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Brūmelis, G.; Dauškane, I.; Strode, L.;

Krams, I.A. High Blood Parasite

Infection Rate and Low Fitness

Suggest That Forest Water Bodies

Comprise Ecological Traps for Pied

Flycatchers. Birds 2022, 3, 221–233.

https://doi.org/10.3390/birds

3020014

Academic Editor: Jukka Jokimäki

Received: 31 December 2021

Accepted: 6 April 2022

Published: 9 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

High Blood Parasite Infection Rate and Low Fitness Suggest
That Forest Water Bodies Comprise Ecological Traps for
Pied Flycatchers
Ronalds Krams 1,2, Tatjana Krama 1,2 , Didzis Elferts 3 , Janı̄na Daukšte 4, Patrı̄cija Raibarte 4,
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Simple Summary: Animals tend to settle and reproduce in high-quality habitats which provide
large amounts of food and shelter against predators. Although they are attracted by abundant food
resources, reproductive output and survival of animals may be affected by some other environmental
factors. This study found that Pied Flycatchers (Ficedula hypoleuca) breeding near water bodies were
caught in an ecological trap. We found that the number of fledglings, their body mass, and tarsus
length were positively correlated to the distance to the lakes. The number of blood-sucking insects,
adult body mass at the end of the breeding season, and the distance to the nearest water body were
negatively correlated, suggesting that breeding near forest water bodies comes at a cost. More studies
must be done to understand the role of different kinds of blood parasites and their vectors in fitness
reduction of birds. We recommend avoiding putting bird nest boxes near forest water bodies to
mitigate the damaging effects of maladaptive habitat selection of cavity-nesting birds.

Abstract: Blood parasites are considered to have strong negative effects on host fitness. Negative
fitness consequences may be associated with proximity to areas where blood parasite vectors reproduce.
This study tested for relationships between haemosporidian infection prevalence, parasitemia, and
fitness parameters of breeding Pied Flycatchers (Ficedula hypoleuca) at different distances from forest
water bodies. Prevalence and parasitemias (the intensity of infection) of haemosporidians and vector
abundance generally decreased with increasing distance from forest lakes, streams, and bogs. Fledgling
numbers were lower, and their condition was worse in the vicinity of water bodies, compared with
those located one kilometer away from lakes and streams. At the beginning of the breeding season,
adult body mass was not related to distance to the nearest water body, whereas at the end of the
breeding season body mass was significantly lower closer to water bodies. Forest areas around water
bodies may represent ecological traps for Pied Flycatchers. Installing nest boxes in the vicinity of forest
water bodies creates unintended ecological traps that may have conservation implications.

Keywords: blood parasites; ecological traps; parasite vectors; Pied Flycatcher

1. Introduction

The distribution of biological taxa is spatially arranged. The geographical limits to
the distribution of a species are determined by abiotic factors such as precipitation and
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temperature, and biotic factors involving interactions between organisms. For example,
parasites can cause limitations to the distribution, habitat selection, and fitness of their host
species [1,2].

Avian blood parasites can be found in numerous bird species across five continents
and are transmitted by different insect vectors affecting distribution ranges, community
structure, and abundance of host species. The acute phase of blood parasite infection is
characterized by high parasitemia levels, which have a substantial impact on erythrocytes
that cause anemia [3], affect general activity [4,5], impair growth rates and the immune
system [3], and raise mortality rates of host individuals [6]. Although much lower para-
sitemia levels can be observed during the chronic phase of the infection, blood parasites
impose substantial costs on their hosts, such as increased predation risk [7] and reduced
longevity [6], reproductive performance, and overall fitness [3,6,8].

While some bird species are apparently free of blood parasites because of the efficiency
of their immune systems, which detect and eliminate parasites [9], the physiological
effect of blood parasites on birds largely depends on the presence and abundance of
competent parasite vectors in bird habitats [3,10–12]. It has been shown that birds breeding
on sea islands or by the seaside often lack blood parasites or have low blood parasite
prevalence [13]. Bird blood parasites are also often lacking in the blood of birds in arid and
high-altitude environments, which can be explained by the absence or scarcity of insect
vectors [7,9,14–19]. Thus, the presence and persistence of vector-borne parasitic diseases
are often associated with the immunity of hosts and the availability of appropriate habitats
for insect vectors [7,9,20–22].

