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Abstract: The use of nonrenewable fossil fuels for energy has increased in recent decades, posing
a serious threat to human life. As a result, it is critical to build environmentally friendly and low-
cost reliable and renewable energy storage solutions. The supercapacitor is a future energy device
because of its higher power density and outstanding cyclic stability with a quick charge and discharge
process. Supercapacitors, on the other hand, have a lower energy density than regular batteries.
It is well known that the electrochemical characteristic of supercapacitors is strongly dependent
on electrode materials. The current review highlights advance in the TMOs for supercapacitor
electrodes. In addition, the newly discovered hybrid/pseudo-supercapacitors have been discussed.
Metal oxides that are employed as electrode materials are the focus of this study. The discovery of
nanostructured electrode materials continues to be a major focus of supercapacitor research. To create
high-performance electrode materials from a morphological standpoint, various efforts have been
attempted. Lastly, we analyze the supercapacitor’s evolving trend and our perspective for the future
generations of supercapacitors.

Keywords: supercapacitors; metal oxides; hybrid supercapacitors; electrode pseudocapacitors;
energy density; future trend; power density; redox mechanism

1. Introduction

The challenges of global environmental pollution with climate change are expanding
to substantial levels as a result of the fast growth of the global economy, which is speeding
the consumption of fossil fuels, such as natural gas and coal fuel. Developing tidal, wind,
solar and other forms of renewable energy is one strategy to address existing energy and
pollution issues [1]. However, environmental concerns severely limit the use of renewable
clean energy sources, and electricity production is inconsistent. As a result, developing
effective and dependable energy storage systems is critical and urgent [2]. There may be an
imbalance between supply and demand of electricity, not only for renewable energy sources
but also for the grid system, opening spatial and temporal gaps between the availability
of the energy and its consumption by end users. In this case, energy storage systems are
also needed [3]. Supercapacitors have gained more interest in recent years as a new form of
storage devices because of their high-power density, fast charge/discharge rate, and very
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long cycle life. Portable electronic devices, hybrid power automobiles and renewable energy
systems all have a lot of potential for supercapacitors. Supercapacitors (SCs) are sources
of energy that sit between batteries and capacitors. They could hold greater energy and
deliver it at larger power units than capacitors. SCs are attractive devices for energy storage
because of these characteristics, as well as their excellent cyclability and long-term stability.
SCs are still being used in a variety of applications, either in conjunction with other energy
storage devices (most notably batteries) or as self-contained energy sources [4]. Electrical
double-layer capacitors (EDLCs) and pseudocapacitors are two types of supercapacitors [5].
The charge accumulated on the interface between the electrolyte and electrode stores energy
in EDLCs, whereas the energy is stored in pseudocapacitors via a quick and reversible
faradaic redox process [6]. The low energy density of supercapacitors is still the hurdle.
The formula of energy density is 1

2 ∗ C ∗ V2, where energy density is represented by
E, capacitance is C, andthe potential window is denoted by V. The energy density is
dependent on both capacitive and operative voltages, and it can be improved by raising the
potential window and choosing a high capacitance electrode material. The performance in
electrochemical activity of supercapacitors is almost dependent on synthesis methods and
design of materials. In other words, the electrode materials used in supercapacitors have
a significant impact on their performance. Transition metal oxides (TMOs), conductive
polymers, and carbon materials are the three types of electrode materials. For EDLCs,
carbon materials are commonly employed as electrode materials [7,8]. They feature a
pore size distribution, high specific surface area that may be adjusted, and great electrical
conductivity. Carbon compounds can give high power density but poor energy density
due to the storing method in EDLCs, which restricts overall results [9]. Carbon nanotubes,
graphene, and carbon nanofibers have all been explored extensively as electrode materials.
Further, the carbon materials Csp has affected the EDLCs capacity, and the usage of these
types of carbon materials is limited because of their high cost. The pseudocapacitive and
conductive properties of the polymer are good but, again, it has gained very little stability.
On comparing all, TMOs have a higher energy density, specific capacity (100–2000 F/g) and
better chemical stability than conductive polymers [10,11]. Many transition metal oxides are
being studied in order to achieve extraordinary capacitance; ZnO, Co3O4, and MnO2 have
been extensively studied because of their easy availability and good capacity. Metal oxides
such as the AB2O4 (A/B-Co, Mn, Ni, Mo) type show less electrical conductivity because of
the presence of other metal ions’ and elements’ synergistic effect [12]. Furthermore, metal
molybdates (AMoO4) and spinel cobaltates (XCo2O4; X = Cu, Mn, Ni, etc.) have piqued
researchers’ interest due to their low cost, improved electrochemical activity, and easy
availability [13].

