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Abstract: Several variants of SARS-CoV-2 have been identified in different parts of the world, includ-
ing Gamma, detected in Brazil, Delta, detected in India, and the recent Omicron variant, detected in
South Africa. The emergence of a new variant is a cause of great concern. This work considers an ex-
tended version of an SIRD model capable of incorporating the effects of vaccination, time-dependent
transmissibility rates, mortality, and even potential reinfections during the pandemic. We use this
model to characterise the Omicron wave in Brazil, South Africa, and Germany. During Omicron,
the transmissibility increased by five for Brazil and Germany and eight for South Africa, whereas
the estimated mortality was reduced by three-fold. We estimated that the reported cases accounted
for less than 25% of the actual cases during Omicron. The mortality among the nonvaccinated
population in these countries is, on average, three to four times higher than the mortality among the
fully vaccinated. Finally, we could only reproduce the observed dynamics after introducing a new
parameter that accounts for the percentage of the population that can be reinfected. Reinfection was
as high as 40% in South Africa, which has only 29% of its population fully vaccinated and as low as
13% in Brazil, which has over 70% and 80% of its population fully vaccinated and with at least one
dose, respectively. The calibrated models were able to estimate essential features of the complex virus
and vaccination dynamics and stand as valuable tools for quantifying the impact of protocols and
decisions in different populations.

Keywords: COVID-19; SIRD; computational epidemiology; vaccination; Omicron variant

1. Introduction

The first case of Corona Virus Disease (COVID-19) was registered in Wuhan, China, in
December 2019. Quickly, the fast spread of the virus in the Chinese city was characterised as
an epidemic, and in February 2020, eight countries had already reported cases of the disease.
Deeply concerned both by the alarming levels of spread, severity of the disease, and the
alarming levels of inaction, the World Health Organisation (WHO) declared COVID-19 as a
global pandemic in March 2020 [1].

Until 15 February 2022, COVID-19 confirmed cases reached more than 413.29 million
globally, 27.68, 3.65, and 12.69 million in Brazil, South Africa, and Germany, respectively.
The global number of COVID-19 deaths, by 15 February 2022, reached more than 5.84 mil-
lion in the world; 640, 076, 97, 431, and 120, 277 in Brazil, South Africa, and Germany,
respectively [2].

According to Li et al. [3] in a general context, not only for COVID-19, vaccines could
have prevented 69 million deaths between 2000 and 2030, showing that vaccination is
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fundamental to mitigate the effect of infectious diseases. The conclusion of the tests for
the first vaccines for COVID-19 took place in December 2020. Even after the approval of
vaccines for COVID-19, 4.09 million people died from COVID-19 in the world, 435,196,
72,740, and 93,877 in Brazil, South Africa, and Germany, respectively, as illustrated in
Figure 1.

Figure 1. Weekly deaths per million people in recent since 9 October 2021 in South Africa, Germany,
and Brazil. Each point represents the cumulative number of confirmed deaths over the previous week.

By 15 February 2022, 4.28 billion people were fully vaccinated with the prescribed ini-
tial vaccination protocol, approximately 54% of the global population. Considering the same
date, in Brazil, the number of people fully vaccinated is 152.58 million, 71.26% of its popu-
lation; in South Africa, the number of people fully vaccinated is 17.38 million, 28.95% of its
population; and in Germany, the number of people fully vaccinated is 62.32 million people,
74.29% of its population (available at https://ourworldindata.org/covid-vaccinations,
accessed on 15 February 2022).

It is known that a rapid vaccination is essential to mitigate the spread of the disease,
but the limitations imposed by the productive capacity and a clear definition of a logistics
plan for the distribution of the vaccines reduces the potential of application of vaccines in
the population, especially in lower-income countries, as illustrated by Figure 2 that present
data from [2].

Figure 2. Choropleth map of vaccination around the globe by 15 February 2022. It presents the share
of people who received all doses prescribed by the initial vaccination protocol, divided by the total
population of the country.

https://ourworldindata.org/covid-vaccinations
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Like any virus, SARS-CoV-2 also mutates. Some of the variants resulting from these
mutations may result in a variant of concern, i.e., a new strain that is more infectious, that is
more likely to cause new waves or re-infections in those who are previously infected or vac-
cinated [4–7]. Five variants of concern, called Alpha [4], Beta [8], Gamma [9], Delta [10–13],
and Omicron [14,15], were identified prior to December 2021.