A wide range of blood-sucking insects locally transmit blood parasites. Many mosquito
(Culicidae) species can transmit Plasmodium species. Mosquitoes prefer lakes, ponds, and
slow rivers because they require standing water to reproduce [9,23–28]. Water-reservoir
proximity is an important factor predicting higher malaria incidence in humans [29,30]. The
Haemoproteus parasites can be transmitted by various mosquitoes, biting midges (Culicoides),
and louse flies (Hippoboscidae) [31–34]. Biting midges reproduce in fens, bogs, marshes,
compost, permanently wet soil, mud, and stream margins [35], whereas louse flies do
not need specific abiotic conditions [31]. The Leucocytozoon parasites are transmitted by
biting midges and blackflies (Simuliidae) [31]. Blackfly development requires running water
such as streams. This means that insect vectors of bird blood parasites need wetlands to
reproduce and develop. It also suggests that the prevalence of blood parasites may increase
in birds living or breeding near wetlands. A positive association between proximity to
the nearest wetlands and parasite prevalence has been shown in some forest passerine
birds [24,27]. However, it is not clear whether forest stands located further away from
forest lakes and streams can be considered parasite-free areas.

Previous research has shown that the prevalence of Haemoproteus and Plasmodium
infections decreased with increasing distance from forest lakes and bogs in members
of mixed-species groups composed of Willow Tits (Poecile montanus) and Crested Tits
(Lophophanes cristatus) during the non-breeding season [7]. This study was carried out to
test for associations between blood parasite prevalence, infection intensities, reproductive
success, fledgling body mass, tarsus length, and the distance to the nearest forest wetland in
breeding Pied Flycatchers (Ficedula hypoleuca). Pied Flycatchers are long-distance migrants
whose blood parasites can infect birds in their wintering grounds in Africa. However,
Pied Flycatchers can become infected with local blood parasites, especially because their
immune system may be compromised upon a long and demanding journey from Africa
to their breeding areas in northern Europe. The breeding season is also known to lower
immunity [36,37].

2. Materials and Methods
2.1. Study Site and Birds

The study was conducted in the vicinity of Krāslava in southeastern Latvia (56◦ N,
27◦ E) in May and June 2018. The study area was surrounded by drainage basins of three
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small forest streams that consisted of cascades of small lakes, naturally occurring ponds,
beaver-constructed ponds, and bogs. This diverse system of forest water bodies provided
suitable habitats for reproduction of all kinds of blood parasite vectors [7]. The study area
was covered by a markedly homogeneous coniferous habitat dominated by Scots pine
(Pinus sylvestris) monocultures with an age of about 60–70 years [38]. The high levels of
homogeneity in pine stands are maintained by regular forest stand thinning and removal
of young silver birch (Betula pendula), Norway spruce (Picea abies), and common aspen
(Populus tremula) trees. In contrast, forests (c. 60–70 years-old) near water bodies contained
much higher tree species biodiversity consisting of Scots pine, grey alder (Alnus incana),
black alder (A. glutinosa), Norway spruce, silver birch, bird cherry (Prunus padus), European
hazel (Corylus avellana), and marginally by English oak (Quercus robur) and common juniper
(Juniperus communis) [38,39]. The higher tree diversity within 40–60 m zones around forest
lakes, streams, and beaver constructed ponds is generally caused by mesic soil conditions
and lack of forestry measures such as clear-cuts and less regular forest thinning around
water bodies in the state-owned pine stands.