In this study, metal oxides like MnO2, Co3O4, ZnO, spinel cobaltates, NiO, CuO,
XCo2O4 (X = Ni, Mn, Cu), and metal molybdates (AMoO4; A = Ni, Co, Zn, Mn) are
effectively studied and their problems in practical applications are discussed [14,15].
This study also includes synthesis methods, nano scale preparation of materials, oxygen
vacancies, quantum dot modification, and battery-type material. In detail, we particu-
larly discussed the most recent materials for supercapacitor applications and their future
developments [16,17].

2. Transition Metal Oxide Electrode Materials
2.1. Co3O4

The Cobalt oxide belongs to the spinel family, and theoretical capacity of Co3O4 is
found to be 3560 F/g [18]. Moreover, it is a cheap and environmentally friendly compound
with excellent durability and stability. However, the capacitance is varied a lot in many
applications from theoretical capacitance value. The lower conductivity, high volume
expansion and contraction, slow kinetics, and particle aggregation are the reasons behind
this variation in capacitance [19,20].
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2.2. Co3O4 Nanoparticles

The big surface area and large active sites are the two major advantages of nanoparti-
cles/nanomaterials. The ion diffusion path is one of the favorable conditions, as diffusion
is easy due to the very short pathway. Morphology and dimension are important factors be-
hind the maximum capacitance of nanomaterials. Different types of Co3O4 materials were
reported so far, such as nanofibers, nanosheets, nanowires, and nanoparticles. Yue et al.
synthesized Co3O4/rGO composite by a simple, environmentally friendly hydrothermal
method [21]. A 3D structure of a small Co3O4 material is allowed to disperse on rGO flakes
to show better electrochemical activity than Co3O4 nanowires. Indira-Priyadarshini et al.
prepared Co3O4/rGO-120-12 and achieved capacitance of 1152 F/g at 1 A/g of current
rate [22]. By using PVDF (polyvinylidene fluoride), carbon, and Co3O4 nanoparticle in the
ratio of 1:1:8, a slurry was made and coated on nickel foam to get capacitance of 761 F/g
at 11 mA/cm2 [23]. Here, adding PVDF hinders the capacitance of the material because
it causes a decrease in the interaction between the active material and collector, which
tends to result in a lower number of active sites and, hence, a lower charge transfer rate.
On the other hand, growing Co3O4 NPs directly on the metal foam, carbon sheets and
carbon cloth can eliminate the need for binders and conducting materials [24,25]. Moreover,
Ag-Co3O4 nanosheets grown on Ni foam exhibit the excellent capacitance of 1323 F/g
at 10 A/g current rate and show retention of 104% of initial capacitance at 2000 cycles.
The Co3O4/Nickel foam material prepared by Wang and Yang et al. shows an excellent
capacitance of 1606 and 883 F/g at 1 A/g current density, respectively [26].

