGACCCAAG

HDA-6
Forward GTTTCAATGTTGGAGAGGACTG

165 2 55Reverse AGGACTCGCTCTTCTTCGC

Act
Forward AGCAACTGGGATGATATGGAG

111 1.92 55Reverse CTTGGGGTTAAGAGGAGCC

GAPDH
Forward AACGGAAAGTTGACTGGTATG

126 1.98 55Reverse TGACTCCTCCTTGATGGCA

EF-1A
Forward AGATCGGAAATGGTTATGCTC

94 1.95 55Reverse GACCTCCTGTCAATCTTCGT
* Annealing temperature.

3. Results
3.1. Physiological Measurements

The ANOVA analysis highlighted significant differences between the two Thymus
species for all of the physiological parameters analyzed (Table 3). This analysis allowed
for evaluating the effects of the four irrigation regimes (degrees freedom: 3) on the
two species of Thymus (degrees freedom: 1). In particular, the effects of the different
irrigation regimes led to a significantly different relative water content (RWC) in both
T. vulgaris and T. kotschyanus. This significant response between the two Thymus species
was also observed in the total chlorophyll, carotenoids, and chlorophyll/carotenoids ratio.
Figure 1 shows the different response to severe water stress for the two Thymus species.
In particular, the following two extreme irrigation conditions are shown: 25% FC greater
water stress and 90% FC optimal irrigation.

Table 3. ANOVA of physiological criterion.

Source of Variation Degrees Freedom
Mean Squares

RWC Total Chlorophyll Carotenoids Chlorophyll/Carotenoids

Species
(T. vulgaris and
T. kotschyanus)

1 235.61 ** 0.004972 ** 0.019777 ** 0.025516 **

Treatment
(four irriga-

tion regimes)
3 1088.79 ** 0.001462 ** 0.002133 ns 0.012725 **

Species × Treatment 3 2.15 ns 0.000382 ns 0.004442 ns 0.001099 ns

Residuals 24 14.82 0.000147 0.001748 0.001015

** and ns are significant at p ≤ 0.01 and not significant, respectively.

From the observation of the different irrigation regimes, it was observed that reducing
irrigation lowers RWC in both species of thyme (Figure 2A). In particular, T. vulgaris under
moderate water stress conditions showed a significant reduction compared to both normally
irrigated plants and to T. kotschyanus (Figure 2A). As for chlorophyll, a significant loss of
40% of irrigation was observed in both species of Thymus (Figure 2B). Different irrigation
regimes did not considerably affect the carotenoids content in the two species of Thymus
(Figure 2C). However, data suggest the two species have different amounts of carotenoids
under normal irrigation conditions (Figure 2C). Finally, the chlorophyll/carotenoids ratio
decreased significantly with the increase in water stress, especially in T. vulgaris (Figure 2D).
These data confirm that T. vulgaris is more sensitive to drought than T. kotschyanus.
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Figure 2. Effect of different irrigation regimes, normal irrigation (90%), mild water stress (55%),
moderate water stress (40%), and severe water stress (25%) on RWC (A), total chlorophyll (B),
carotenoids content (C), and chlorophyll/carotenoids ratio (D) in Thymus kotschyanus and Thymus
vulgaris. Data are represented as mean ± S.E.M (bar plot). The bars with the same letter are not
significantly different according to the corrected Benjamini−Hochberg t-test p ≤ 0.05.



BioTech 2022, 11, 8 7 of 11

3.2. Gene Expression Analysis

In T. kotschyanus, mild drought stress had no effects on the expression of HDA-6 gene,
but moderate and severe drought stress up-regulated its expression. Unlike T. kotschyanus,
in T. vulgaris, mild and moderate drought stress down-regulated the expression of HDA-6,
and only severe drought stress-induced its expression (Figure 3A). No significant dif-
ferences were found in PDC-1 mRNA expression in T. kotschyanus at different degrees
of water stress. On the other hand, T. vulgaris showed a significant increase in PDC-1
only under severe drought stress conditions (25%) compared to other irrigation levels
(Figure 3B). In T. kotschyanus, each degree of drought significantly modified the ACS gene
expression. In detail, mild and severe drought stress reduced the expression of ACS mRNA,
while moderate drought stress increased its levels. Unlike T. kotschyanus, in T. vulgaris,
only severe drought stress affected the ACS mRNA expression by increasing it (Figure 3C).
The expression of SCL was not affected by drought stress in any of the species (Figure 3D).
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4. Discussion

Climate change has significantly altered rainfall throughout the years by increas-
ing drought in ecologically fragile areas of the Earth. Drought is the abiotic stress that
most affects plant growth [34]. The tolerance and sensitivity of plants to drought de-
pends on (i) intrinsic factors such as the species, cultivars, and growth stage of the plant,
and (ii) extrinsic factors such as the duration and intensity of drought stress [35,36]. In this
manuscript, two species of Thymus, T. vulgaris and T. kotschyanus, were subjected to different
degrees of water stress, and some physiological and molecular parameters were measured.
The Thymus genus includes species with different sensitivities to drought [37]. In particular,
it has been previously observed that Thymus carmanicus is sensitive to drought; T. vulgaris is
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semi-sensitive to drought; whereas T. kotschyanus, Thymus daenensis, and T. vulgaris (cultivar
Spain) are semi-tolerant to drought [19,38].