The Omicron variant of the SARS-CoV-2 virus (B.1.1.529) was first detected in South
Africa, and it was considered a variant of concern by the World Health Organisation (WHO)
on 11 November 2021. Since then, it has been spread worldwide: by mid-January, it was
the most predominant strain on the planet, causing a considerable increase in COVID-19
cases. In many countries, the Omicron variant represented a resurgence of the pandemic,
disrupting the trend of decreasing numbers of COVID-19 cases and deaths. Figure 3 presents
the share of the Omicron variant in all analysed sequences for the studied countries.

Figure 3. Percentage of Omicron variant of all analysed sequences. This figure was adapted from the
one generated by Our World in Data website.

Many models have been proposed to describe the dynamics of epidemics. Some of
them can be classified into two categories, collective models [16–23] and network-based
models [24–29]. Some studies have investigated how vaccination and non-pharmacological
strategies can impact the course of epidemics [21–23,30–33]. The work presented in [34]
investigates the 2009–2010 A(H1N1)pdm09 virus propagation and states that the timing
of the vaccination program significantly influences the efficacy of immunisation. Nguyen
and Carlson [35] consider a stochastic SIR model to analyse the impact of time delays of
vaccination in the epidemics, allowing the authors to define optimal resource allocation
strategies. The paper shows that the epidemic is more effectively eradicated, requiring
fewer vaccines, when adopting early mass vaccination. Rodrigues et al. [24] use a network-
based approach to choose individuals to receive vaccine that minimises the A(H1N1) impact
in a hypothetical population.

In [36], the use of a simple mathematical model was proposed, based on the classical
SIRD model to adjust and predict the COVID-19 pandemics behaviour in three coun-
tries: Brazil, Italy, and Korea, which are examples of very different scenarios and stages
of the COVID-19 pandemic. The model used in this work is also based on the classic
compartmental SIRD model and extends the models proposed in [37–39].

Many works considered different models to try to reproduce, understand and predict
the COVID-19 pandemic. Giordano et al. [40] uses the SIDARTHE model (susceptible
(S), infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T), healed (H), and
extinct (E)) for modelling the COVID-19 epidemic and implementation of population-wide
interventions in Italy, considering different levels of severity of the disease. Yang et al. [19]
use the SEIR model (susceptible (S), exposed (E), infected (I), and removed (R)) to derive the
epidemic curve. They also used artificial intelligence (AI) to predict the epidemic, trained
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on the SARS data. Li et al. [20] use a Monte Carlo method in the building stage of the model
for a forward prediction and a backward inference of the epidemic situation.

The main goal of this work is to characterise the behaviour of the pandemic in three
different countries, observing some aspects of the virus’ dynamics before and after the
emergence of the Omicron variant. For this purpose, we have extended a mathematical
model previously presented in [38]. In particular, to reproduce public epidemiological data
in the studied countries, new features were needed in the model: mortality rates previous
and after Omicron, transmission rates previous and after Omicron, vaccination efficacy,
and the possibility of reinfection.

The remainder of the work is organised as follows: in Section 2, the proposed model is
detailed; in Section 3 the results of the simulations are presented; in Section 4 the results are
discussed; in Section 5 the limitations of the work are described, and finally, the conclusions
of the work are presented in Section 6.

2. Material and Methods
2.1. Mathematical Model

The SIRD is a simple compartmental model that divides a population into four states.
The model parameters are only three rates as presented by the set of equations:

dS
dt = − αo

N SI,
dI
dt = αo

N SI − βo I − γo I,
dR
dt = γo I,
dD
dt = βo I,

(1)

where S (susceptible), I (infected), R (recovered), D (dead) are the variables that represent
the number of individuals within a population of size N. The terms αo, βo, and γo denote
infection rates, recovery, and mortality, respectively. The SIRD model is a very used
model in the literature and is commonly extended to reproduce different dynamics of the
disease behaviour such as vaccination effects, the change in the rates over time, possible
underreporting of confirmed cases or other populational behaviour. In our model, we
extend the model of [38] that captures these issues that the classical model cannot provide.
In addition, we tried to keep the model as simple as possible to reduce the number of
unknown parameters to be estimated. The following set of equations describes our model:

dS
dt = − α(t)

N SI,
dI
dt = α(t)

N SI − β(t)I − γ(t)I,
dR
dt = γ(t)I,
dD
dt = β(t)I,
Ir = θ I,
Rr = θR,
C = Ir + Rr + D,