2.3. Synthesis of Co3O4 Nanomaterials

The metal organic frameworks (MOFs) type of materials have gained popularity in
recent years in applications such as electrocatalysis, adsorption of gas, degradation of
pollutants, energy devices, and so on. MOFs are also regarded to be an excellent template
for the creation of Co3O4 nanoparticles because of their tunable porosity structure, variable
pore size distribution, and large surface area [27,28]. The Zeolitic Imidazolate Frameworks
67 acts as a precursor to synthesize Co3O4 NPs, and Co3O4 material is converted by
the calcination method to gain a good capacity of 190 F/g at 5 A/g. The composite
α-Co/Ni(OH)2@Co3O4-70 prepared by Bao et al. exhibits a large number of reactive sites,
including good charge diffusion channels. Because of this, it shows an excellent capacity
of 1000 F/g at 1 A/g current rate [18]. The addition of active carbon to α-Co/Ni(OH)2
increases the capacity retention to 72.3% at current density of 10 A/g. In addition, it
delivers 0.075 kW/kg and 23.88 Wh/kg of power and energy density, respectively [29].
In another way, Wei et al. developed a process where thermal treatment converts ZIF-67
into ultrathin Co3O4 nanoparticles. A very good result in oxygen evolution reactions of
2D-Co3O4 ultrathin nanomaterials is because of its Tafel slope value of 74 mV/dec and
potential of 230 mV. The 3D porous carbon developed by Li et al. shows low specific
capacitance of 423 F/g at current rate of 1 A/g. The low capacitance of material is due to
the usage of 3D graphene/Co-metal organic framework (MOF) as a precursor, which slows
down the transportation of electrons between electrolyte and active material [29].

The binders were used to lower the interparticle resistance offered by materials by
Hans group, and they proved the increased activity of Co3O4@CoNi2S4 arrays on car-
bon cloth. Moreover, the synergistic effect of the Co3O4 compound is used to improve
the electrochemical activity of CoNi2S4 and obtained 244 mAh/g of capacity at 1 A/g.
Here, capacity retention of 86% is achieved even after 10,000 cycles [30]. On other hand,
Co3O4@CoNi2S4/AC material shows 884 W/kg and 55 Wh/kg of energy and power den-
sity, respectively. The electrode of Co3O4@ graphene sheets prepared by Liao et al. exhibits
outstanding specific capacity of 3840 F/g, and, moreover, it can bend at 0–150◦ with no loss
in capacitance.
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2.4. MnO2

MnO2 has been thoroughly investigated as the highly efficient TMO due to its abun-
dant natural occurrence, lack of environmental pollution, and higher theoretical specific
capacitance (1380 F/g) [31]. The MnO2 material is limited in supercapacitor applications;
this is because of a much lower charge transfer rate [32].

2.5. Carbon@MnO2

The huge surface area and great electrical conductivity are the key factors behind the
large use of carbonaceous materials like graphene, carbon nanofibers, carbon nanotubes,
and carbon nanowires. In order to achieve a good capacity of material, there should be very
little path difference between the electrolyte and electrode surface, which can be seen in
carbon materials [33]. The N-doped hollow HNC@MnO2 3D cores shell synthesized by Cai
and coworkers exhibits specific capacitance of 247 F/g at 0.5 A/g current rate [34]. Long and
coworkers prepared δ-MnO2 on carbon cloth, which exhibited excellent power and energy
density (asymmetric device) of 1198 W/kg and 49 Wh/kg, respectively. Lei et al. developed
MnO2nanosheet@CNTframework through the chemical vapor deposition method.

Commercial carbon compounds, on the other hand, are prohibitively expensive and
difficult to prepare on a largescale due to their high cost and complicated preparation
process. As a result, developing low-cost and renewable materials is critical in order to
meet rising demand [35]. Biomass is a renewable resource with a large value of usage.
Yang et al. prepared MnO2/biomass-based porous carbon via hydrothermal approach by
using banana peel as a carbon source, which shows 139 F/g of specific capacitance at
300 mAh/g of current density and 70 F/g at current rate of 10 A/g [36,37].

2.6. Nickel Oxide

Nickel oxide (NiO) has gained a huge amount of value in recent years because of
its unique properties in terms of heat, light, electricity, sound, catalysis, and magnetism
properties [38]. As a result of their environmental friendliness and huge availability, they are
often employed in the areas of supercapacitors. Because it has two or more oxidation states,
it promotes rapid redox reactions, which contributes to storage techniques that are in charge.
At 0.5 V potential window, nickel oxide exhibits theoretical capacitance of 2584 F/g [39].
Unfortunately, due to NiO2’s low electrical conductivity of 0.01 to 0.32 Sm−1 [40], the
experimental findings never achieve the theoretical capacitance because it can expand,
which leads to destroying the active materials and causing electrical contact damage [41].
As of now, the SC values for NiO-type electrodes, including nanostructure and SSA, have
been 50 to 1776 F/g [42]. The link between NiO and NiOOH is described using two primary
hypotheses. The energy storage mechanism occurs between NiO and NiOOH in one model,
whereas in the other, NiO converted to Ni(OH)2 in the influence of an alkaline medium,
resulting from Ni(OH)2 and NiOOH reactions, like those given below [43,44].

