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Abstract: Sector coupling remains a crucial measure to achieve climate change mitigation targets.
Hydrogen and Power-to-X (PtX) products are recognized as major levers to allow the boosting of
renewable energy capacities and the consequent use of green electrons in different sectors. In this
work, the challenges presented by the PtX processes are addressed and different process intensifi-
cation (PI) strategies and their potential to overcome these challenges are reviewed for ammonia
(NH3), dimethyl ether (DME) and oxymethylene dimethyl ethers (OME) as three exemplary, ma-
jor PtX products. PI approaches in this context offer on the one hand the maximum utilization of
valuable renewable feedstock and on the other hand simpler production processes. For the three
discussed processes a compelling strategy for efficient and ultimately maintenance-free chemical
synthesis is presented by integrating unit operations to overcome thermodynamic limitations, and
in best cases eliminate the recycle loops. The proposed intensification processes offer a significant
reduction of energy consumption and provide an interesting perspective for the future development
of PtX technologies.

Keywords: process intensification; Power-to-X; process integration; dimethyl ether; oxymethylene
ether; ammonia; reactive distillation; adsorptive separation

1. Introduction

Code red for humanity was addressed in the recent intergovernmental panel for
climate change IPCC report published in summer 2021 [1]. The emerging issue of climate
change enforces the drastic reduction of greenhouse gas emissions. Electrification by
boosting of renewable energy capacities to supply all energy demanding economic sectors
is necessary to reach the defined climate change mitigation targets [2]. The production of
green hydrogen (H2) using renewable energy and the subsequent synthesis of chemicals
in Power-to-X (PtX) processes was identified as an important pillar for sector coupling
and for the transformation towards a sustainable energy system [3]. PtX is defined as
the integration of renewable energy beyond direct electrification into the energy, mobility,
industry and private sectors via H2 based renewable energy carriers [4]. The production
and import of renewable energy from locations with a high potential will be a crucial
element of the future energy system and will inevitably require a suitable energy carrier.
All long-distance and heavy duty transportation will rely to a large extent on dense liquid
fuels in the future [5]. Regarding the German energy market, the annual demand for
energy in the form of PtX molecules is estimated to range from 75 up to 500 TWh by
2050 [5,6]. Possible products of PtX processes vary from synthetic fuels such as E-diesel or
E-kerosene, to common bulk chemicals like methanol (MeOH) and ammonia (NH3), and
further to highly processed chemicals and oxygenated fuels like dimethyl ethers (DME) or
oxymethylene dimethyl ethers (OME).
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1.1. Boundary Conditions for PtX Processes

One of the main challenges of renewable energy-based processes is the geographically
dependent potential and temporal fluctuation of renewable resources and consequently
fluctuating electricity production. Green H2 production based on these fluctuating green
electrons is technologically possible via water electrolysis, which is subsequently used as
the feedstock for synthetic fuels, chemicals and energy carrier production. Since steady-
state operation is the common strategy in conventional large-scale chemical or refinery
processes, new operational strategies are needed. Available strategies are either the storage
of H2 under elevated pressure or cryogenic conditions or alternatively, to operate the down-
stream process dynamically, a major emerging challenge for these industries. However,
H2 storage remains energy intensive and expensive. For instance, the cost for storage
can reach up to a 25% share of the net production cost (NPC) of H2 production in small
and medium size systems [7]. Furthermore, proposed large scale H2 storage technologies
such as salt caverns, are scarce and not necessarily available at locations rich in renewable
resources [8]. In the light of the previous discussion, the latter strategy of dynamic PtX
process operation can minimize and ultimately avoid H2 storage allowing for significant
NPC reduction. A dynamic process in the context of this work refers to the possibility to
control the process conditions and plant utilization based on the availability of renewable
energy. However, the dynamic operation of reactors, compressors and other unit operations
exhibit challenges that require investigation and further development. For the example of
heterogeneously catalyzed exothermic reactions performed in fixed-bed reactors some of
these major challenges are:

(a) the thermal instability and transient hot spot formation,
(b) the possibly enhanced catalyst deactivation and degradation due to thermal cycling

and load changes,
(c) and the transient changes in product quality or composition and possible undesired

side product formation.

Locations with high potential for renewable energy production are often located in
remote areas without connection to the infrastructure available at industrialized areas
or even offshore. The realization of chemical processes at remote locations without grid
connection presents several additional challenges, such as:

(a) no compensation of fluctuating electricity using grid electricity,
(b) the elaborative production of utilities onsite using renewable resources,
(c) the high costs of operation and maintenance,
(d) and the limited available area for construction.

Moreover, from an economic point of view, the usage of green H2 emphasizes the need
for highest material and energy efficiency of PtX processes. This was supported by recent
studies investigating the production of different PtX products which revealed that green
H2 production costs represented more than 60% of the NPC of various PtX products [9].

