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Abstract: This paper presents a review of selected tunnel stability models that have been developed
and used in calculating the minimum tunnel face pressure as described by original authors. Further-
more, this paper provides a comparison of required tunnel face pressure obtained from analytical
models, based either on limit equilibrium method or the limit analysis method (upper bound theorem)
and numerical models using the finite element method. The numerical results are presented in charts
for the comparative study to discuss the influence of cover depth to tunnel diameter ratio (C/D),
internal friction of the soil (ϕ), and cohesion (c) on normalized support pressure (pu/γD) for each
model. To verify the accuracy of the selected models, a comparison of the results of seven tunnel
stability models with the results of the physical models is carried out. In a ground composed of two
layers, a comparison of the required tunnel face pressure is presented. The results show that the
wedge–silo models provide higher support pressure than the conical block models. Moreover, the
support pressure using the conical block models is only dependent on the friction angle and not on
the C/D ratio. Finally, the results of wedge-silo models indicate more significant dependence of the
required support pressure on the C/D ratio especially for the lower friction angle.

Keywords: support pressure; tunnel face stability; shallow tunnel; layered soil

1. Introduction

During excavation and construction of a tunnel, the stress history of in situ soil
surrounding the excavation area is disturbed. Thereafter, a new stress redistribution
is induced in the vicinity of the tunnel face due to deformation of the soil mass. The
mechanism that leads to this stress redistribution is the so-called arching phenomena
(Terzaghi [1]). This mechanism yields a reduction of vertical stress. The arching soil effect
has been reported by Terzaghi [2] in trap door experiments and also by Chambon and
Corte [3] and Chen et al. [4] conducting a series of physical model tests to investigate the
stability of tunnel face.

For preventing the collapse of the tunnel face during the excavation process, adequate
support pressure (e.g., compressed air, slurry, or earth pressure support) at the tunnel face
is required. Meanwhile, the soil arching effect is associated with a decrease in the required
support pressure. To consider the 3D arching soil effect in evaluating the required support
pressure, analytical methods are commonly used. The analytical approaches can basically
be divided into two groups, namely, Limit Equilibrium Method (LEM) and Limit Analysis
Method (LAM). The Limit Equilibrium Method is widely used as a theoretical analysis
technique for the stability of the tunnel face. On the other hand, the Limit Equilibrium
Method applies the static equilibrium between the forces acting on the soil mass for the
critical collapse mechanism. In order to assess the required support pressure, many types
of limit equilibrium models have been setup on a 3D wedge-silo mechanism (e.g., Horn [5];
Jancsecz and Steiner [6]; Anagnostou and Kovari [7]; Broere [8]; Kirsch and Kolymbas [9];
Chen et al. [10] ), see Figure 1. However, to incorporate the contribution of the 3D soil
arching effect in the calculation of required support pressure, the activation of shear forces
on the silo slip surfaces, as well as consideration of shear forces acting on the flanks of
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the prismatic wedge, are taken into account in the static equilibrium of the forces. The
main problem of equilibrium is associated with estimating the shear forces at the slip
surfaces. Indeed, the value of shear forces/ stresses depends on the horizontal stresses,
which cannot be calculated from equilibrium conditions (Anagnostou [11]). Thus, to
overcome this statically indeterminate task, the horizontal stress (σh) is assumed to be
proportionally dependent on the vertical stress (σv). The ratio between the horizontal stress
and the corresponding vertical stress represents what is known as the lateral earth pressure
coefficient. The value of the lateral earth pressure coefficient must be assumed in advance.
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Figure 1. 3D limit equilibrium model (a) Horn’s failure mechanism (b) Forces acting on the wedge
(c) A strip of soil in arching silo.

Recently, the upper bound theorem of limit analysis became an effective method for
studying the stability of the tunnel face. The kinematic approach of this theorem is based
on constructing admissible failure mechanisms. To apply the upper bound theorem, some
assumptions must be specified (Chen [12]): (1) The strain rates resulting from the velocity
field must satisfy the flow rule; (2) For a kinematically admissible failure mechanism, the
velocity along a plastic deformed surface must make an angle ϕ with the discontinuity
velocity, which fulfils the normality rule; (3) The rate of work of the external forces is equal
to the rate of internal energy dissipation. Nevertheless, due to the assumptions in the
upper bound theorem, it is difficult to simulate the 3D arching phenomena at the front
of the tunnel face. To overcome this difficultly in the analysis, one or more truncated
conical sliding wedges is assumed to be the failure mechanism, leading to a reduction of
the self weight and thereby to include the 3D soil arching effect in evaluation of the support
pressure (e.g., Leca and Dormieux [13]; Mollon et al. [14]; Tang et al. [15]; Ibrahim et al. [16];
Zou et al. [17]; Li and Zhang [18]).
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The application of numerical methods with advanced constitutive models has been
shown to substantially improve the analysis of the tunnel face stability, using different sce-
narios for the 3D aspect of tunnel. Finite Element Method (FEM), Discrete Element Method
(DEM) and Finite Difference Method (FDM) have proven useful tools in simulating the
stability of tunnel face (e.g., Peila [19]; Ohta and Kiya [20]; Vermeer et al. [21]; Kirsch [22]).
However, the simulation of the tunnel face failure, using three dimensional DEM, FEM or
FDM models, is very time consuming and expensive to model.