NiO + OH− ↔ 2NiOOH + e−

NiO + H2O↔ NiOOH + H+ + e−

For example, at 2.0 A/g, mesoporous amorphous carbon-coated core shell NiO had
a specific capacitance of 931 F/g. Similarly, Liu and coworkers used heat techniques
and hydrothermal methods to produce 3D core–shell architecture (Ni/RGO/NiO), which
consisted of a NiO shell and Ni NP core and reduced graphene oxide (RGO) conductivity
layer [45]. Three components exist in the HRTEM image taken from the edge of the
NiO/Ni/RGO sample [46]. The existence of Gr produces the core shell semi-coated NiO/Ni
structure, as seen in Figure 1. Furthermore, it has an unusually high Csp (2048.3 F/g at
1.0 A/g), as well as exceptional cyclic stability (77.8%) and retention in capacity after
10,000 cycles at a current rate of 50 A/g [47].
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2.7. Copper Oxide

Copper oxides, like CuO and Cu2O-based SCs, have gained a lot of attention because of
their abundance, low cost, nontoxicity, and ease of synthesis of diverse nanostructures [48].
Further, the capacity (loading storage) was diminished by much less electrical and cyclic
abilities [49]. For example, Zhang et al. reported the fabrication of flower-like CuO in
a KOH electrolyte, yielding a specific capacitance of 133.6 F/g [50,51], whereas Li and
coworkers focused on developing CuO nanostructures immediately onto Cu foam surfaces,
yielding a capacitance of 212 F/gin the same electrolyte [21,52]. To achieve a higher Csp
of 569 F/g−1, Wang et al. constructed CuO nanosheet arrays on Ni foam surface; yet, the
synthesis approach is a pretty tricky approach with a very low yield [53–55].

2.8. Battery Type MOs (Metal Oxides)

Incorporating battery-type MOs with MnO2-type electrodes has been regarded to be
an important technique to boost the energy density and capacity of supercapacitors [56,57],
according to Nie’s work. Synergistic effect, redox reactions, and battery metal oxides
are the main reasons to improve the capacitance of supercapacitors. In addition to that,
MnO2@NiO exhibits very high capacitance of 1277 F/g at 10 A/g with retention of 76%
even after 10,000 cycles [58,59]. The Co3O4 on MnO2 shows extraordinary performance
by exhibiting 616 F/g at 2 A/g current rates, and, moreover, it achieved 83% of capacity
retention after 10,000 cycles. On the other hand, AS electrode of Co3O4@ MnO2CC90
exhibits energy density and power density of 54 Wh/kg and 1 kW/kg, respectively [60].

2.9. ZnO

The specific capacity, stability, and all other aspects of supercapacitors are controlled
by choosing a good and capable material as an electrode. As a result, researchers have
been investigating electrode materials that perform well electrochemically [61]. Because of
their good theoretical capacitance, strong redox activity, and affordable prices, TMOs have
earned a lot of interest. ZnO has the features of environment friendly, wide availability,
and constant capacitance [62]. Dhivya Angelin and coworkers modify the ZnO by doping
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it with Zirconium. An appreciable capacitance of 518 F/g at 1 A/g was achieved in 9 wt%
Zr-Zno nanoparticle, and capacity retention of 94%, even after 5000 cycles, was achieved.
Zno nanomembranes exhibit different capacities in different electrolytes, like 846 F/g
in 6 M KOH, 465 F/g in 1 M KCl, and65 F/g in 6 M Na2SO4, each at 1 A/g of current
densities [63].