(2)

where S (susceptible), I (infected), R (recovered), D (dead), Ir (reported as infected), Rr
(reported as recovered), and C (total confirmed cases) are the variables that represent the
number of individuals within a population of size N. The term α(t) denotes the rate at
which a susceptible individual becomes infected and it is given by Equation (3):

α(t) = a(t, r1, ti1 , t f1)a(t, r2, ti2 , t f2)b, (3)

where b is the basic transmission rate, and the terms a1 = a(t, r1, ti1 , t f1) and a2 = a(t, r2, ti2 , t f2)
represent different stages of the transmission rate. Two different modifications of trans-
mission rates, r1 and r2, are adopted. In this way, a1 accounts for the impact of mitigation
policies, such as social distance, before the emergence of Omicron, whereas a2 is related to
the impact of the Omicron variant in the transmission.
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The function a(t, r, ti, t f ) is given by Equation (4):

a(t, r, ti, t f ) =


1, t < ti
1−r

ti−t f
(t− ti) + 1, ti ≤ t and t ≤ t f

r, c. c.

(4)

This simple approach used for a(t) assumes that when restriction policies start to be
adopted at ti1 , the probability of contact is multiplied by r1 < 1.0 at the end time ti1 + ∆1.
As the new variant appears at the time instant ti2 , transmission factor is multiplied by
r2 > 1.0 in the final time (ti2 + ∆2).

In this work, we also modified the mortality rate, m(t) according to the vaccination
rate and to the arrival of the Omicron variant, where β(t) = m(t)/τ0. The number of days
from infection until death is represented by τ0 = τ1 + τ2, where τ1 is the incubation time
of the virus and τ2 is the time between the first symptoms until death. The rate at which
infected individuals recover from the virus is given by γ(t) = (1−m(t))(1/τr), where τr is
the number of days from infection until recovery with τr = τ1 + τ3. τ3 is the time between
the first symptoms until recovery. The percentage of confirmed infected individuals that
are notified or reported is represented by θ.

As mentioned before, m(t) changes according to the vaccination rate and to the arrival
of the Omicron variant. The time-dependent parameter m(t) represents a weighted average
between the mortality rate among vaccinated v(t) and unvaccinated (1− v(t)) people
and the transition from a mortality rate previous to Omicron m to a mortality rate during
Omicron rd m, with rd < 1.0:

m(t) = (m(1.0− v(t))) + (m(1.0− e f id)v(t))mo(t), (5)

where v(t) is input data that represent the fraction of the population that is fully vaccinated,
e f id is the reduction in mortality among the fully vaccinated population, and mo(t), the mor-
tality during Omicron, follows the same dynamics of a2, the transmission rate during Omicron:
mo(t) = mo(t, rd, ti2 , t f2), where rd is the mortality reduction factor during Omicron.

Therefore, different from the model presented before in [38], here we assume that
the impact of vaccination on the transmission rate during Omicron is negligible. The
model only accounts for the reduction in mortality among the fully vaccinated population
(parameter e f id < 1.0).

Finally, with the modifications above, we still could not fit the model to the data. One
last hypothesis was needed: the possibility of reinfection. This was modelled by using
the following initial condition for the susceptible population: S(t0) = total population−
death(t0)− recovered(t0)(1− srate); therefore, if the parameter srate = 1 we have the poten-
tial to reinfect all the already recovered population, whereas when srate = 0 we have the
case of zero reinfections.

2.2. Numerical Simulations

The differential evolution (DE) optimisation method [41] was used to estimate each
parameter of the mathematical model described in Section 2.1 to publicly available data
for Brazil, South Africa, and Germany with the same approach as described before in our
previous works [36–38]. For this purpose, an in-house implementation was developed
using the C programming language.

The objective function consists of the weighted sum of the errors between the active,
deaths, and confirmed cases generated by the simulations and the corresponding publicly
available data. Here, we consider Î(t) as the reported numbers of active cases, D̂(t) the
number of deaths, and Ĉ(t) the total confirmed cases. The objective function described by
Equation (7), was used to minimise the relative error (RE(λ, λ̂)) between the data and the
model described by Equation (6):
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RE(λ, λ̂) =
‖λ(t, p)− λ̂(t)‖1

‖λ̂(t)‖1
, (6)

min
p

(
O(p) = ω1RE(I, Î) + ω2RE(D, D̂) + ω3RE(C, Ĉ)

)
, (7)

where p is the set of parameters to be estimated and ωn is a weight. For this work, we
used ω1 = ω2 = 1 and ω3 = 2.0 for Brazil and ω1 = ω2 = ω3 = 1.0 for South Africa
and Germany.