This population of Pied Flycatchers has been studied as part of a long-term project
of the ecology of cavity-nesting birds carried out since the mid-1980s [38,40,41]. Pied
Flycatcher nest boxes were mounted on pine trunks at a height of 1.5 m. We kept the
entrance of all nest boxes closed until the end of April when the first migrating Pied
Flycatchers arrived. This prevented the nest boxes from being occupied by Great Tits
(Parus major), a competing cavity-nesting species. The nest boxes were arranged in lines,
with adjacent nest boxes being set 95–105 m apart. We had seven lines of nest boxes, each
consisting of 10 nests. However, not all nest boxes in all lines had been occupied by Pied
Flycatchers. On average, birds occupied 8 nest boxes in each line. In total, the flycatchers
occupied 50 nest boxes. The first nest box in a line was placed within a 20–30 m distance
from a forest lake or small stream in a mixed pine/spruce/birch forest with a tall shrub
layer; the most distant nest box of the line was located approximately 1 km away from
the nearest water body in a pine-dominated forest with a sparse shrub layer. Nest boxes
were checked to record basic breeding parameters such as clutch size, brood size, and the
number of fledglings, which reflected reproductive success. No nests were depredated
by pine martens (Martes martes) or other predators, and none were deserted due to our
activities. All but two adult Pied Flycatchers were young (the first calendar-year vs. the
second calendar-year and older) individuals, and, therefore, the age did not affect the
results. The age of Pied Flycatchers was determined based on the shape and cover of the
outer wing covert feathers [42,43].

2.2. Blood Parasites

We trapped each of the adult Pied Flycatchers twice: (1) in the first half of May when
the birds started building nests, and (2) in the first half of June when their offspring reached
the age of 13–15 days. Blood parasites cannot be detected in the blood until three weeks
after infection [3,31], which makes the discrimination between blood parasites brought
from wintering grounds and obtained in the breeding territories difficult. Therefore, we
collected second blood samples of adult individuals just before the offspring fledged their
nests, and did not collect the blood samples of nestlings at all. This allowed us to separate
the first and second sampling events by at least a 4-week interval.

Since females almost always abandon their nests if captured in their nest boxes at the
beginning of the nest building stage, we attempted to capture Pied Flycatchers in only
three nest box lines (10 males and 10 females, in total). The first capture of the birds was
always done by using traps designed as nests boxes which were placed 20–30 m away
from the nest boxes occupied by the birds. Pied Flycatchers often inspect other cavities
in their neighborhood, which made it feasible to use traps designed as nest boxes [44,45].
Importantly, these precautions and the repeated captures did not allow us to sample many
adults, which is important when considering our relatively small sample sizes.
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At capture, blood samples (150 µL) were taken from the flycatcher’s tarsal vein. To
identify blood parasites and leucocytes, a drop of blood was smeared on two to three
individually marked microscope slides, air-dried, fixed in absolute methanol, and stained
with Giemsa stain [31,46]. We also took blood samples from 80 nestlings at 40 nest boxes
on day 15 post-hatch to screen their blood for blood parasites. All captured and inspected
individuals were marked with standard aluminum and plastic bands.

Smears were screened with a light microscope under oil immersion at 1000× magnifi-
cation for Haemoproteus and Plasmodium and at 500× magnification for Leucocytozoon [46–48].
Parasites were enumerated from 100 fields by moving the slide to areas where blood cells
formed a monolayer for Leucocytozoon and from more than 250 fields for Haemoproteus and
Plasmodium. Slides were screened by T.K. and P.R. Individuals were classified as infected
when smears were positive for at least one haemoparasite taxon. The intensity of infection
(parasitemia) was estimated as the number of parasite gametocytes per 10,000 erythro-
cytes [31]. We also searched for all other blood parasites such as trypanosomes, haemogre-
garines, piroplasms, and microfilaria. These parasites, including Leucocytozoon, were not
detected in our samples.

2.3. Estimation of Vector Numbers

To check for relationships between the number of blood-sucking insects within nest boxes
and the distance to the nearest water body, we attached sticky traps to the nest boxes’ ceilings.
We had between 3 and 6 nest boxes occupied by Pied Flycatchers at distances of 100, 250, 400,
550, 700, 850, and 1000 m away from the nearest water body. Each trap was constructed as a
square (14 × 14 cm) of thick paper covered by a layer of non-hardening epoxide resin [3]. The
trap was attached to the ceiling of the nest box using pins. We prevented adult flycatchers
from sticking themselves to the sticky surface of epoxide resin by attaching a wire mesh 1 cm
above the trap (mesh size 1 × 1 cm), which did not constrain insects’ movements. We removed
all of the bloodsucking insects trapped daily, identified and counted them, and estimated the
relative number of trapped bloodsucking insects per day.