1.2. Objectives of This Work

In this work, the arising challenges for PtX processes are addressed for three impor-
tant PtX products namely: NH3, DME and OME. Process intensification (PI) strategies
suitable for these heterogeneously catalyzed thermochemical processes are introduced.
Moreover, the state-of-the-art is briefly discussed followed by the introduction of the most
promising examples for improving the respective process via PI based on recent literature.
The potential of PI methods for combining heterogeneously catalyzed reactions and the
subsequent separation processes aiming to shift the thermodynamic equilibrium towards
the desired products is identified and discussed. Emphasis is placed on quantification of
the improvements obtained by PI, to evaluate the potential of respective measures.
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1.3. Background and Process Intensification Approaches

Since the term “Process Intensification” is not defined consistently and the variety
of PI approaches remains wide, a short definition and the understanding of PI in the
present work is provided as follows. The motivation for the development of PI technologies
is described as “doing more with less” by Jenck et al. [10], comprehensively leading to
an increased process efficiency as the overall goal of PI approaches. Stankiewicz et al.,
define PI as “any chemical engineering development that leads to a substantially smaller,
cleaner, and more energy efficient technology”, which result in a “cheaper and sustainable”
technology [11]. According to Ramshaw et al., PI is a strategy for making “dramatic
reductions in the size of a chemical plant to reach a given production objective” [12]. Van
Annalandt et al., investigated into PI for PtX products and concluded that the application
of PI to the energy sector can result in a dramatic decrease in the production of waste,
including greenhouse gas emissions [13].

For a better overview, the categorization of PI approaches into (a) process-intensifying
equipment and (b) process-intensifying methods was proposed in the literature [14]. The
process-intensifying methods describe novel process concepts, such as hybrid separations
or the usage of alternative energy forms or sources [15]. As chemical reactions and the
chemical reactor represent the centerpiece of most chemical processes, PI methods often
focus on this process unit [16]. Most importantly for the scope of this work, the integration
of several unit operations into multifunctional reactors provides a promising approach
of the process intensifying methods. Multifunctional reactors combine the reaction with
another unit operation that would conventionally take place in a separate process apparatus.
For instance, the removal of a reaction product or by-product in the reactor can decrease
kinetic or thermodynamic limitations and accordingly enhance the reaction regarding
selectivity and conversion. Due to the increasing conversion, recycle streams and required
equipment can be avoided, which consequently allows for a reduction in the number
of process units by the integration of multiple process units within the multifunctional
chemical reactor [16]. Additionally, a lower demand in utilities can offer an important
benefit of a highly intensified process.

2. Process Intensification for Power-to-Ammonia Processes
2.1. Background

NH3 is one of the most produced chemicals globally, with a production rate of
150 Mt/a in 2019. In addition to the current importance of NH3 as a base chemical, its usage
as a chemical energy storage molecule in the Power-to-Ammonia (PtA) process is discussed
extensively in the scientific literature and in recent political scenarios [17]. This is due to the
fact, that compared to pure H2, NH3 exhibits a high volumetric energy density and lower
costs for storage in the liquid phase under comparatively mild conditions [18]. Thereby,
either a low-temperature storage at−33 ◦C under ambient pressure or a pressurized storage
at around 16 bar under ambient temperature is possible [19]. NH3 is synthesized from
N2 and H2 according to the stoichiometric Equation (1), whereby the synthesis conditions
are defined by the reversible, exothermic nature of the reaction. With respect to the raw
materials, NH3 can indirectly be produced from air and water by using atmospheric N2
from air and green H2 produced via water electrolysis in a PtX scenario. Compared to
other PtX processes, the PtA process does not require a carbon source, providing the NH3
production with a unique flexibility in various locations [20].

N2 + 3 H2 
 2 NH3
∆Ho

298 K = −92.44 kJ mol−1 (1)

Furthermore, NH3 can be used flexibly as a CO2 free fuel in fuel cells [21] or combus-
tion engines [22], as a H2 carrier [23] or as a base chemical (i.e., in fertilizer production).
State-of-the-art NH3 production is based on fossil H2 produced from natural gas via steam
reforming. In this process large amounts of CO2 are emitted. Consequently, the global
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scale of NH3 production based on a fossil feedstock constitutes almost 2% of global CO2
emissions and the decarbonization of the conventional Haber–Bosch process provides an
immense potential for reduction of CO2 emissions [24].

2.2. Conventional Haber-Bosch Process

NH3 synthesis is performed based on the Haber–Bosch process developed in the
beginning of the 20th century. The main process units comprise the compressors for syn-
thesis and recycle gas, the NH3 reactor and the condensation unit to remove NH3 from
non-converted reactant gases as shown in Figure 1a. The process is characterized by its
harsh temperature and pressure conditions required for synthesis at pressures between
100–300 bar and temperatures above 450 ◦C. Reaction conditions are defined by the com-
monly used multi-promoted, magnetite-based iron catalysts [25]. To reach sufficient kinetic
activity high temperatures are needed. In consequence, the synthesis pressures need to
be increased, to shift the chemical equilibrium towards NH3 formation [26]. Due to the
advantages of these catalysts, such as low costs and high structural stability under harsh
reaction conditions, industrial relevance for other catalytic materials is low [27]. Increasing
the production scale and a high degree of energy integration led to a drastic reduction of
energy demand of modern Haber–Bosch processes. Recent world-scale plants produce
NH3 from natural gas as the H2 source with a specific energy demand of around 28 GJ per
ton of NH3 and an overall process energy efficiency of up to 70% [28].
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2.3. Power-to-Ammonia