Here, it has been confirmed that T. vulgaris is more sensitive to water stress than
T. kotschyanus. Indeed, the initial relative water content (RWC) is significantly lower in
T. vulgaris than in T. kotschyanus. This is confirmed by the ability of drought-resistant plants
to develop mechanical defenses (isolated) to conserve water in their own tissues [39,40].
Indeed, a greater thickening of the leaf epidermis and a lower stomatal distribution are the
best strategies used by plants in arid climates [41]. T. kotschyanus has a multilayered epider-
mis that allows for a lower waste of water when compared to T. vulgaris [16]. Both species
have developed strategies to counteract water loss or drought, but T. vulgaris is more
vulnerable. As expected, the four irrigation regimes resulted in a reduction in RWC because
of the decreased water availability. RWC reduction causes an alteration in the transpiration
processes, leading to stomata closure [42]. This event determines a reduction in the photo-
synthetic processes due to a decrease in CO2 [43]. In this regard, our data highlighted that
both Thymus species exhibited a reduced photosynthetic performance due to water stress,
confirming what has been observed by other authors [15,44,45].

Furthermore, with the increase in water stress, a sharp drop in the total chlorophyll
content of both Thymus species was observed. The decrease in chlorophyll under drought
stress was mainly the result of damage to chloroplasts caused by the increase in reactive
oxygen species (ROS) [31,46,47]. The reduction was more evident starting from a moderate
water stress level (40%). In fact, in the initial stages of mild drought, ROS triggered
molecular signaling regulated by some hormones (such as abscisic acid) that protect against
cell damage [7]. This protective effect is reduced with increasing drought.

Drought levels did not change the carotenoids content of both Thymus species. Carotenoids
play an important role in counteracting oxidative stress and promoting drought resis-
tance [48,49]. For this reason, the significant differences observed already at the basal
conditions (normal irrigation, 90%) may explain the different responses to water stress of
the two Thymus species. Indeed, the high levels of carotenoids observed in T. kotschyanus
may explain its better resistance to severe drought regimes.

Regarding the molecular data, the severe drought level induced HDA-6 expression
in both Thymus species. HDA-6 levels were statistically higher in T. kotschyanus than in
T. vulgaris. Previous work revealed that HDA genes play important roles in regulating
the plant gene expression [50]. HDA-6 exerts various roles, including the suppression of
specific genes [22], by removing lysine from histones H3 and H4. This enzyme binds to
target genes via transcription factors that bind to DNA in large multiprotein transcriptional
complexes [50]. Kim and colleagues indicated that HDA-6 mutant plants are more tolerant
to drought than wild-type plants due to their inability to suppress the expression of
acetaldehyde dehydrogenase and PDC-1 genes, and consequently produce mostly acetic
acid [22]. The expression of PDC-1 was also investigated in the present study. The results
revealed that the expression of PDC-1 was not affected by drought stress in T. kotschyanus,
whereas in T. vulgaris, severe drought stress significantly increased the expression of this
gene. The increase in PDC-1 expression is related to the fermentation process and to
anaerobic and aerobic phenomena. The increase in PDC-1 in T. vulgaris could be related to
the absence of oxygen due to the reduced photosynthetic activity resulting from substantial
stomatal closure causing less CO2. As HDA-6 is increased in T. kotschyanus (but not PDC-1),
the upregulation of the two genes may not always be associated, as observed in T. vulgaris.

The results indicate that water stress increased ACS expression in both species, as re-
ported by Agrawal and colleagues [51]. It is also known that acetic acid can be converted to
acetyl-CoA by acetyl-CoA synthetase. The acetyl-CoA produced could be used in the Krebs
cycle, both as an energy producer and as an electron carrier [47,51]. Furthermore, ACS
are fundamental enzymes for producing carbohydrates from lipids (glyoxylate cycle) [52].
During the glyoxylate cycle, acetyl-CoA can release succinate, which can be transformed
into carbohydrates through other metabolic pathways [52]. Usually, the glyoxalate cycle is
activated when photosynthesis is not active (seeds). The loss of photosynthetic pigments
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could trigger this alternative metabolic pathway to produce carbohydrates. In our data,
the increased expression of the ACS enzyme occurs earlier in T. kotschyanus (level 40) than
in T. vulgaris (level 25). It could be hypothesized that this mechanism underlies a better
tolerability to water stress in T. kotschyanus.

Our previous H1-NMR metabolomics study [19] showed that drought stress signifi-
cantly affects the succinic acid concentration, so we investigated the SCL gene expression.
The SCL gene encodes the succinyl-CoA ligase enzyme, which converts succinyl-CoA into
succinic acid [53]. Unlike the results of Agrawal and colleagues, who observed an increase
in succinyl-CoA ligase in drought conditions [51], our results indicated that, in both species,
the expression of SCL is not affected by water stress. Thus, the observed differences in
succinic acid concentration levels may be due to changes in the expression and/or activity
of succinate dehydrogenase or isocitrate lyase.

5. Conclusions

The response of plants to water stress is regulated by both genetic and environmental
factors. In this manuscript, two species of Thymus with different sensitivities to water stress
have been selected. Physiological alterations in terms of water potential and photosynthesis
have been confirmed. In addition, the gene expression of markers involved in the molecular
pathways of the drought response have been evaluated. Our data showed that water stress
increases the expression of HDA-6 in both Thymus species. This aspect will need to be
further explored given the countless genes regulated by HAD-6. In addition, the lack of
water causes macroscopic changes (such as the closure of stomata) that can affect the main
metabolic pathways. Notably, an increased expression of the PDC-1 enzyme was observed
mainly in T. vulgaris, and ACS was expressed early in T. kotschyanus. These data are the
starting point for evaluating the molecular responses activated by different Thymus species
to water stress in the future. Additional genes will need to be included in the future in
order to better define the drought response of plants.
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