2.10. ZnO Composites

Various types of ZnO composites are synthesized as supercapacitor electrodes, such as
metal oxide, polymer, and carbon, to find out the most suitable material for electrochemical
studies [64]. Graphene nanocapsules (GNCs) show excellent capacitance of 194 F/g at
20 A/g current rate, and, moreover, only 2.6% of capacity loss is found even after 15,000
cycles [65]. Chebrolu et al. synthesized ZnO/NiO electrode, which exhibits extraordinary
capacitance of 1248 F/g at 8 mA/cm2, greater than that of ZnO/PbO, ZnO/FeO, and
ZnO/CuO electrode materials. The reason behind this is the uniform surface area of
nanosheets, including good electrical conductivity. To avoid the distraction of the ZnO
framework, Di’s team synthesized ZnO with a small quantity of Al2O3. The specific
capacitance of 463 F/g with excellent stability of 96% was achieved. Later, all studies
proved that multicomponent compounds along with ZnO could increase the capacity and
stability. The CoO3-CuO-ZnO@GO nanocomposite prepared by Obodo et al. delivered
excellent Csp of 1950 F/g at 10 mV/s current density.

2.11. XCo2O4 (X-Cu, Ni, Mn)

The spinel structure exhibits good electrochemical activity and conductivity, so these
ternary transition materials were used extensively for supercapacitor studies [66,67]. The
MnCo2O4 electrode synthesized by Shanmugavadivel et al. by the combustion method
showed an excellent capacitance of 270 F/g. Moreover, the electrodeposition method
followed to prepare the same material showed increased Csp of 585 F/g at 0.2 mA/cm2

current rate [68]. Later, by the electrodeposition method, NiCo2O4 was coated on nickel
wire and exhibited good capacitance of 315 C/g at 1 A/g with loss of 8.4% capacity after
50,000 cycles [69,70]. CuCo2O4wasdeveloped by Pawar et al. by the electrodeposition
and annealing process [71]. An appreciable capacity of 1473 F/g even after 5000 cycles
was achieved at 1 A/g current density [72]. The Csp of 1933 F/g at current rate of 1 A/g
was achieved by Wang’s group by synthesizing MnCo2O4 electrode material [73]. The
NiCo2O4@MnO2 synthesized by Xu and coworkers exhibited a good specific capacitance
of 1.23 F/cm−2 at 50 mA/cm−2 after 8000 cycles. By using the as-prepared material, an
asymmetric device was developed with potential window of 1.5 V and specific capacitance
of 112 F/g at 1 mA/cm−2 and the material exhibited superior energy density of 35 Wh/kg.
The three-dimensional CuCo2O4@Ni (OH)2 with very good surface area showed extraordi-
nary electrochemical applications and delivered 2160 F/g at 1 A/g of current density with
good capacity retention of 82% [74].

2.12. Transition Metal Molybdates

Due to a redox mechanism on the material’s surface, pseudocapacitive materials
such as organic conductive materials and metal oxides show larger specific capacitances
than carbon materials [75]. Furthermore, due to the large number of active sites, quick
redox reactions ternary metal oxide could be the potential material to replace RuO2. The
transition metal molybdates have receiveda lot of interest as the main choiceof mixed
transition metal oxides because of their features such as abundant availability, higher
specific, theoreticalcapacitance, and low prices [76,77]. The morphology and structure
of supercapacitor electrode materials play a big role in their performance. As a result, it
is critical to create electrode materials with distinct spatial structural features. The large
specific surface area leads to the improved interfacial conductivity and increase in the
number of active sites and porous structure; the Ag Quantum Dots/NiMoO4nanoparticles
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showed excellent specific capacitance of 3342 F/g at voltage of 1 mV/sand 2074 F/g at
current density of 1 A/g, as shown in Figure 2 [78].
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2.13. Design of Transition Metal Oxides

The construction of hetero-type composites has proven to be a promising technique to
execute the electrochemical characteristics of TMOs, as per Yi’s research [77]. Heterostruc-
tures include core–shell structures. The core shell configuration can provide a lot of surface
area with a lot of porosity. Likewise, core materials enhance electron transmission, while
shell materials provide electrochemical redox active sites. Furthermore, each material’s
synergistic effect is used to boost the electrochemical behavior of the electrode. A 3D hierar-
chical core–shell (CoMoO4@CoS) was successively developed by Xuan and team; here, they
took rGO/Ni foam for the preparation. Figure 3 displays different magnifications of SEM
images of CoS, CoMoO4, and CoMoO4@CoS materials [79]. The synergistic impact, unique
material structure, and superior conductivity of rGO help to boost the electrochemical
active sites and raise the capacitance, so this composite exhibit capacity of 3380 F/g at
1 A/g current rate (Table 1).
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Co3O4@NiCo2S4/NF 3 M KOH 17 F/cm−2 10,000 (114%) [86]