The term PtA is used for NH3 synthesis processes based on renewable energy, whereby
the reactant H2 is produced via water electrolysis, while N2 is provided via air separation
technologies. The production of NH3 from renewable H2 was successfully demonstrated on
a pilot-scale [29]. An overview of existing and planned demonstration plants was given by
Ayvali and co-workers [30]. The ongoing research into PtA technology can be categorized
mainly into two pathways [31]. The first pathway describes the implementation of the
conventional Haber–Bosch process loop into a process based on renewable H2 feedstock.
This concept is mainly discussed for the world-scale production of NH3 and the reutilization
of existing production plants with H2 derived from renewable sources. The second pathway
is research-driven and focuses on non-conventional and enhanced production technologies.
The focus is on overcoming the described challenges of PtX processes to increase the process
efficiency for decentralized NH3 production units. In this context considered PI methods
and their potential are described in the following sections.
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2.4. Process Intensification Methods

The heterogeneously catalyzed reaction is the centerpiece of the synthesis process and
defines the operation conditions for further unit operations. Therefore, the investigation
towards highly active catalysts was part of the research and development in the course of the
century of industrial NH3 synthesis. This led to a high number of different active, promoter
and support materials, which were investigated. Ruthenium-based catalysts were identified
as a promising material for NH3 synthesis under milder reaction conditions due to their
high catalytic activity [32]. Recent studies showed that the synthesis of NH3 at pressures
below 10 bar and at temperatures between 300 and 400 ◦C was feasible [33,34], which
provided a decrease in energy demand (i.e., for synthesis gas compression). Furthermore, a
fast response and a high stability towards the thermal cycling was demonstrated [35]. This
is necessary for dynamically operated NH3 reactors for renewable feedstock conversion
in remote locations. Accordingly, the usage of Ru-based catalysts and the associated
shift towards mild reaction conditions is expected to be an important contribution for the
aimed PI.

If NH3 is synthesized at a lower pressure, the operating conditions for the separation
of NH3 changes. Since the partial pressure of NH3 in the product gas decreases due to
lower NH3 equilibrium concentration and the lower total pressure, lower temperatures for
condensation are necessary. Therefore, the energy demand for separation via condensation
in low-pressure processes increases, while separation efficiency decreases [36]. Importantly,
the complete separation of NH3 is crucial for the process energy efficiency, as NH3 re-
maining in the recycle stream leads to a decrease in the formation rate due to unfavorable
equilibrium constraints [37]. To overcome this challenge, the replacement of condensation
with adsorptive or absorptive NH3 separation for low pressure processes was discussed
as a promising option in various publications [38–47]. These techniques, which can be
carried out at elevated temperatures, provide a selective separation of NH3 and can reach a
low residual NH3 concentration in the recycle stream (<1%) [31]. Furthermore, the energy
demand for the latter separation approach is rather low.

Various materials for the sorption of NH3 are available, whereby the research focuses
on zeolitic materials [40] and metal halide salts [48]. The main challenge arises from the
fact that ad-/absorbed NH3 needs to be released in an additional pressure or temperature
swing process (PSA/TSA). The full release of the adsorbed NH3 and the stability of the
adsorbent under the periodic operation remain undergoing research topics for sorptive
NH3 separation [44]. A further promising PI method is the process integration of the reactor
and a sorption-based separation process into a single multifunctional reactor, as described
in Figure 1b. The in situ removal of the reaction product shifts the equilibrium towards
the product site and mitigates the thermodynamic limitation of the synthesis even at a low
pressure. Moreover, the sorptive in situ removal replaces the inefficient condensation of
NH3 at a low pressure. First approaches for the realization of a multifunctional reactor
using a Ru-based catalyst for NH3 synthesis and metal halide salts for separation were
published recently [41].

The potential of the PI strategies discussed above are compared quantitatively with
respect to the specific energy demand per ton of liquid NH3 produced as published in
the recent literature ([31,37,49]). Figure 2 shows the energy demands for synthesis and
recycle gas compression, as well as for cooling in the condenser. A conventional Haber–
Bosch process is compared with a low-pressure synthesis process, a process with sorptive
separation and a process with in situ separation.