Instead of taking only the best fit, we consider the existence of a model discrepancy [42]
of 10%; therefore, all the parameters p that satisfy O(p) < 10% is taken as a viable solution.

2.3. Data Sources

The model was calibrated using the data publicly available online [2]. The data con-
sidered for the simulation in Brazil and South Africa range from 1 August 2021 and 15
February 2022 (197 days). For Germany, data for simulation range from 26 August 2021
and 15 February 2022 (112 days). The difference in the periods considered for each country
is due to the moments that each wave occurred.

3. Results

Figures 4–6 present the results of the numerical simulations. These three figures
illustrate the evolution of active cases, deaths, recovered cases, and confirmed cases in
Brazil, South Africa, and Germany, respectively, comparing them to public data reported
by these countries. Each figure presents the best fit obtained by the DE algorithm, as well
as all DE results whose errors compared to the public dataset were below 10%.

3.1. Brazil

Figure 4 compares the number of active cases, deaths, recovered cases, and confirmed
cases obtained numerically to the real data available to Brazil. The results show that the
model successfully captured the complex behaviour of the pandemic. More specifically,
the numerical results reproduce the decay observed between August 2021 to January 2022,
followed by a rapid increase in the number of active cases observed between January and
February 2022 and the apparent peak achieved in the middle of February. In addition, the
model was able to capture similar behaviour observed in the number of deaths, recovered,
and confirmed cases.

Adding the first day of simulation for Brazil to the parameters found for the transition
phase to Omicron, ti2 and ∆2, we arrive at dates very close to those reported in Figure 3.
The model calibration suggested that the Omicron variant arrived approximately between
mid-December 2021 (19 December 2021) and early January 2022 (10 January 2022). From
the data presented in Figure 3, it is possible to observe that, by 27 December 2021, the
Omicron variant represented 34% of sequenced cases and by 10 January 2022, 93% of
sequenced cases.
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Figure 4. Evolution of the number of active cases (upper left), deaths (upper right), recovered cases
(lower left), and confirmed cases (lower right) in Brazil. All simulations with errors below 10%
are presented.

3.2. South Africa

Figure 5 compares the number of active cases, deaths, recovered cases, and confirmed
cases obtained numerically to the data available to South Africa. South Africa represents a
huge challenge to the model due to the two waves observed in the active cases data, which
also was successfully captured by the numerical results. The model was also successful in
capturing the behaviour of the other curves, although a small misfit can be observed after
the middle of December 2021 in the number of deaths.

Adding the first day of simulation for South Africa to the parameters found for the
transition phase to Omicron, ti2 and ∆2, we arrive at dates very close to those reported in
Figure 3. The model calibration suggested that the Omicron variant arrived approximately
between the end of October 2021 (27 October 2021) and early December 2021 (1 December
2021). From the real data, it is possible to observe that by November 2021 (15 November
2021), the Omicron variant represented 21% of sequenced cases and by 12 December 2021,
97% of sequenced cases.
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Figure 5. Evolution of the number of active cases (upper left), deaths (upper right), recovered cases
(lower left), and confirmed cases (lower right) in South Africa. All simulations with errors below
10% are presented.

3.3. Germany

Figure 6 compares the number of active cases, deaths, recovered, and confirmed cases
obtained numerically to the data available from Germany. Again, the numerical results
captured both waves observed between November 2021 and January 2022 and their distinct
impacts on the number of deaths.

Adding the first day of simulation for Germany to the parameters found for the
transition phase to Omicron, ti2 and ∆2, we arrive at dates very close to those reported in
Figure 3. The model calibration suggested that the Omicron variant arrived approximately
between mid December 2021 (31 December 2022) and early January 2022 (17 January 2022).
From the real data, it is possible to observe that by 27 December 2021, the Omicron variant
represented 18% of sequenced cases and by 24 January 2022, 89% of sequenced cases.
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Figure 6. Evolution of the number of active cases (upper left), deaths (upper right), recovered cases
(lower left), and confirmed cases (lower right) in Germany. All simulations with errors below 10%
are presented.

3.4. Estimated Parameters for the Three Different Countries

Table 1 presents the parameters’ values found by the DE algorithm that produce the
best fit to each country’s data. These parameters represent the characterisation of the
COVID-19 pandemics by country: b represents the basic infection rate, m, the mortality
rate previous to Omicron; r1, the contact reduction factor; ti1 , the start time for intervention
policy 1; ∆1, the intervention policy 1 duration; r2, Omicron transmission rate factor; ti2 , the
start time for the Omicron variant; ∆2, the transition to Omicron duration; τ1, the incubation
period; τ2, the time from symptoms to death; τ3, the time from symptoms to recovery; θ
is the notified cases; e f fd is the vaccine efficacy for prevent deaths; srate is the potential of
reinfection; rd is the mortality reduction factor during Omicron.

