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Abstract: The oxygen reduction reaction has been the object of intensive research in an attempt to
improve the sluggish kinetics that limit the performance of renewable energy storage and utilization
systems. Platinum or platinum bimetallic alloys are common choices as the electrode material, but
prohibitive costs hamper their use. Complex alloy materials, such as high-entropy alloys (HEAs), or
more generally, multiple principal component alloys (MPCAs), have emerged as a material capable of
overcoming the limitations of platinum and platinum-based materials. Theoretically, due to the large
variety of active sites, this new kind of material offers the opportunity to identify experimentally
the optimal binding site on the catalyst surface. This review discusses recent advances in the
application of such alloys for the oxygen reduction reaction and existing experimental challenges in
the benchmarking of the electrocatalytic properties of these materials.
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1. Introduction

The need for the proliferation of renewable energy sources, motivated by the demand
for the mitigation of climate change, has triggered a widespread interest in the research
of electrochemical devices for energy conversion and storage. Along with Li-ion batteries,
proton exchange membrane fuel cells (PEMFC) have been a prime candidate for mid-
and long-term energy storage and utilization devices [1–6]. It is expected that PEMFC
technology plays an important role in mass transport systems, a recent example being the
Coradia iLint, the world’s first passenger train powered by a hydrogen fuel cell [7]. In a
PEMFC, green hydrogen expected to be gained from water electrolysis, is oxidized at the
anode and oxygen is reduced at the cathode. In the development of PEMFCs and other
related technologies the high overpotential for the oxygen reduction reaction (ORR) is the
bottleneck for the improvement of the efficiency and cost-effectiveness and, in turn, the
widespread use of these technologies [8].

Few reactions have received as much attention in the last 50 years in both fundamental
and applied research as the ORR. The ORR also has a key role in other important processes
such as corrosion, enzymatic reactions, and metal–air batteries, among others [9–12]. In
acidic media, the best know catalyst for the ORR is platinum (Pt), but even on Pt, the
overpotential for the ORR is around 0.3 V [8,13,14]. Pt is also one of the few materials
displaying sufficient stability under harsh ORR reaction conditions [15]. However, platinum
is scarce, expensive, and 77% of its production is concentrated in only one country [16].

In fuel cells the noble metal (generally Pt) loading of the cathode, for the catalysis
of ORR, is considerably higher than of the anode (0.2 vs. 0.05 mg·cm−2) [17,18]. This
contributes significantly to the cost of fuel cell stack and inhibits their proliferation [18],
since the platinum price is around 35$/g (November 2021), the price of the platinum
catalyst is about 20% of the total stack cost [19,20]. Therefore, to accelerate the application
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of this technology, it is necessary to develop both more active and more durable catalysts
for the ORR.

One of the most used strategies to reduce the necessary platinum loading is to alloy
the platinum with other elements. This can produce catalysts of similar or even higher
activity than Pt, and at the same time maintaining or increasing the stability.

Pt-alloy catalysts have been used in electrocatalysts widely since the 1970s [21] and
have been considered as the next generation fuel cell catalyst since then. Pt alloying is
a well-known strategy to modify the electrocatalytic properties of materials [22] and has
been used to make various Pt-alloys with chromium [23], tin [24], ruthenium [25], gold [26],
copper [27–30], nickel [31], cobalt [31], iron [32], and more recently lanthanides [33,34] and
other rare earths [34,35]. The list of chemical elements that have been used in combination
with platinum for ORR and in general for electrocatalytic applications is large and could be
extended to include almost every element suitable to be alloyed with platinum. However,
few of the materials reported until now have been used in practical applications. Fuel
cells in real-world applications still often use Pt, and Pt-alloys have been introduced
only relatively recently (e.g., the electrical vehicle model Mirai from Toyota uses Pt-Co
catalysts [36]).