As discussed above, more active catalysts allow for lower operation pressure. The
comparison therefore illustrates the effect of novel catalysts in conventional process con-
cepts. For conventional processes operating at 300 bar, the specific energy demand is mainly
caused by the compression of the synthesis gas and amounts to around 6 GJ/t [37]. The
reduction of the pressure to 100 bar leads to a decrease in overall energy demand [50].
At mild pressures of 20 bar the energy demand surprisingly increases drastically, mainly
driven by the energy intensive condensation of the produced NH3 at lower temperatures
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compared to conventional processes [49]. Replacing the condensation with an adsorptive
separation downstream the NH3 synthesis reactor allows for a significant decrease in en-
ergy demand at the low synthesis pressure of 20 bar [31,51]. For the integrated process with
in situ NH3 separation, a further reduction of energy demand down to around 3 GJ/t can
be expected according to Smith et al. [49], including the energy demand for desorption via a
temperature swing process and the liquefaction of desorbed ammonia. This integrated pro-
cess clearly outperforms the conventional one. The main reason is the shift in equilibrium
constraints provided by the high catalyst activity at low temperatures combined with the in
situ removal of the reaction product NH3. Thereby, a higher conversion at mild synthesis
conditions is achieved, which reduces or even avoids the recycle of unreacted N2 and H2
and consequently the energy demand for compression and separation. Additionally, the
plant size and number of apparatuses decreases, which paves the way for less complex
production plants. Importantly, the loss of reactant gases via purging is avoided, if the
recycle of unreacted compounds is obsolete.
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It must be pointed out that the concept of in situ removal requires low operation
temperatures in order to facilitate the NH3 ad-/absorption and hence, highly active catalysts
are a prerequisite for this strategy. Further research, however, is required prior to the
implementation of the intensified process concept. Besides the selection of sufficiently stable
and selective sorbent materials for NH3 removal, the reactor and process concept need
to be developed considering the reaction and the subsequent adsorption and desorption
steps. Regarding the reactor design, the spatial arrangement of catalyst and sorbent needs
to be explored. With respect to the process concept the operation mode needs to be
developed, which enables a stable reactor operation and product composition considering
the inherently dynamic ad- and desorption steps.

Interestingly, the described PI method of in situ removal combines three strategies.
The utilization of highly active catalysts, the replacement of the separation technology, and
the integration of two unit operations into one single apparatus, in order to fully exploit
the potential of PI. Considering the stated challenges of PtX and the potential of PI, several
benefits of the described process approach are identified: The quantitative comparison of
the specific energy demand exhibits an increase in energy efficiency, which represents one
goal of the PI measures [11]. Regarding the production scale, the presented PI methods
offer a promising perspective. As the presented energy consumption for the conventional
process was evaluated for large scale production of ca. 330 t/d and reported to decrease at
smaller scales [31], the in situ PI approach is yet considered for small production capacities.
The desired reduction of plant size and increased flexibility of the resulting process concept
can only be discussed qualitatively in the current analysis. Yet, the discussed reduction
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of reactor pressure and temperature contribute positively towards the realization of the
desired dynamic reactor operation. Together with employing more active catalysts, these
synthesis conditions and simplification measures remain important PI outcomes that can
yield a feasible process under dynamic conditions.

3. Process Intensification for Power-to-DME Processes
3.1. Background

To date DME is produced at large scale with a total world production capacity of
approximately 5 Mt/a. The major application is the replacement and blending of Liquefied
Petroleum Gas (LPG), mainly in China [52]. Furthermore, DME is used as a propellant, sol-
vent and intermediate for subsequent syntheses of important end products [53]. Moreover,
DME is under investigation as a diesel substitute [53]. The conventional DME production
route refers to the so-called indirect two-step route presented in Figure 3a. In the first
step, MeOH is produced from synthesis gas—a mixture of H2, CO and CO2—which can
be produced based on fossil or renewable feedstock. The crude MeOH—a MeOH/water
mixture—is subsequently separated from unreacted syngas by flash separation. The un-
reacted syngas is recycled, while the crude MeOH is purified by means of distillation, to
remove water and low-boiling components formed in the MeOH synthesis [54]. For the
following DME synthesis step, the purified MeOH is evaporated, pre-heated and fed into
a fixed-bed reactor equipped with a solid acid catalyst. DME is formed by dehydration
of MeOH in a heterogeneously catalyzed gas-phase reaction at temperatures between
220–360 ◦C and pressures up to 20 bar according to the stoichiometric Equation (2) [53,55].

2 CH3OH 
 CH3OCH3 + H2O
∆Ho

298 K = −23.5 kJ mol−1 (2)
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The most widely used catalyst for MeOH dehydration is γ-Al2O3 due to its low cost,
high selectivity, high specific surface area and good mechanical and thermal stability [56].
The conversion per pass is typically around 70–85%, which is already in the vicinity of
chemical equilibrium. As the activity of alumina is strongly affected by water, purified
MeOH needs to be used as feedstock with low amounts of residual water. The reaction
product consists mainly of unreacted MeOH, DME and water, which are separated conven-
tionally by two-step distillation. Water is removed in a first distillation column, while the
remaining MeOH-DME mixture is fed to a second distillation column, where pure DME is
obtained as distillate and MeOH as bottom product. The unreacted MeOH is recycled to
the DME synthesis reactor [53].
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3.2. Process Intensification Methods

One major drawback of the conventional DME production process is an incomplete
conversion, resulting in the necessity of an energy-intensive purification process and a recy-
cle stream. Consequently, many PI methods focus on strategies to shift the thermodynamic
equilibrium in the reaction through removal of the byproduct water. Whereby it can be
distinguished between sorption-based, membrane-based and distillation-based (reactive
distillation) in situ water-removal.

In the sorption-based PI method, water is removed in situ by selective adsorption
on adsorbent particles (i.e., zeolites) mixed with the catalyst particles [57]. While this
concept allows a simple reactor design, the inherent transient adsorption and desorption
processes require cyclic operation of multiple reactors in parallel to achieve a continuous
synthesis [58].