The set of parameters found by the DE executions that produced errors below 10%
were also analysed. These values are presented in Figure 7 as violin plots, each one with
the distribution of the following estimated parameters: b r1 (previous transmission rate),
Omicron transmission factor (r2), mortality previous to Omicron (m), mortality during
Omicron (m rd), mortality reduction factor due to vaccination (e f f id), and potential of
reinfection (srate).
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Violin plots of the parameters: b r1, r2, m, m rd, e f fd, srate for Brazil, South Africa, and
Germany. (a) b r1. (b) r2. (c) m. (d) m rd. (e) e f fd. (f) srate.
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Table 1. Characterisation of the COVID-19 pandemics by the best parameter values by country:
b represents the basic infection rate, m, the mortality rate previous to Omicron; r1, the contact
reduction factor; ti1 , the start time for intervention policy 1; ∆1, the intervention policy duration; r2,
Omicron transmission rate factor; ti2 , the start time for the Omicron variant; ∆2, the transition to
Omicron duration; τ1, the incubation period; τ2, the time from symptoms to death; τ3, the time from
symptoms to recovery; θ is the notified cases; e f fd is the vaccine efficacy for prevent deaths; srate is
the potential of reinfection; rd is the mortality reduction factor during Omicron.

Parameters Brazil South Africa Germany

b 0.049745 0.083456 0.098533
m 0.002223 0.001614 0.007456
r1 0.999733 0.503252 0.279499
ti1 37.611357 27.571859 27.361629
∆1 43.476986 7.465598 25.647412
r2 5.422328 7.993557 4.961679
ti2 139.978414 86.668599 65.600770
∆2 21.272066 34.562475 17.164128
τ1 6.305544 4.653837 11.486396
τ2 18.950821 33.184733 27.741349
τ3 11.803360 9.761925 10.689566
θ 0.052279 0.019445 0.241283

e f fd 0.702603 0.753452 0.761646
srate 0.133930 0.419652 0.211434
rd 0.410348 0.283680 0.278265

4. Discussion

The results presented in Section 3 show that the model was able to adjust their nu-
merical results to real data for Brazil (Figure 4), South Africa (Figure 5), and Germany
(Figure 6). Table 1 and Figure 7 compare the three countries. For 95% of the simulations, the
transmission rate (b ∗ r1) was very low before Omicron, less than 0.05 for Brazil and South
Africa, and less than 0.03 for Germany. The lowest value for Germany is in accordance with
the more strict mitigation and isolation policies adopted.

During the Omicron wave, the transmission rate was significantly amplified (parame-
ter r2) by factors between 5 (for Brazil and Germany) and 8 (for South Africa).

The parameter ∆2 estimates the duration that the Omicron variant took to spread
in the studied countries. The values observed for South Africa were the highest among
the simulations, standing in the range between 20 and 40, with a mean value of 30. For
Germany, the values found are distributed between 15 and 20 with 18 as mean. For Brazil,
the observed values for ∆2 stand between 18 and 25. These observations corroborate the
prevalence of the Omicron variant in the simulated period, as seen in real data presented in
Figure 3.

From the results, we note that the mortality rate before Omicron (m) in Germany
(0.0074) is higher than in Brazil 0.0022 and in South Africa 0.0016 for the analysed period.
This may be related to the Delta variant that has hit Germany and other European countries
harder than South Africa and Brazil. In addition, the observed mortality rates are also in
accordance with the median age of the population of these countries: 27 years old for South
Africa, 33 for Brazil, and 45 for Germany [43].

The mortality rate during Omicron (m ∗ rd) decreased significantly in comparison to
the previous period, which can be verified by the value of the parameter rd. For Brazil, the
mortality during Omicron is 41% of the mortality before Omicron; for South Africa, this
value is 30%; and for Germany, 28%; therefore, on average, the mortality during Omicron
decreased by three-fold. The decrease in severity and mortality for Omicron is pointed out
by several studies in different localities as Ontario (Canada) [44], South Africa [45], and
England [46].