2.4. Statistics

The effect of the distance from the nearest water body on clutch size and fledgling
number was analyzed using Poisson generalized linear mixed-effects models (GLMM).
Generalized additive mixed models (GAMM) were used to analyze the effect of the dis-
tance from the water body on fledgling body mass, tarsus length, and body condition.
Distance from the water body, bird sex, season timing (beginning or end), and all two-way
interactions between these factors were used as independent variables in the models to
analyze the effects on Haemoproteus and Plasmodium prevalence (binary logistic GLMM) and
parasitemia (Poisson GLMM) in adult birds. Distance from the nearest water body, season
timing (beginning or end), and interaction between those factors were used as independent
variables to analyze the effect on adult body mass (linear mixed-effects model, LMER). In
all models, nest box line identity was used as a random factor. Additionally, bird ID was
used as a nested random factor within line ID for models with Haemoproteus, Plasmodium,
and adult bird body mass as there were two measurements per bird. Body condition of
nestlings were estimated as residuals from the linear regression of body mass on tarsus
length [49]. All models were implemented as Bayesian LMER, GAMM, or GLMM using R
4.0.2. [50] library brms [51]. The number of iterations was set to 3000 for each of the four
chains. Rhat values (all close to ~1.00) were used to assess the convergence of the models.
Effect or difference was considered significant if the 95% credibility interval did not contain
the value 0.

3. Results
3.1. Haemoproteus

Haemoproteus infection prevalence did not differ between males and females, nor
within each sex at the beginning of the breeding season, the end of the season, or across the
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season (Figure 1A). Haemoproteus prevalence significantly differed only between females at
the beginning of the season and males at the end of the season (difference estimate −5.55,
95% credibility interval (CI): (−11.71, −0.03); Figure 1A), suggesting a rise in Haemoproteus
prevalence in males from the beginning to the end of the breeding season. Haemoproteus
prevalence significantly decreased as distance from the nearest water body increased at the
end of the breeding season (slope difference estimate: −4.44, CI: (−9.34, −1.10); Figure 1B)
but had no significant effect at the beginning of the season (estimate −3.23, CI: (−7.59, 0.15);
Figure 1B). Distance and sex interaction had no significant effect on Haemoproteus prevalence
(estimate 3.33, CI: (−1.35, 8.45)).
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Figure 1. (A) Haemoproteus prevalence in the blood of male and female Pied Flycatchers at the
beginning and the end of the breeding season. Error bars represent 95% credibility intervals. (B) The
association between the distance from the nearest water bodies and Haemoproteus prevalence at the
beginning and end of the breeding season. Solid lines show the estimated trendlines by the model,
and grey-shaded areas represent 95% credibility intervals.

Haemoproteus parasitemia did not differ between the sexes (estimate 0.53, CI: (−0.16, 1.25),
Figure 2A). Haemoproteus parasitemia significantly increased over the course of the breed-
ing season in both sexes (estimates from −2.686 to −0.918; Figure 2A). The distance to
the nearest water body had a significant negative effect on Haemoproteus parasitemia; it
differed between seasons, being more distance-dependent at the end of the breeding season
(estimate −0.80, CI: (−0.90, −0.69); Figure 2B).

3.2. Plasmodium

Plasmodium infection prevalence significantly increased from the beginning of the
breeding season until its end in female (estimate −7.22, CI: (−12.38, −2.94); Figure 3A) and
male flycatchers (−5.96, CI: (−13.08, −1.61); Figure 3A). The distance to the nearest water
body had a significant effect (estimate −3.37, CI: (−7.29, −0.49)) on Plasmodium prevalence
at the end of the breeding season (Figure 3B). Interaction between the distance to the nearest
water body and sex had no significant effect on Plasmodium prevalence (estimate 1.14, CI:
(−2.31, 4.76)).
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Plasmodium parasitemia significantly increased from the beginning to the end of the
breeding season in female and male Pied Flycatchers (−2.85, CI: (−4.14, −1.72); Figure 4A).
Plasmodium parasitemia was not related to the distance to the nearest water body (estimate
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−1.51, CI: (−3.27, 0.07); Figure 4B) nor to the interaction between the distance and the
season (estimate −1.20, CI: (−2.50, 0.12)) or sex (estimate 0.85, CI: (−0.48, 2.33)).
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3.3. Vector Abundance

In total, we trapped 1130 blood-sucking insects (524 biting midges, 575 mosquitoes,
and 31 blackflies) that entered 32 nest boxes inhabited by Pied Flycatchers for 7 days. We
found a significant negative correlation between the number of parasite vectors and the
distance to the nearest water body (Spearman’s r = −0.886, n = 32, p < 0.0001, Figure 5).