The membrane-based PI method in contrast leads to a compact integrated reaction and
separation unit while allowing a continuous operation by a permanent water-flux through
the membrane [59]. In practice, however, the multi-objective demands for the membrane
remain hard to fulfill. On the one hand, the membrane must be highly selective towards
the permeation of water but shall not be permeable for MeOH. On the other hand, the
membrane must be resistant to high pressure differences. For that purpose, hydrophilic
zeolite membranes represent promising materials, but the fabrication process, the scalability
and stability are limiting factors for commercialization [60].

The reactive distillation (RD) approach is a PI method based on the combination of
reaction and distillation within a single apparatus, with the aim of simplification for the
continuous DME production process without the need for expensive or sensitive materials
and components. It is the PI method of focus in this work and discussed in further detail in
the following section.

3.3. DME Synthesis by Reactive Distillation

The MeOH dehydration to DME presents a suitable reaction for RD due to
three main reasons:

(a) the reaction is limited by chemical equilibrium,
(b) the reaction is exothermic, which allows the utilization of the reaction enthalpy to

reduce the reboiler heat demand,
(c) and the components MeOH, DME and water exhibit a high relative volatility, thus

allowing a good thermal separation capability.

In the RD approach illustrated in Figure 3b, the crude MeOH in liquid state is fed to
the RD column at the top of the reactive section and flows downwards. Contrary to the
conventional DME synthesis, MeOH is dehydrated in the liquid phase, catalyzed by a solid
acidic catalyst, which is fixed in a structured catalytic packing inside the reaction section
of the column. The formed DME exhibits a higher vapor pressure than MeOH and rises
upwards as vapor. Since water is less volatile than MeOH, it consequently concentrates in
the bottom section of the column. Thereby, both products are separated from each other,
which favors product formation from a thermodynamic perspective. By adjusting the
design parameters of the RD unit, full conversion of MeOH can be achieved and hence the
only product streams are a pure DME distillate at the top and pure water at the bottom.
This RD process can significantly simplify the conventional reaction-separation-recycle
sequence as depicted in Figure 3.

The simplified process design can be accompanied by an increased complexity re-
garding the control and instrumentation of the column. However, the main challenge for
DME synthesis via RD is that a countercurrent flow of a liquid and a gas phase is inherent,
which renders the reaction conditions as contrary to the conventional gas phase synthesis.
For this reason, the reaction temperature is limited by the evaporation temperature at the
desired column pressure and therefore, considerably lower than the conventional synthesis
reaction temperature in fixed bed reactor. Thus, the rate of the liquid-phase reaction is
relatively low, which leads to larger amounts or significantly more active catalysts required
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for the desired productivity. Furthermore, full conversion of the MeOH feed is necessary to
fully exploit the RD potential. Consequently, the catalyst performance represents the key
parameter for the required RD column size. Since conventional catalysts, such as γ-Al2O3
and zeolites, exhibit a very low activity under the RD operational conditions, suitable
catalysts are required. Acidic ion exchange resins (IER) are among the most promising
candidates. Current literature investigations are limited to the application of Amberlyst 35,
which dictates a temperature limit of 150 ◦C, corresponding to a column pressure of roughly
11 bar [61–63]. Catalysts providing a higher thermal stability present a major opportunity
for a significantly higher reaction rate according to the Arrhenius law. However, higher re-
action temperatures require higher column pressures, resulting in higher investment costs,
as well. Additionally, the reflux ratio of the column bears a strong influence on the required
amount of catalyst This interplay between catalyst selection and process design holds
large potential for process optimization of the RD process and is the key for tuning this PI
approach towards two possible PI targets: On the one hand, the process can be optimized
towards a minimal plant size, which in return means sacrificing some energy efficiency
potential. On the other hand, the process can be optimized towards maximum energy
efficiency -an important prerequisite in PtX process context-, resulting in a non-optimized
plant footprint.

Figure 4 compares the specific energy demand per ton DME of the process intensifi-
cation approach based on RD with the conventional process. In both process routes, the
residual heat from the exothermic MeOH synthesis is accounted for as a negative energy
demand. The diagram illustrates that the thermal energy demand for MeOH distillation
and evaporation as well as both distillation columns amount to more than 4.7 GJ/t for the
conventional DME process. Considering integration of the reaction enthalpy of the MeOH
synthesis 2.12 GJ/t is still required to be supplied from external sources. The RD approach,
in contrast, allows omission of most of the required energy demands since the respective
unit operations are not required for the process. Hence, the RD reboiler remains the only
major heat consuming equipment. As mentioned above, the absolute energy demand
depends on the complex interplay between catalyst selection and sizing of the column and
is adjustable over a wide range. Overall, even a net-zero energy demand process could be
realized based on the RD approach.
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This comparison illustrates how the presented PI approach comprises multiple intensi-
fication techniques, all of which fall within the category of “process-intensifying methods”.
Firstly, the shift from gas- to liquid-phase reaction eliminates the necessity of the energy-
intensive evaporation of the feed, resulting in energy savings and a process simplification.
Besides, the implementation of the RD concept represents a process integration of three
unit operations into one multifunctional reactor:

(a) the feedstock purification (crude MeOH distillation),
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(b) the DME synthesis reactor and
(c) the product separation.