In recent years, advances in nanotechnology have facilitated the synthesis of nanoma-
terials with a precise control of the size, composition, shape, structure, and the chemical
state of different platinum alloys [37–40]. In addition, advances in in situ and in operando
techniques have allowed the establishment of relationships between parameters that can
be adjusted in the synthesis process for tuning of the catalytic activity, complemented with
theoretical calculations [41,42]. This rational design strategy contributed to overcoming the
trial-and-error methodology used for example by Motoo and Furuya [28–30] in the 1970s
to investigate the effect of the combinations of different electrodes and adatoms on the
catalysis of multiple reactions.

Despite the progress made, there have only been modest developments in improv-
ing the activity of ORR catalysts in recent years. This is mostly due to the scaling re-
lations, which limit the degrees of freedom for the adjustment of intermediate binding
energies [43,44]. This highlights the need for the creation of a new type of catalyst, beyond
the well-known and widely investigated binary alloys. Multiple principal element alloys
(MPCAs) and high-entropy alloys (HEAs), while they might have been investigated by
Franz Karl Achard as early as 1788 [45], have recently received attention for their unique
properties and the fact that the potential designs are abundant, also sparking their inves-
tigation as catalysts. The number of possible alloy combinations N, for the number of

components C, with varying the composition by X percent, is given as N =
(

100
X

)C−1
[45].

If we take into account transition and post-transition metals, excluding Hg, Cd, As, Tl, Os,
and Pb, because of their toxicity, Tc due to its radioactivity, and Ga and Se as potentially
decreasing conductivity, varying their composition by 1% gives 1062 potential materials.
Including lanthanides (excluding Pr), that number grows to 1088. In this work, we review
recent progress in bimetallic Pt-alloys, multiple principal component alloys (MPCAs), and
high-entropy alloys (HEAs), e.g., NiCoCuFePt, for the ORR in acidic aqueous media with
special emphasis on experimental aspects. To do this, we start briefly by reviewing the
state-of-the-art on bimetallic alloys and comparing it with earlier literature results. Further,
we analyze the progress in the characterization of new Pt-based multiple principal compo-
nent catalysts over the recent years in terms of activity, stability, and selectivity, and the
understanding regarding the control of these parameters in catalyst design. Finally, we
present some experimental challenges in the ORR study with multicomponent materials or
high-entropy alloys and some concluding remarks.

2. Bimetallic Alloys

The ORR is a complex reaction that involves a four-electron transfer process to produce
water as the end product. In acidic media, three pathways are considered to explain the
experimental results: the O2 dissociation, *OOH dissociation, and the H2O2 dissociation
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pathway [46–49]. In basic media, the ORR takes place through the formation of superoxide
anion (O2

−) [50]. The different intermediates (*OH, *O, *OOH, etc.) involved in the
proposed mechanism have different adsorption energies. According to the scaling relations,
it is impossible to carry out the optimization for all the different intermediates on a unique
active site [42,51–53]. This holds for approximately all close-packed transition-metal facets
electrocatalysts [22]. While differences between individual metals can be up to 1 eV, alloying
allows us to tune these energies much more finely [42,51,54,55]. This fact has driven the
study of platinum alloys to overcome the limitations associated with the use of a single
metal catalyst.

The low price and high abundance of transition metals such as copper, nickel, iron, and
cobalt along with excellent catalytic activity observed in PtnM alloys (where M is the non-
platinum group (non-PGM) metal) gave impulse to the research of these materials [56–61];
however, as the demand for these materials increases it is likely that the price will also
increase, e.g., the cobalt price has almost doubled since the beginning of 2021. Moreover,
the miscibility of M with platinum and the inability of the less noble metal to segregate
into the bulk of the PtnM make these kinds of alloys an excellent option to address the
limitations associated with pure platinum electrodes [62].

It is known that under ORR conditions polycrystalline bimetallic catalysts
dealloy [55,63–65] and form a core-shell structure [65–69], meaning that the alloy’s core is
covered by a layer of Pt several atomic layers thick [68–71]. Considering that the ligand
effects can be significant only through 2–3 atomic layers, the electronic properties of the
surface are determined by the strain effects [56], which have a longer range [72]. The
process is less prominent on single crystal surfaces (both low-index and stepped/kinked),
as the dealloying process is faster at defect sites [63,73,74]. The strain effects lead to the
weakening of the binding of ORR intermediates [70,75,76].