3.4. Fitness Parameters of Pied Flycatchers

The distance to the nearest water body was not related to clutch size (estimate 0.02, CI:
(−0.09, 0.12), Figure 6A). The distance had a positive effect on the fledgling number (esti-
mate 0.13, CI: (0.02, 0.25), Figure 6B). Non-linear effects were observed for the distance to
the nearest water body on fledgling body mass (smooth term estimate 7.21, CI: (3.76, 12.39),
Figure 6C) and fledgling tarsus length (estimate 0.22, CI: (0.07, 0.55), Figure 6D), but non-
significant effects on body condition estimated as residuals from the linear regression of
body mass on tarsus length (estimate 0.11, CI (−0.43, 0.88)). The distance to the nearest
water body was not related to adult bird body mass at the beginning of the breeding season
(slope estimate 0.01, CI: (−0.04, 0.05)). At the end of the breeding season the distance had a
positive effect on adult body mass (slope difference estimate 0.26, CI: (0.21, 0.32)).
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parasite vectors trapped in nest boxes of Pied Flycatchers.
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4. Discussion

Overall, our results show that the forests near water bodies constitute an ecological
trap for the birds that attempt to breed in these diverse tree stands. Ecological traps arise
when organisms mistakenly prefer habitats where their fitness is reduced because they
have not experienced such conditions before [52]. Cavities are among the most important
cues for habitat selection of cavity-nesting birds [53] and often constitute the only factor
limiting their habitat choice. Therefore, Pied Flycatchers can be attracted to breed in almost
any type of woodland [54]. Birds can also be attracted to forests near water bodies. The
birds may prefer these habitats because of nest box availability, the higher diversity of
trees, and the higher numbers of land snails and arthropods [55], while not being able to
estimate the risks associated with blood parasite vectors that reproduce in the nearby water
bodies. Thus, installing nest boxes near water bodies can lead to fledgling malnutrition,
lower survival, and low recruitment rate, suggesting the role of haemosporidian parasites
in determining the habitat quality of breeding birds [12,56,57].

This study shows associations between the infection status of individual birds, their
condition (body mass) at the end of the breeding season and their fitness parameters
estimated with fledgling number, fledgling body mass, and tarsus length. Although
infection status at the beginning of the reproductive season and distance from water bodies
did not affect clutch size in Pied Flycatchers [58], the fitness of Pied Flycatchers was
found to be significantly lower close to forest water bodies such as lakes and bogs. Pied
Flycatchers breeding in the vicinity of forest water bodies had fewer and smaller fledglings.
Importantly, body mass and body size are reliable predictors of fledgling postnatal survival,
because these physical traits are beneficial when escaping predators [59–63].

Haemoproteus and Plasmodium parasites cause various adverse physiological and
growth effects on their hosts [3,15,27,64,65]. Wild animals show sickness behaviors, which
make them more exposed to predation risk, and they are less efficient in finding food during
acute stages of haemosporidian infection [3,66]. Although low-grade chronic infections by
haemosporidians can persist without direct visible effects on their hosts, recent evidence
shows that low-intensity haemosporidian infections may have long-term detrimental effects
on the host’s physiological condition, the integrity of their genetic material, longevity, and
fitness [6]. The results of this study suggest that the infection status of females and males
and their abilities to provide parental care are significantly associated, as shown by the
number of fledglings and fledgling physical traits.