This exceptionally high degree of intensification is possible since water is the by-
product of both the DME synthesis and the methanol synthesis. Hence, both reaction steps
benefit from the in situ water removal in the RD approach at the same time. In practice,
the integration of the feedstock purification (crude MeOH distillation) represents a major
advantage, as this process-step remains the main energy consumer in the conventional
process consuming a share of more than 40% of the overall energy demand of DME
production starting from crude MeOH. Furthermore, the in situ removal of the product
allows the complete conversion of the feedstock and consequently avoids recycle streams
including corresponding equipment, which remains common in multifunctional reactors.
This achievement is of great importance regarding a self-sufficient operation in remote
areas with high PtX potential as explained in the introduction.

Overall, the intensified process shows a lower utilities demand and a significantly
simplified process layout compared to the conventional process, and thus illustrates how
multiple process-intensifying methods can be combined to yield a better process.

4. Process Intensification for Power-to-OME Processes
4.1. Background

In comparison to NH3 and DME, the current global production capacity of OME
is relatively small and is mainly in China. Due to the chemical and physical properties
coupled with the non-toxic, environmentally benign, and favorable combustible behavior,
OME can be used in a wide range of applications. It was investigated as a selective polymer
solvent [64], for CO2 absorption [65], and as a fuel in fuel cells [66–70]. OMEn (chemical
formula CH3O(CH2O)nCH3) with the chain length 3 ≤ n ≤ 5 (OME3–5) particularly is
intensively investigated for the combustion application as a diesel blend or substitute. This
is due to significantly low soot formation upon combustion, while allowing significant
reduction of NOx emissions [64–75].

OME≥2 (n ≥ 2) is synthesized in the liquid phase at 50–100 ◦C in presence of a solid
acid catalyst (e.g., IER). Applying MeOH as the methyl capping group supplier and a
formaldehyde (FA, chemical formula CH2O) source, OME≥1 (n ≥ 1) and H2O are formed,
following Equation (3). Using methylal (OME1, n = 1) or DME instead of MeOH, no
H2O is formed as by-product, as shown in Equation (4). Formalin and para-FA (pFA,
chemical formula HO(CH2O)nH with 8 ≤ n ≤ 100) can be used as the FA source, but
already contains H2O whose presence leads to the formation of several side-products. As
an alternative FA source, trioxane (TRI, chemical formula (CH2O)3) or anhydrous FA (FAan)
can be applied as water-free FA sources. Thereby, TRI is converted to FA in presence of an
acid catalyst following Equation (5) [76,77].

2 CH3OH + n CH2O 
 CH3O(CH2O)nCH3 + H2O (3)

CH3O(CH2O)n−1CH3 + CH2O 
 CH3O(CH2O)nCH3 (4)

∆Ho
298 K = −25.2 kJ mol−1

(CH2O)3 
 3 CH2O (5)

OMEn can be produced following an aqueous route under presence of H2O or an
anhydrous route, depending on the choice of feedstock [77]. Typical for the anhydrous
route is the synthesis from OME1 and TRI, which exhibits the benefit of a simple product
purification due to the absence of H2O within the synthesis product, but requires expensive
feedstock [77]. An alternative concept is the aqueous route, which is based on MeOH and
concentrated formalin, which is a significantly less expensive feedstock, but requires a
complex product purification due to the presence of H2O within the synthesis mixture. The
purification of the highly non-ideal and reactive product mixture is cumbersome, due to
several azeotropes, complex vapor-liquid-liquid equilibria (VLLE), challenges regarding
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FA solidification and the separation of H2O from the process. H2O management remains a
key hurdle for the realization of a scalable OME3–5 production. Research and development
focused in the last decades on various H2O separation strategies, such as extraction [78–85],
adsorption [76,86], or membranes [87]. The long-term stability of the materials applied for
the previous concepts, as well as the efficiency and the scalability of these approaches are
crucial for their application and remain under investigation.

Besides the H2O separation, the synthesis towards OME is less selective for the aque-
ous route, due to the formation of many side-products which reflects upon the process
energy efficiency [88]. H2O is not only formed during the synthesis but enters the process
with the FA source formalin. This is a result of the state-of-the-art aqueous FA (FAaq) pro-
duction processes, which are based on the partial oxidation of MeOH with air (Equation (6))
and dehydrogenation of MeOH (Equation (7)). Silver is used as a catalyst in the BASF
process and iron-molybdenum based catalysts are used in the Formox process [89].

CH3OH + 1
2 O2 → CH2O + H2O

∆Ho
298 K = −159 kJ mol−1 (6)

CH3OH 
 CH2O + H2
∆Ho

298 K = 84 kJ mol−1 (7)

H2 +
1
2 O2 → H2O

∆Ho
298 K = −243 kJ mol−1 (8)

4.2. Power-to-OME

OME production is based on MeOH, which can be produced from renewable feedstock
such as green H2 and CO2 [54,90]. While a large-scale production of MeOH based on
renewable feedstock has already been implemented [91], only a paucity of information
remains available regarding OME production plants. In China, OME plants are reported
to be in operation or under construction with production capacities of 10–400 kt/a but
are mostly based on fossil feedstock. However, no information is available regarding the
product quality, reproducibility and long-term production capacities [92,93]. The bottleneck
for the technology deployment for OME production remains the implementation and
demonstration of a simple, efficient and scalable product purification process.