This means that the adsorption energies, and consequentially the activities, of these
catalysts can be tuned by tuning the strain in the Pt overlayer. At the same time, the
Pt overlayer acts as a barrier preventing further dealloying in the bulk. However, this
also means that the active site is always on the Pt atoms on the surface layer, and the
electronic structure is modified mainly through lattice strain. Since the binding energies
of the intermediates are related to each other through the scaling relations, this presents
a fundamental limitation to the degrees of freedom available for the optimization of
these catalysts.

Figure 1 shows the specific (SA) and mass activity (MA) for some selected Pt alloys
reported mostly in the last two years for the ORR in acid media, as well as some extended
surfaces and single crystals surfaces, shown for reference [14,54,77–99]. The mass and
specific activity of these electrocatalysts is excellent compared to commercial Pt/C catalysts
and the variety of nanostructured that can be synthesized is wide (core-shell, nanoplates,
nanowires, nanoframes, etc.). Joo et al. prepared Pt-Cu nanoframes with an excellent
mass and specific catalytic activity (2.47 A mgPt

−1 and 4.69 mA·m−2) but also with a high
stability [94]. For instance, Xia et al. synthesized using a colloidal route and afterwards
etched with nitric acid platinum nickel nanospheres connected with a Pt-skin structure with
mass and specific activities that are 17 and 14 times higher than commercial catalysts [95].
Shen et al. used a self-etched engineering to prepare a Pt-Co nanodendrite in an external
nanoframe with Pt-skin with a mass activity of 0.939 A·mgPt

−1 [87]. Peng et al. prepared Fe-
Pt supported in N-doped mesoporous carbon using a thermal treatment with a mass activity
of 0.433 A·mgPt

−1 and only a small 16 mV decrease in the E1/2 after 5000 cycles [100]. In
Pt-lanthanide alloys, the lanthanide contraction could be used to control the electrocatalytic
activity and stability [64]. Figure 1 shows some specific and mass activities for selected
Pt-lanthanides alloys. One of the most active is the PtxY alloy with a specific activity of
around 12 mA·cm−2. The superior performance is rationalized, taking into account a
compressive strain exerted by the catalyst core onto the surface [69]. Recently, Bandarenka
reported a PtxPr/C electrocatalysts with a specific and mass activity of 1.96 mA·cm−2 and
0.7 A mgPt−1, respectively, with an affordable and scalable synthesis procedure, solving
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one of the bottlenecks for the wide use of Pt-lanthanides alloys (e.g., Y, Pr, Tb, Gd, Sm,
etc.) [98]. The examples presented here show how the introduction of a non-noble material
can be used to tune the electrocatalytic activity in Pt-M alloys while retaining much of
the stability.

Figure 1. Specific and mass activity of selected bi- and tri-metallic Pt-alloys for ORR in 0.1 M HClO4.
Results obtained on Pt poly, Pt(111), Pt(331), Cu/Pt(111), and Pt3Ni(111) are shown as a reference
for the specific activity, whereas PtxY, one of the highest SAs reported among lanthanide alloys and
Pt-nanowires, displayed the highest MA to date.

Trimetallic alloys have been tested for the ORR in an attempt to benefit from the
synergistic effect that can result from the introduction of three different elements [101–105].
Gan et al. synthesized a PtCoFe alloy catalyst at 600 ◦C with a mass activity around
0.65 A·mgPt

−1 in 0.1 M HClO4. The Co inhibits the agglomeration; meanwhile, the Fe
promotes ordering at high temperatures [101]. Cruz–Martínez et al. produced, using
the oleylamine-oleic acid method, NiPdPt nanoparticles with a specific and mass activity
of 0.25 mA·cm−2 and 0.2 A·mgPt

−1, respectively, in acidic media [102]. Xia et al. cre-
ated PtIrPd trimetallic alloy nanocages with a porous structure and 100 facets, yielding
an ECSA of around 63 m2·g−1 with a specific and mass activity are 0.8 mA·cm−2 and
0.5 A·mgPt