It is also worth highlighting the results found for the parameter e f fd, the mortality
reduction factor due to vaccination, after the model calibrations. The best values found
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were all around 70% and 75%. This means that the nonvaccinated population in these
countries have, on average, three to four times higher chances of dying due to COVID-19
complications than the fully vaccinated population.

The parameter θ reflects that underreporting has significantly increased during Omi-
cron, which is likely due to the high numbers of infected persons who are asymptomatic
or have mild symptoms. For instance, the value of θ, the fraction of cases that are re-
ported, dropped from 0.63 (as previously calibrated for Germany in [37]) to 0.24 during the
Omicron phase.

Finally, the values obtained for the parameter srate, which represents the share of
people that can be reinfected in each country, is the highest for South Africa (41%), followed
by Germany (21%) and Brazil (13%). The high number of reinfections in South Africa is
likely due to the poor vaccination coverage (28.95% of its population) compared to the
numbers found in Brazil (71.26% of its population) and Germany (74.29%). The small
difference between Brazil and Germany may be related to the population with one dose of
the vaccine, 76% in Germany against 83% in Brazil.

5. Limitations and Future Works

The model considered in this work, as well as the model in which it is based [38], is
able to adjust well to real data, as presented in Section 3; however, it shows a series of
limitations, which we intend to discuss in this section.

As the first case of COVID-19 occurred not much more than two years ago, some
limitations of our model relate to uncertainties regarding the disease’s characteristics,
which only recently has been investigated. Currently, there is no consensus on how often
reinfections of COVID-19 can occur and how a recurrent occurrence of the disease could
affect the dynamics of its transmission. Our initial results suggest that reinfections could
be high (20 to 40% of the populations of the analysed countries); however, the lack of data
in the public repositories about reinfections prevented us from validating these results.
As these data become more readily available and in the case the amount of reinfections
predicted by our model is confirmed, SIRS-like models will be more appropriate to study
the endemic dynamics of COVID-19.

Other limitations are imposed by the complex behaviour of a population, especially
facing a pandemic, due to explicit public policies and guidelines or the self-organisation of
people. As the pandemic progresses, people harden or soften social distancing and adopt
measures such as masks and hand sanitation; restaurants, schools, and business places
for other economic activities close and open as the occupancy of hospitals change. The
fine-scale variations of the social dynamics are not considered by our model and represent
a limitation of our work.

As reported in Section 2, the model proposed in this work is intended to be kept as sim-
ple as possible. The limitations here described do not prevent us from better understanding
the pandemic dynamics and further improving our model in future works.

6. Conclusions

In this work, we proposed a computational model that was able to reproduce the Omi-
cron wave in different countries: South Africa, Brazil, and Germany. By solving the inverse
problem associated with the calibration of the model to the available epidemiological data,
we were able to characterise the impact of the Omicron variant in these three countries.

As common features, we were able to verify that the estimated transmission rate of the
Omicron wave was five to eight times higher than before the appearance of this variant. On
the other hand, after the Omicron variant was established, mortality, on average, decreased
by three-fold. Finally, we have observed that underreporting was significant in all three
analysed countries. Our results suggest that the reported cases of COVID-19 account for
less than 25% of the actual cases during the Omicron wave. This is likely due to a significant
number of infected persons who are asymptomatic or have mild symptoms.
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Interesting differences between the countries were also observed in this study. For
instance, the mortality rates before and during Omicron were much higher in Germany
than in Brazil and South Africa. This could be related to the Delta variant that has hit
Germany and other European countries harder than South Africa and Brazil. Alternatively,
it could be just reflecting the median age of the population of these countries: 27 years old
for South Africa, 33 for Brazil, and 45 for Germany.

Our results also highlighted the impact of vaccination on the pandemic dynamics.
We observed that the mortality among the nonvaccinated population in these countries
is, on average, three to four times higher than the mortality among the fully vaccinated
population. Finally, we could only reproduce the observed dynamics after introducing a
new parameter in the mathematical model to account for the percentage of the population
that can be reinfected. The number of reinfections was between 20 and 40%. In addition,
we observed an opposite correlation between reinfections and the vaccination coverage or
status of the country. Reinfection was as high as 40% in South Africa, which has only 28.95%
of its population fully vaccinated and as low as 13% in Brazil, which has over 70% and
80% of its population fully vaccinated and with at least one dose, respectively. Finally, it is
worth mentioning that this simple model could reproduce several complex aspects of the
pandemic; therefore, it is a valuable tool for decision makers to understand the dynamics
of the virus and the ongoing vaccination protocol as well as their quantitative impact on
different populations.
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