4.3. Process Intensification Methods

To circumvent the separation of H2O from the process, different process modifications
were proposed adopting methyl capping group suppliers (e.g., DME or OME1) and using
TRI or pFA as FA sources [92,94,95]. This leads to two main Power-to-OME process concepts
based on green H2 and captured CO2 which are depicted in Figure 5. While Figure 5a
is based on formalin as FA source, Figure 5b represents the concept using anhydrous FA
(FAan) instead. From methanol and FAan OME1 is produced to be reacted further with FAan
for higher OME synthesis. Therefore, no H2O is formed within the OME synthesis in this
route [90].

While the solid pFA presents a cheaper feedstock than TRI, it still contains about
1–10 wt.% H2O [89], which requires removal from the process. The alternative FAan feed-
stock can be synthesized via endothermic dehydrogenation of MeOH at temperatures
> 650 ◦C following Equation (7) and avoids H2O formation, while H2 is formed as valuable
side product [96–98]. The implementation of the FAan synthesis into the OME process chain
starting from the production of MeOH (Figure 5b) contains two main benefits. Firstly, the
provision of FA without any additional H2O and without the energy intensive production
of TRI, as discussed above. The second benefit addresses the potential for reutilizing the
valuable side product H2. Downstream to the separation of FAan from the gaseous product
stream, H2 can be separated and used for the production of MeOH, as seen in (Figure 5b).
Therefore, instead of oxidizing this valuable H2 to H2O following the state-of-the-art FAaq
synthesis (Equation (6)), the reutilization of H2 following the FAan synthesis (Equation (7))
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lowers the amount of H2 required to produce the target end product OME3–5. This reflects
significantly on the operational costs, especially considering the context of PtX processes
using green H2 [90].

ChemEngineering 2022, 6, 13 12 of 18 
 

OME production is based on MeOH, which can be produced from renewable feed-
stock such as green H2 and CO2 [54,90]. While a large-scale production of MeOH based on 
renewable feedstock has already been implemented [91], only a paucity of information 
remains available regarding OME production plants. In China, OME plants are reported 
to be in operation or under construction with production capacities of 10–400 kt/a but are 
mostly based on fossil feedstock. However, no information is available regarding the 
product quality, reproducibility and long-term production capacities [92,93]. The bottle-
neck for the technology deployment for OME production remains the implementation 
and demonstration of a simple, efficient and scalable product purification process.  

4.3. Process Intensification Methods 
To circumvent the separation of H2O from the process, different process modifica-

tions were proposed adopting methyl capping group suppliers (e.g., DME or OME1) and 
using TRI or pFA as FA sources [92,94,95]. This leads to two main Power-to-OME process 
concepts based on green H2 and captured CO2 which are depicted in Figure 5. While Fig-
ure 5a is based on formalin as FA source, Figure 5b represents the concept using anhy-
drous FA (FAan) instead. From methanol and FAan OME1 is produced to be reacted further 
with FAan for higher OME synthesis. Therefore, no H2O is formed within the OME syn-
thesis in this route [90].  

 
Figure 5. Process concepts for OME3–5 production from MeOH and concentrated formalin (a) and 
from MeOH and anhydrous FA (b). 

While the solid pFA presents a cheaper feedstock than TRI, it still contains about 1–
10 wt.% H2O [89], which requires removal from the process. The alternative FAan feedstock 
can be synthesized via endothermic dehydrogenation of MeOH at temperatures > 650 °C 
following Equation (7) and avoids H2O formation, while H2 is formed as valuable side 
product [96–98]. The implementation of the FAan synthesis into the OME process chain 
starting from the production of MeOH (Figure 5b) contains two main benefits. Firstly, the 
provision of FA without any additional H2O and without the energy intensive production 
of TRI, as discussed above. The second benefit addresses the potential for reutilizing the 
valuable side product H2. Downstream to the separation of FAan from the gaseous product 
stream, H2 can be separated and used for the production of MeOH, as seen in (Figure 5b). 

FAaq
synthesis

CO2

H2

H2O

OME3-5

Air

MeOH
subprocess

Purge

MeOH
OME3-5

subprocess

Purge H2O
Purge H2O

FA

(a)

N2

CO2

H2

H2O

MeOH
subprocess

Purge

OME3-5
OME3-5

subprocess

Purge

H2O

FAan
synthesis

Purge
H2

OME1,2

FAFA

OME1

MeOH

OME1
subprocess

(b)
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from MeOH and anhydrous FA (b).

The FAan synthesis was investigated and experimentally tested over a broad range of
catalyst materials by several research groups, but was not yet demonstrated in long-term
experiments or in an industrially relevant environment [96–98]. Besides the catalyst stability
as a key challenge to realize the FAan synthesis, a suitable reactor design considering the
endothermic reaction at a high temperature and the strongly reducing H2 environment
remains challenging.