−1 respectively. Zhu et al. synthesized a PtCuNi/C intermetallic catalyst using
an impregnation reduction method with a mass activity 9.2 times higher than the commer-
cial Pt/C catalyst [106]. Chen et al. prepared a platinum-trimer decorated cobalt-palladium
core-shell nanocatalyst with an enhancement factor of 30.6 relative to commercial platinum
nanoparticles in alkaline media [103]. In the case of these alloys, the state of the surface
under reaction conditions is not completely clarified; however, apart from PGM alloying
elements, it could be assumed that the non-noble elements dissolve. Generally, increasing
the number of alloying elements from two to three did not lead to obvious advantages
in terms of electrocatalytic activity. However, using a rational design, it was shown to be
possible to obtain platinum-based catalysts with three constituent elements that have higher
activities than observed in polycrystalline platinum [107], although not outperforming
bimetallic alloys.

Several strategies for overcoming the scaling relations have been proposed in the liter-
ature [108]: 1. Multifunctionality [109]—separating the ORR into two 2-electron steps and
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provide optimized active sites for both steps on a multifunctional material; 2. Additional
bonding of the OOH* intermediate [110] with a nearby functional group or an appropriate
coordination of active sites; 3. Creating catalysts with a large variety of active sites [111].
Multiple principal component and high-entropy alloys, in particular, could satisfy such
demands as they provide a high variety of different active sites, which could serve to
explore new areas in the binding energies, provide optimal binding for different steps of
the reaction and provide various “spectator species” coverages at different potentials.

3. Multicomponent and High-Entropy Alloys

Multiple principal component and high-entropy alloys have gained a lot of attention
due to their unique properties that bring the possibility to move from a using the materials
we have approach to engineering the materials we need approach [111–115]. They have
been investigated in electrocatalysis, as catalysts for ORR [116], carbon dioxide reduction
reaction (CO2RR) [117,118], methanol oxidation [119], and hydrogen evolution reaction
(HER) [120]. Figure 2 shows the number of publications on the database Scopus when
the keywords “oxygen reduction” are used together with the listed phrases: “platinum
catalyst”, “platinum catalyst alloy”, “high-entropy alloy”, or “multicomponent alloy” from
1995 to 2021. In the last 5 five years, “high-entropy alloy” experienced a similar exponential
growth observed for “platinum catalyst” and “platinum catalyst alloy” around 2008.

Figure 2. Time evolution of the overall number of papers that appear on Scopus using keywords
“oxygen reduction reaction together with “platinum catalyst”, “platinum catalyst alloy”, “high-
entropy alloy”, or “multicomponent alloy”, as well as “high-entropy alloy” alone. The inset shows
the details for last years for HEA and multicomponent alloy.

The promising property of multicomponent alloys, especially high-entropy alloys, is
that they might not dealloy the same way as bi-metallic alloys, i.e., they could keep dissimi-
lar atoms on the surface, and, therefore have different atoms as active sites present [117].
This would mean that besides the well-investigated strain effects, ligand and ensemble
effects would also be pronounced [117]. The abundance of different active sites with dif-
ferent binding energies could, on one side, allow the identification of sites with optimal
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binding energies and furthermore, it could provide different optimal sites for multistep
reactions, thus enabling overcoming the issues with the scaling relations [121] (scaling
relations are estimated to lower the activity about several/six orders of magnitude [122]).
Some surface segregation is certain to occur, as predicted by theory [123], but there might
be stable phases on the surface, in contrast to PtnM-type alloys, which develop a Pt-skin
where only the strain effects will be present. According to theoretical considerations, HEAs
should have a continuous distribution of energies [111]. Considering the number of degrees
of freedom in multicomponent alloys is very high [124,125], possibilities for the tuning
of binding energies are plentiful, even though the number of different crystal structures
complex alloys can form is limited [126].

Generally, the unique properties of HEAs and MPCAs are explained through 4 pro-
posed “core effects” [127]: 1. the high entropy effect; 2. the lattice distortion effect; 3. slug-
gish diffusion; and 4. the “cocktail” effect, describing the already discussed property of
MPCAs that their properties are difficult to predict based on the properties of the compo-
nents themselves [124].