Ag Quantum dots/NiMoO4 3 M KOH 2074 F/g 1000 (81%) [78]
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3. Pseudocapacitors

The transfer of charge takes place between the electrode and electrolyte, and it un-
dergoes redox reactions with the faradaic process [90]. They are prepared by various
approaches, like redox, intercalation, and electrospinning methods. Compared to EDLCs
(electrochemical double layer capacitors), pseudocapacitors exhibit higher energy; metal
doped carbon, conductive polymers, and metal oxides are considered as the pseudocapaci-
tor type of materials [91]. However, this type of material exhibits less power density and
less cycle life because of redox reactions.

When compared to carbon-based EDLCs, the conducting polymer pseudocapacitors
have a higher capacitance, a higher conductivity, and a lower cost. In addition, polythio-
phene, polypyrrole, and polyaniline are examples of materials that are considered to have
high potential densities [92]. The cyclic stability of polymer electrodes is lower than that of
carbon materials. Polymers can increase conductivity when doped, but they also change
volume, producing swelling and an increase in electrode thickness, which is a safety con-
cern for any device [93]. The schematic representation of three and two electrode systems
are given in Figure 4 [94].
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3.1. Metal Oxide-Pseudocapacitors

The conductivity of metal oxide pseudocapacitor materials is extremely high. RuO2
is among the most studied metal oxides [95]. In addition, it features a low ESR and a
high specific capacitance. However, its exorbitant cost in comparison to other TMOs
has prompted researchers to look into other options [96]. Oxidative synthesis, sol-gel
method, intercalation, hydrothermal method, insertion, etc. are some of the methods of
fabrication. At the lowest current rate, metal oxides exhibit higher capacitance and higher
energy densities [97]. Metal oxides, on the other hand, are reported to cause electrode
cracking, resulting in short-term stability, because their pores cannot be adjusted or altered
in any way [98]. Furthermore, carbon-based materials are commonly used as electrodes for
developing pseudocapacitor electrodes, and their mixture with nanosized TMO materials,
such as MnO2, Co3O4, ZnO, and Fe3O4, has been shown to have the ability to reach very
high specific capacitance values [99].
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To store charges, hybrid capacitors use polarizable (carbon) and non-polarizable
(conducting polymer or metal) electrodes, which include both faradaic and non-faradaic
reactions. This type of capacitor has very good cyclic stability and is cheaper compared
to EDLCs.

3.2. Asymmetric Supercapacitors

Because of its two different electrodes, this sort of supercapacitor stands out among
others. Since one electrode operates as capacitive and one as faradaic, they are designed to
function together to meet the power and energy density requirements [100]. The negative
electrode is usually made of carbon-based materials, whereas the anode is made of metal
or metal oxide. Metal electrodes have a large intrinsic volumetric capacity, which leads to
higher energy densities [101]. In comparison to symmetric supercapacitors, these capacitors
have the ability to have a better energy density and cyclic stability, which could be observed
from carbon and MnO2/NF electrodes. Capacitor self-discharge is a major problem with all
capacitors. One solution is to include a basic rocking-chair mechanism inside an asymmetric
capacitor. At zero current, this is where the greatest potential is secured [102]. The charge
storage mechanism through EDLC [103] and pseudocapacitive mechanism is demonstrated
in Figure 5 [104].
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3.3. Composite Supercapacitor

These types of hybrid supercapacitors are designed to produce synergistic results
in terms of high conductivity, specific capacitance, and cycling stability [105]. Carbon-
supercapacitors, as shown in EDLCs, have high mechanical strength, large surface area, low
resistance, and no Joule heating. Furthermore, when compared to commercially available
lead acid and lithium-ion batteries, carbon has a low energy density, while metal oxides,
which are being explored, get a low conductivity. Composite hybrid supercapacitors
combine the features of carbon and metal oxides, resulting in the sought-after synergistic
properties of specific capacitance, high conductivity, and cycling stability. Collectively,
carbon and metal oxide could create a charge transport channel, while redox reactions
would store charge, resulting in a high energy density and high specific capacitance.