Moreover, a complete conversion of MeOH is required and a high selectivity to FA is
desired to circumvent the H2O separation management for the OME product purification.
Sauer et al., [97] achieved a complete conversion of MeOH with a selectivity to FA of
70% and the formation of CO as a side product using an electrically heated tube wall
reactor with a catalyst coated inner wall. High MeOH conversion and FA selectivity require
challenging reaction conditions: For high selectivity, in particular, very short residence
times in the heated reaction zone and on the catalyst surface, as well as rapid quenching of
the product stream to 100–150 ◦C is required to avoid dissociation reactions towards CO.
The temperature should not fall below 100 ◦C to avoid potential solidification of gaseous
monomeric FA [97]. Ouda et al., [98] developed an electrically heated annular counter
current reactor (ACCR) for the FAan synthesis achieving a rather high FA selectivity of 90%
at low MeOH conversions of 40%.

The potential of the choice of the FA source - being either concentrated formalin
or FAan - is compared with respect to the specific energy demand, the carbon footprint
and the specific wastewater formation based on the results of Mantei et al. [90]. Figure 6
compares the specific energy demand per ton OME3–5 produced depending on the FA
source, achieved after heat integration between all subprocesses. The overall energy
demand is distinguished in electricity, steam and heat (above 250 ◦C), while the H2 required
in the processes is also accounted for as an energy demand based on the lower heating value.
The process based on concentrated formalin requires less electricity, steam and heat than its
counterpart based on FAan. The FAan based process, in contrast, requires high amounts of
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heat, due to the endothermic reaction at >650 ◦C. However, FAan exhibits a slightly lower
overall energy demand, due to 20% less H2 required as a feedstock. Hence, both processes
are rather comparable exhibiting energetic efficiencies in the order of 50–54%.
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Figure 6. Comparison of the specific energy demand per ton OME3–5 between the process based on
concentrated formalin (a) and on FAan (b).

Besides the energy demand, the reduction of greenhouse gas emissions represents an
important motivation for implementing PI approaches [13]. In terms of carbon footprint the
OME3–5 production using FAan clearly outperforms the formalin-based process, since the
heat required for the endothermic reaction is provided directly via renewable electricity [90].
Comparing the specific amount of wastewater produced for the production of OME3–5
the FAan based process (1 kg/kg) outperforms its counterpart using formalin (1.3 kg/kg),
as well. Furthermore, the wastewater produced in the formalin route still contains about
10–15 wt.% of FA, which complicates its treatment. Therefore, the OME3–5 production via
FAan combines a slightly higher energetic efficiency with a more sustainable production
of OME3–5, which remains within the confines of the main goals of PI methods in the
PtX context.

With innovation and developments towards electrically driven selective FAan synthesis
reactor, the intensified process shows a significant potential towards simpler, compacter,
more energy efficient, and importantly a low carbon footprint overall OME value chain.

5. Summary and Conclusions

In this work, the potential of PI methods for the development of efficient, competitive,
compact and low-maintenance thermochemical processes was identified and discussed
supported by examples for the three PtX-products namely: NH3, DME and OME. A brief
description of the-state-of-the-art processes and PI approaches was provided. In the case of
NH3, advanced ruthenium catalysts allowed lower operating temperatures, thus paving
the way for adsorption as a new separation technology, which can be integrated into a
multifunctional reactor with in situ removal of NH3. Consequently, the specific energy
demand for the integrated reactor presented as per ton of NH3 could be almost halved in
comparison to the conventional Haber–Bosch process. In the case of DME synthesis, ion
exchange resin catalysts allow a reduction of the reaction temperature below the boiling
temperature of methanol, thus allowing the shift from gas- to liquid-phase synthesis, which
in turn enables the implementation of an RD process. A quasi-net-zero energy demand
process could be achieved in a single unit operation replacing three unit operations when
the integration between MeOH synthesis and DME–RD is properly realized. For PI of
the OME synthesis process, the FAan synthesis based on methanol dehydrogenation in
electrically heated reactors was implemented instead of the state-of-the-art FAaq synthesis.
Furthermore, OME1 was used as a methyl capping group supplier in place of MeOH
which together circumvents the challenge of the cumbersome H2O separation within the
conventional OME production process. Another benefit observed was the separation and
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recycling of the valuable by-product H2 of the FAan synthesis. This approach led to 20%
less H2 feedstock required per ton of OME3–5 in comparison to the conventional aqueous
process. Additionally, approximately 23% less wastewater was produced based on the
FAan synthesis.

Considering the described challenges of PtX processes, the PI measures presented offer
several promising solutions. Primarily, process integration measures allow for significantly
simplified processes, consequently leading to reduced component numbers and reduced
maintenance efforts. Moreover, the potential elimination of recycle loops due to equilibrium
shift of the reaction towards products reduces the complex interactions in a dynamic
operation. Besides, simpler and smaller recycle loops can reduce maintenance efforts of the
circulating equipment i.e., compressors. Additionally, the PI methods offer the potential to
reduce the energy demand of the previously discussed processes against the conventional
ones. All the PI approaches extended and discussed are research endeavors which remain
under development in our work group illustrating the relevance of PI approaches in
PtX processes.
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