For MPCAs, it is considered that their structure may become stabilized by the so-called
high-entropy effect [125,127–129]. However, the entropy as the thermodynamic cause is
not the only effect contributing to the stability of such phases, and there is also a kinetic
contribution from sluggish diffusion in such alloys [45]. The lattice distortion, which can be
quite severe in complex alloys, is dependent on the nature of the atom and the nature of the
atoms in the immediate surrounding, and can significantly affect the properties of surface
atoms. Although it has been asserted that the resulting HEA will be as stable as its most
stable element, tentatively speaking, nonetheless, segregation processes were observed
(e.g., [130]) under temperature changes and oxidation at elevated temperatures [131].

HEAs often have FCC structure [45] (and it has been shown that the FCC microstruc-
ture is retained in equimolar alloys with as many as 6 elements, and up to 7 elements in
non-equimolar concentrations), but BCC and HCP phases have also been identified [127].
However, more electronegative elements, for instance, are less stable in FCC phases and are
often expelled to interdendritic regions during the dendritic growth of the FCC phase [132].

Theory shows that the presence of adsorbed oxygen on the surface leads to increased
surface segregation in HEAs compared to vacuum [123]; however, multi-element oxide
materials can show good stability [133]), which can make MPCA catalysts sensitive to
oxidation, both during synthesis and under operational conditions. Thermodynamic phase
calculations also indicate that configurational entropy might not be able to prevent the
formation of compounds with large heats of formation like oxides [134].

Figure 3 shows the mass activity for some selected HEAs for the ORR in acid and
alkaline media, reported recently. Sun et al. developed, using a cooling-dealloying strategy,
a senary high-entropy alloy for the ORR in acid media. The SA and MA (only considering
the platinum mass) are 3.2 mA·cm−2 and 2.24 A·mg−1, respectively, and these values are 11
and 10 times higher than that of Pt/C. Moreover, the material retained 92.5% of his activity
after 100,000 cycles [135]. In alkaline media, Li et al., using an alloying–dealloying strategy,
produced an np-AlCuNiPtMn electrocatalyst which showed around 16-fold mass activity
of the commercial Pt/C catalyst [136]. Other recently published works are included in the
figure [137–141].

However, the experimental investigation of the long-term behavior of these alloys
is lacking and the understanding of the operando behavior and surface structure under
reaction conditions is still not well understood, in stark contrast to the well-researched
bimetallic counterparts. Considering the complexity of their structure, understanding
the behavior of these alloys under reaction conditions is crucial to understanding their
activity, selectivity, and stability. For this, it would be essential that these types of alloys are
characterized (see Scheme 1) not only as-synthesized, but also in situ, and after the reaction
or, optimally, in operando conditions.



ChemEngineering 2022, 6, 19 7 of 18

Figure 3. The mass activity of multicomponent alloys for ORR in 0.1 M HClO4 or 0.1 M KOH. Mass
activity for Pt/C commercial is shown in both media to facilitate comparison.

Scheme 1. Challenges in the electrochemical evaluation of high-entropy alloys.
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4. Experimental Challenges in the Benchmarking of HEA and MPCA Activity for ORR
4.1. Active sites Distribution and Identification

It has been inferred that the behavior of multinary alloys cannot be predicted solely
based on volcano plots [116]; thus, with the formation of the high-entropy phase it is
possible to produce new properties which do not arise directly from the properties of
the constituent elements [57,116,142], opening the possibility to potentially replace scarce
materials. It has been indicated that the synergistic influence of all the elements present is
crucial, and leaving out a single element leads to an activity drop [116], which is justifiable,
considering it is known that specific elements can influence the alloy microstructure in
specific ways [127]. Additionally, MPCAs can provide additional possibilities for the control
of selectivity (2- vs. 4-electron ORR), as it is known that alloying Pt with certain elements
can switch the selectivity to the 2-electron process [143]. However, the overall number
of desired active sites may be decreased [122] as the high compositional complexity also
necessarily leads to the fact that the number of optimal active sites may, statistically, be
low. This raises the question of how to identify the optimal active site and distinguish it
from a very large number of possible different contributions. One approach developed by
Schuhmann et al. is the concept of inflection points (Figure 4) in the voltammetric curves as
activity descriptors for the ORR in HEA [144]. The different inflection points are assigned to
active sites on the electrode surface, not to different processes (e.g., 2e- or 4e- process) [144].