3.4. Battery Type Rechargeable Hybrid Supercapacitor

The future of this type of supercapacitor resides in the effort to break through the
Ragone plot’s midway diagonal, which holds potential qualities such as better specific
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capacitance, power density, and energy density that must still be achieved, as compared to
current supercapacitors [106]. Because the production of electroactive nanoparticles led
to rapid reactions with the electrolyte, undergoing redox with electroactive nanoparticles
should also result in faster reactions. Furthermore, there is a problem because it is probable
that it will also encounter false reactions with the electrolyte. Multiple obstacles exist while
creating nanocomposite materials using metal oxides [107]. The material LiMnPO4has a
greater potential than its Fe analogue but is harder to coat with a carbon layer like LiFePO4.
However, a surprising, strategic way to solve this problem was to create a multi-layered
carbon structure layered over Fe over Mn, which worked. Indeed, the paper claims that
it functioned better than expected at greater speeds and with no direct contact between
the oxidizing Mn metal oxide and the electrolyte [108]. Figure 6 shows the classification of
hybrid supercapacitors [98].
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The comparison table of supercapacitor and battery is given in Table 2.

Table 2. The comparison table of supercapacitor and battery.

Supercapacitors Batteries

Cost Lower cost Some material are higher cost

Heat build Due to 95% of cycle efficiency, Low thermal
energy releases

Charging of a cell causes serious damage, by
producing enormous amount of heat

Charge protection No danger if overcharged Circuits are required to detect the overcharging

Environmental No corrosive chemicals Chemicals required to create and dispose of

Energy density
Stores only 10–20% of that of an electrochemical

battery, but it has highest energy density of
all capacitors

Stores about 10 times the capacity
of supercapacitors

Power density Very rapid discharge of energy, and voltage level is
non usable for about 3/4th of the discharge cycle

Steady and linear discharge of energy and uses
specific voltage for 95% of the batteries

discharge cycle

Voltage range Maximum voltage is low Maximum voltage can reach double digits

4. Conclusions

The primary goal of supercapacitor development is to address the need for storing
renewable energy. Higher power density, exceptional cyclic stability, and a quick charge
and discharge process are all advantages of supercapacitors. This type of electrode has
a big impact on supercapacitor performance. TMOs are preferred over carbon materi-
als because they have a higher specific capacity and energy density, as well as superior
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chemical stability over conductive polymers. We have covered current developments in
TMO-based supercapacitor electrode materials, including fabrication, design, and electro-
chemical performance, in this review. RuO2 is expected to be replaced by MnO2, ZnO,
and Co3O4. Issues such as low conductivity make them unsuitable for use in electrode
materials. As a result, we have offered some ways for dealing with the issues. Among
those, first is nanoscale material preparation. Because of the compact size, the contact
surface is larger and the ion diffusion distance between electrolyte and materials is shorter.
Second is synergistic effect. Taking advantage of the synergistic effect, it is critical that
the synergistic impact between multiple components could be employed to increase elec-
trochemical activity strongly using various mixtures of transition metal oxides, carbon
materials, transition metal sulphides, and various materials. Third is, creating materials
with a unique structure. Core–shell, porous, and hollow structures can increase surface
area with abundant electrochemical active sites while lowering ion and electron transfer
resistance, resulting in increased conductivity and redox reaction rate.

We have three suggestions for supercapacitor development: (i) Researchers should
focus their efforts on finding low-cost, non-polluting electrode raw materials, and the
usage of biomass carbon sources is a suitable example; (ii) Electronic devices should be
developed that are easy to use, such as portable, wearable, and durable; thus, flexible
supercapacitors will emerge easily; (iii) There are numerous publications on flexible and
transparent electrode materials for solar batteries now available. Furthermore, battery-type
supercapacitor electrodes have received a lot of attention. Hybrid supercapacitors, on
the other hand, can bridge the gap between supercapacitors and traditional metal ion
batteries. We are curious if supercapacitors will be able to charge from the sun in the
future. If this miracle occurs, it will mark a tremendous step forward in the development
of supercapacitors.
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