More recently, the Kinematical Element Method (KEM) has been utilized to calculate
the active pressure of the tunnel face for three-dimensional analysis (e.g., Qarmout et al. [23];
Qarmout et al. [24]).

For investigating the ground soil respond to tunneling, various physical model tests
were conducted, using centrifuge model or small scale model tests (e.g., Chambon and
Corte [3]; Takano et al. [25]; Kirsch [22]; Idinger et al. [26]; Lü et al. [27]). The physical
models provide a beneficial information about ground surface settlement, the required
face support and insight view into the 3D arching failure mechanism at the front of the
tunnel face. Moreover, the results of the experimental model tests can be used to validate
the numerical and analytical models.

This paper presents a review of seven tunnel face stability models that have been used
to calculate the minimum support pressure, covering three different approaches, Limit
Equilibrium Method (LEM), Limit Analysis Method (LAM) and Finite Element Method
(FEM). Using the results for selected tunnel face stability models as described by the original
authors, compression results were assembled to enable an assessment of each model. The
comparative study includes the cover depth to tunnel diameter ratio (C/D), internal friction
of the soil (ϕ) and cohesion (c). Besides, the results given by each model are compared with
the results of physical model tests available in the literature. Furthermore, in the case of
a ground composed of two soil layers, a comparison of the required support pressure of
these models is presented.

2. Overview of Recent Advances in Tunnel Face Stability Analysis

As mention before, a variety of modeling strategies have been introduced by re-
searchers for simulating the stability of the tunnel face, such as analytical approaches,
numerical methods, and experimental model tests. The research activities for each method
will be briefly summarized in the following subsections.

Limit Equilibrium Method (LEM)

The first systematic study for 3D face stability of the tunnel was performed by Horn [5].
Horn [5] presented a 3D wedge-silo failure mechanism, replacing the circular shape of the
tunnel face with a square shape, as shown in Figure 1a. The horn failure mechanism consists
of a prismatic wedge and a vertical silo above the wedge. In the horn failure mechanism a
number of proper choices are proposed for adopting the distribution of vertical stress with
depth. Latterly, the wedge-silo model has been used by several researchers as a basis for
further development. Using the Limit Equilibrium Method, Anagnostou and Kovari [7],
Jancsecz and Steiner [6], Broere [8], and Anagnostou [11] proposed a 3D tunnel face stability
model based on the Horn failure mechanism, including the effect of soil arching in the silo
by using Janssen’s silo theory [28].

The silo theory composed the following equation for calculating the vertical stress
acting on the base of the silo:

σv(z) =
a · γ − c

Ksilo · tan ϕ
(1 − e−

z
a ·Ksilo ·tan ϕ), (1)

where γ is the density of the soil, ϕ is the friction angle, a is the ratio of the area over
circumference of horizontal plane of the silo, Ksilo is the lateral pressure coefficient and z is
the soil depth from the ground surface.
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Two assumptions are adopted in the wedge-silo model based on Janssen’s analysis
of soil arching. The first assumption is that the lateral earth pressure coefficient of the soil
in the silo is assumed in advance; it is also constant over the tunnel depth. The second
assumption is that the vertical stresses are uniformly distributed across any horizontal
section of the silo as well as at the base of the silo. In addition to the previous assumptions,
the shear force between the silo and the wedge is omitted in the equilibrium of the forces.

Different assumptions have been made by various researchers for Ksilo. Anagnostou
and Kovari [7] assumed Ksilo = 0.8. Jancsecz and Steiner [6] used a 2D active earth pres-
sure coefficient for the silo, Ksilo = Ka, Ka = tan2(45 − ϕ/2), Broere [8] used the lateral
earth pressure coefficient at rest (K0) proposed by Jaky [29]. Anagnostou [11] suggested
Ksilo = 1.0.