Figure 4. Left: Model representation of three different HEA with a high content of one element (1),
enhanced content of one element (2), and equiatomic (3) compositions along with the polarization
curves. Right: Adsorption energy distribution patterns for the three different materials (1), (2), and
(3), respectively. Adapted with permission from [144]. Copyright © 2021, American Chemical Society.

For nanoparticulate catalysts, it is also important to keep in mind that the surface
binding energies also depend on the number of coordinating atoms of the surface atoms.
The number of these, in turn, decreases with the decrease of nanoparticle (NP) size, which
leads to a general increase in surface binding energies. This may lead to different specific
activity vs. size functions for different types of active sites (e.g., [69,145,146]) depending
on the relation of their intermediate binding energy to the optimal one. With the char-
acterization of nanoparticulate MPCAs, one must keep in mind that the huge variety
of active sites means that no single or a small number of nanoparticles will contain all
the active sites theoretically achievable for an MPCA. This is particularly important to
consider when characterizing individual NPs with techniques such as HR-TEM, EDX, or
SEM. Additionally, the roughness of the created MPCA surface will need to be taken into
account, as undercoordinated sites will bind the intermediates more strongly; thus, the
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structuring or roughness of the surface introduces even more complexity to the binding
energy distribution.

Theory shows that, unlike for single-element surfaces, the binding energies of on-top
and hollow sites on FCC phases do not scale, and, in addition, there might be complex
interactions between the adsorbed intermediates and the resulting site blocking that defines
the electrocatalytic properties of the material [147]. It is, thus, extremely important to apply
and develop methods of surface characterization with atomic resolution to understand
their structure [148].

Atomic probe tomography (APT) is commonly used for the analysis of complex
metallic materials [149–151] as it offers both high special resolution and chemical sensitivity.
Since the method requires UHV and is destructive, it can be applied before and after the
electrochemical measurement on different samples. Nonetheless, during APT measurement
the sample is far from the conditions of the operando catalyst and certain 3D distortions
might be introduced; thus, the results must be interpreted accordingly. The sample also
needs to be of a particular shape, which might impose limitations.

XPS and XRD of the as synthesized and postmortem catalyst can also offer insights
into the changes the catalyst undergoes; however, near operando and in situ versions of
these techniques will likely be able to shed more light on to the ongoing processes under
reaction conditions. Figure 5 shows XPS after a stability test carried out in an AlNiCoRuMo
HEA [140]. Because of the extreme potentials, the surface Ru0 changed to Ru4+; meanwhile,
the Mo signals were less visible and moved to higher binding energies [140]. This points out
the importance of performing physicochemical characterization not only on as-prepared
materials but also aged electrodes or in an ideal situation in situ or in operando conditions.
Synchrotron-based techniques developed in conjunction with the availability of in situ
and in operando cells have been used to study electrocatalysts under near-real conditions,
and to determine the active sites in Pt-based materials [152]. For HEA studies, the use of
synchrotron-based techniques, especially spectroscopic, imaging, and scattering would
allow determining details about structure and composition and their links to catalytic
properties, thus allowing a more rationalized material’s design. In addition, scanning
tunneling microscopy (STM) could provide valuable information on HEA/MPCA behavior
as it has done for platinum-based electrocatalysts [111,153], especially regarding material
dissolution.

Figure 5. XPS spectra of Ru 3d and Mo 3d of the AlNiCoRuMo before and after durability test.
Adapted with permission from [140]. Copyright © 2021, American Chemical Society.