Human studies have shown that malaria declined rapidly worldwide due to elimina-
tion programs that involved draining wetlands [67]. In contrast, environments containing
large lakes and lagoons may maintain a high number of malaria vectors [29]. The con-
struction of dams promotes malaria distribution and transmission by providing breeding
habitats for malaria vector species [30]. In passerine birds, a few previous studies have
already demonstrated a negative relationship between the distance from lakes and streams
and the prevalence of haemosporidian parasites during the reproductive season [9,24,27].
This study supports previous research showing that proximity to water bodies generally
increases Haemoproteus and Plasmodium prevalence and parasitemias in breeding birds,
which may have detrimental effects on bird longevity and fitness [6].

Importantly, we found that proximity to forest water bodies significantly increased
only Haemoproteus parasitemia, whereas the intensity of Plasmodium infection was not
significantly linked with the distance to nearest water body. Evidence suggests that average
dispersal distances of mosquitos exceed three km and their flight range is larger than
that of biting midges [68], which may explain the results of this study. However, flight
distances of blood-sucking insects exhibit large variation and depend on wind direction,
wind strength, day and night temperatures, local topography, illumination, humidity,
season, and their interactions [68–70], suggesting that more research is needed to elucidate
key environmental determinants of vector flights and local distribution.

Although some flycatchers were infected already before their arrival to their breeding
grounds [71–73], this study showed that Haemoproteus prevalence, Haemoproteus para-
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sitemia, Plasmodium prevalence, and Plasmodium parasitemia significantly increased during
the breeding season. This shows that Haemoproteus and Plasmodium parasites mostly in-
fected the breeding Pied Flycatchers during the current reproductive season.

Strikingly, we did not observe any significant differences in parasite prevalence and
parasitemias in males and females. In vertebrates, males have often been observed to
have higher parasite infection levels relative to females [74,75]. Evidence suggests that sex
hormones influence the immune system of breeding individuals, which affects their suscep-
tibility to parasites [76,77]. In passerine birds, females often invest disproportionally more
in building nests and incubation than males [78], which impairs the cell-mediated immune
system in females [79]. On the other hand, male Pied Flycatchers often practice a mixed-
mating system involving attempts to acquire a secondary female to breed with [80]. This
costly investment into reproduction may exacerbate cell-mediated and humoral immunity
in males [79], leading to similar infection rates in female and male Pied Flycatchers.

We did not estimate the amount of food resources available to the birds in this study.
However, our previous studies showed that tree diversity affects food resource availability
to small passerines [38,81]. Canopy, subcanopy, sapling, and shrub strata were recorded
in all forest plots near water bodies, whereas only canopy and sparse shrub strata were
available to the birds in the remote breeding areas. Besides having the highest tree diversity,
areas near forest lakes and streams are usually more diverse in snails and slugs, which
are important calcium sources during egg production for birds [82,83]. Thus, despite
choosing the highest quality habitats possible, Pied Flycatchers had higher haemosporidian
prevalence and the most intense parasitemias, the lowest adult body mass at the end of the
breeding season, the lowest number of fledglings, and the worst-condition fledglings when
breeding near forest water bodies.

This study has some drawbacks. First, the nest boxes were closed until the end of
April to prevent them from being occupied by Great Tits. Although this approach allowed
us to remove the factor of interspecific competition from our study system, we probably
did not allow some older (2nd calendar year and older) males to settle in the study area.
However, we did not affect the age structure of female flycatchers because the nest box
entrances were opened a number of days before females arrived. Second, we could not
discriminate between local blood parasites and parasites acquired during migration and
the winter season using the microscopy approach, and, therefore, future studies must be
based on molecular methods. This is crucial not only to confirm the current results but
also to disentangle the physiological and ecological effects caused by blood parasites of
different origins. Third, the research of this kind needs to cover more breeding seasons of
birds to avoid any possible natural variation in population numbers of hosts and parasites.

5. Conclusions

Our study provides evidence on an overlooked issue affecting reproductive success in
forest passerine birds by showing that haemosporidian parasites affect their hosts’ fitness
and turn large forest areas around water bodies into ecological traps. This ecosystem
property must be considered when planning investments in the conservation of a species
vulnerable to infections of haemosporidian parasites, as these powerful parasites may
ruin conservation attempts by creating unintended ecological traps around forest water
bodies [52].
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