Aside from the experimental challenges discussed previously, computational ap-
proaches, mainly based on density functional theory (DFT) can be used to study the
properties of HEA/MPCA materials. Norskov et al. used DFT to explain the volcano-type
trend for the ORR over noble and transition metals [8]. Furthermore, was established that
oxygen and hydroxyl adsorption at potentials close to the equilibrium is the cause of the
overpotential for the ORR [8]. The use of DFT methods in the study of HEA/MPCAs
is a relatively recent field. The large number of possible configurations on the surface
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and the consequent computational issues pose a challenge to the extensive use of DFT
in the evaluation of the electrocatalytic activity of HEA/MPCAs materials. Nonetheless,
recently, Rossmeisl et al. developed a theoretical approach using DFT to calculate the
*OH and O* adsorption energies on an IrPdPtRhRu high-entropy alloy [111]. This ap-
proach is capable of determining the ranges of binding energies present in complex solid
solutions/MPCs/HEAs [111,122,147].

4.2. Electrochemical Active Surface Area Determination

The electrochemically active surface area (ECSA) determination is vital for the com-
parison of the intrinsic activities of different electrocatalysts and determining the activity
per surface site (turnover frequency). Furthermore, the change of the ECSA before and
after the reaction can help to rationalize the changes observed in the catalytic activity after
continuous cycling. CO-stripping and hydrogen underpotential deposition (Hupd) have
been used extensively to determinate the ECSA in pure Pt and Pt alloys materials. No
general agreement exists on the most suitable method to correctly determine the ECSA
of Pt alloys since the introduction of a non-noble second metal to form the Pt alloy could
change the nature of hydrogen adsorption [154]. CO-stripping could be problematic as
well, as the Pt-CO bonding will not necessarily be mirrored in the interaction with other
elements at the surface, i.e., the common 420 µC·cm−2 value used to find the ECSA is
obtained considering only CO bound at the on-top position [155–157], which might not be
mirrored in MPCAs and HEAs since the CO coverage and adsorption configuration depend
on the potential, composition, and surface structure [155,156]. Moreover, the non-noble
metal could dissolve from the surface during the reaction, complicating even more the
analysis [158]. Copper underpotential deposition (CuUPD) is another common choice to
determinate the ECSA [159,160]. Nevertheless, as discussed previously the introduction
of non-noble metals makes the analysis more difficult since the CuUPD process is not well
understood on electrodes containing non-noble metals. The determination of the ECSA in
MPCAs or HEA could be divided into two main groups. In materials that contain platinum,
the ECSA could be determined from Hupd or CO stripping, but only after the bonding of
these species has been understood on a particular surface and standardized. This would
require performing measurements on a surface with a known ECSA (determined with the
help of, e.g., AFM), which often is not a trivial task. In the second group, for materials that
do not contain platinum, the active area is determined from the double layer capacitance;
the Cdl is determined from cyclic voltammetric experiments at different scan rates or from
electrochemical impedance spectroscopy (EIS) [161–163]. The main concern about the
ECSA determination from double layer capacitance measurements is the value of specific
capacitance (Cs) such the error in the accuracy could be as large as 70% [161]. Problems
with the determination of the electrochemical active surface area (ECSA) should not be
underestimated since they can cause serious issues, i.e., an underestimation of 10% causes
an increase of the SA nearly 11%, but an error of 30% in the ECSA yields a false increase of
the SA of around 45%.

4.3. Ohmic Drop Correction

The significance of the iR-drop correction and the methods for the compensation has
been discussed at length in numerous works [164–166]. For the ORR, since the activities of
the catalyst are benchmarked on the level of mV or tens of mV, it is of great importance to
conduct the potential correction carefully. The most widely applied technique to find the
uncompensated resistance (Ru) is the electrochemical impedance spectroscopy (EIS). After
fitting the acquired spectra to a suitable equivalent electrical circuit [165] and subtracting
the iRu product from the applied potential the correct potential is obtained. The best
strategy to avoid or mitigate the iR-drop is using ultramicroelectrodes, positive feedback,
or a Luggin capillary since a posteriori correction for a non-steady-state system could
be problematic [165]. In cases where the iR-drop cannot be avoided the use of a shunt
capacitance [164] during EIS measurements may be necessary to overcome the artifacts
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arising from the limitations of the potentiostat’s control amplifier at high frequencies.
The use of certain HEA or MPCAs materials might represents new challenges to ohmic
compensation. They could form different phases and a (partial) passive layer under reaction
conditions that increase the electrode resistance and complicate the compensation since the
Ru value will change during the experiment [166,167].

4.4. Stability Testing

Besides the electrocatalytic activity, the stability of electrocatalysts is also of paramount
importance for the complete evaluation of electrocatalysts. The most common experimental
protocol to evaluate the stability is so-called the accelerated stress test (AST) recommended
by the U.S. Department of Energy (DOE). The AST consist in performing a number of
cycles (10, 100, 1 k, 3 k, 10 k, 20 k, and 30 k) between 0.6 and 1.0 V vs. RHE in 0.1 or 1 M of
HClO4 or 0.5 M of H2SO4 [168]. The ECSA and the ORR activity after cycling should be
compared to non-aged electrodes to determine the stability of the electrocatalysts. Most Pt
alloys show a decrease in the ECSA and the ORR activity after the AST. The reasons for
this are corrosion of the carbon used as support material, particle migration, coalescence,
loss of faceted edges, among others. Since the nature and extent of phase transformations,
dissolution, and migration on the surface of complex alloys are not clear and might be
different for different types of material, it is of crucial importance to assess the state of
catalysts in situ or in operando conditions, or at least after the reaction. This will allow a
more correct interpretation of the CVs, as it will exclude potential parasitic currents from
oxidation, dissolution, or other non-desirable processes. In addition, it will aid the correct
identification of active sites, as it will indicate the state of the catalyst surface under reaction
conditions, which is not necessarily the same as in the as-synthesized catalyst (as it was
proven extensively for bimetallic Pt-catalysts).

4.5. Membrane Electrode Assembly vs. Rotating Disc Electrode Studies

The rotating disc electrode (RDE) is the most used technique to evaluate the intrinsic
activity of an electrocatalysts for the ORR [169]. A variation of the RDE is the rotating ring
disc electrode (RRDE) which in addition to the disc incorporates a ring that serves to detect
reaction products that come from the disc reaction [170]. RDE allows quick evaluation
of SA, MA, and ECSA. A common procedure for depositing the electrocatalysts in the
disc surface of the RDE is the drop-casting method. Their simplicity as well the speed of
implementation contribute to their high popularity [171]. The lack of homogeneity in the
thin-film caused by the drop-casting method might cause problems, also the loading (grams
of catalyst/cm2) could be a critical factor. For Pt and Pt alloys guidelines for assessing the
activity using RDE are available and used by the majority of the research community [171].
However, for HEA or MPCAs studies, a wide consensus in the guidelines that should be
followed do not exist yet. The use of common guidelines for all researchers will contribute
finally to boosting the understanding of the HEA/MPCAs electrocatalysts for the ORR. In
addition, special attention is required to overcome the gap that exists between RDE and
electrode layers of the membrane electrode assembly (MEA), as have been observed in
platinum alloys. The promising results obtained in RDE could not necessarily be replicated
in MEA studies [172]. The high local oxygen pressures contribute to obtaining high current
densities (at least 3-4 orders of magnitude larger than in RDE) could drive the degradation
of HEA-MPCAs materials, similarly observed in platinum/platinum alloys [173].

5. Concluding Remarks and Outlook

The application of MPCAs and HEAs in electrocatalysis has many exciting prospects.
The high complexity of the surface of such alloys (high-entropy alloys, multiple principal
components alloy, complex solid solutions) offers the possibility of identifying active sites
previously not achievable by the manufacturing of “classical” alloy catalysts. Additionally,
the presence of a multitude of active sites on the surface also offers new possibilities for
breaking scaling relations, which have been the limiting factor for the development of
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improved ORR catalysts, as well as the catalysis of multi-step reactions. However, the high
complexity of these materials offers significant challenges as well, particularly in surface
site identification, selectivity control, the understanding of stability dependence and their
in operando behavior. Additionally, the fact that the properties of such complex materials
are difficult to predict based on the properties of components will offer new challenges to
computational chemistry and high-throughput screening of materials, enabling researchers
to navigate the multidimensional, highly complex compositional and structural space with
an unprecedented number of degrees of freedom for the modification of their properties.
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