A number of authors have suggested a different value for Kwedge based on practical
experience. Anagnostou and Kovari [7] assumed Kwedge = 0.4. Jancsecz and Steiner [6]
suggested the lateral earth pressure coefficient for the wedge as the average of Ka and K0
(K0 = 1 − sin ϕ, Jaky [29], Kwedge = (Ka+ K0)/2, see Figure 2.

Figure 2 shows the value of Ksilo and Kwedge with different friction angles using various
methods. According to Jancsecz and Steiner [6] model, the Ksilo and Kwedge values decrease
with the increase in friction angle, this tendency is also revealed by Broere [8]. Whereas, in
the Anagnostou and Kovari [7] and Anagnostou [11] models, Ksilo and Kwedge are assumed
to be a constant where they are independent of friction angle. As shown in Figure 2a, the
value of Ksilo obtained from the Anagnostou and Kovari [7] model is larger than the other
models for the same friction angle.
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Figure 2. Ksilo and Kwedge for different friction angles assumed by various approaches (a) Variation of
Ksilo with friction angle (b) Variation of Kwedge with friction angle.

In order to figure out the distribution of horizontal stress σh(z) inside the wedge,
Anagnostou and Kovari [7] and Jancsecz and Steiner [6] were assumed to be linearly
proportional between the horizontal stress σh(z) and the vertical stress σv(z). The vertical
stress inside the wedge is calculated as follows:

σv(z) = σv(C) + Kwedge · σh(z − C), (2)

where C is the cover depth. The average shear stress (τwedge) acting on each triangle
slip surfaces of the sliding wedge is obtained by integrating Kwedge · σv(z)· tanϕ over the
slip surfaces. The average shear stress over triangle slip surfaces is calculated using the
following equation:

τwedge = Kwedge · tanϕ · (1
3
· γ · D +

2
3
· σv(C)). (3)
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Anagnostou and Kovari [7] assumed Kwedge = 0.4. Jancsecz and Steiner [6] suggested
the lateral earth pressure coefficient for the wedge as the average of the summation of Ka and
K0 (K0 = 1 − sin ϕ; Jaky [29]), Kwedge = (Ka+ K0)/2, see Figure 2b. Jancsecz and Steiner [6]
described the relation between horizontal and vertical stress at the tunnel axis by 3D earth
pressure coefficient, the minimum support pressure (p) can be calculated as:

p = K3AD · σv(D). (4)

Broere [8] and Anagnostou [11] used the infinitesimal slices method in the wedge,
described by Walz and Prager [30] for slurry-filled trenches. The wedge is subdivided into
smaller horizontal slices bodies i (i is the number of each slices), possibly of different soil
conditions, see Figure 1c. The forces equilibrium on each horizontal slices are formulated.
The minimum support pressure is calculated based on integrating the horizontal and
vertical forces equilibrium over the whole wedge for each horizontal slice. The method of
slices assumed linear proportion between the horizontal stress σh

(i) and the vertical stress
σh

(i).
σh

(i)(z) = K(i)
wedge · σv

(i)(z). (5)

Broere [8] proposed K(i)
wedge =K0 = 1 − sin ϕ [29].Anagnostou [11] assumed K(i)

wedge = 0.5.
Kirsch and Kolymbas [9] considered the horizontal shear force into the wedge model
between the wedge and silo. Kirsch and Kolymbas [9] constructed a simple equation for
calculating the support pressure, which follows from the equilibrium condition by assuming
a quadratic parabolic distribution of vertical stress above the tunnel crown. Kirsch and
Kolymbas [9] assumed Ksilo = Kwedge = K0 (K0 = 1 − sin ϕ). The vertical stress distribution
and the failure mechanism for different arching implementations shown in Figure 3. Unlike
the wedge-silo models, Krause [31] established a 3D shell failure mechanism regarding
the internal stability of the soil at front of the tunnel face. The shear and cohesion forces
along the sliding surface set up the resistance against the collapse. Based on equilibrium
of the forces on the 3D failure body, he deduced a formula for calculating the minimum
support pressure.

The wedge-silo model has also been investigated by several researchers considering
seepage flow (e.g., Perazzelli et al. [32], Zingg and Anagnostou [33]), tunnel face reinforce-
ment (e.g., Anagnostou and Perazzelli [34], Anagnostou and Serafeimidis [35]), excess pore
pressure at the tunnel face (e.g., Broere [8], Dias and Bezuijen [36]) and the influence of the
slurry infiltration process (e.g., Dias and Bezuijen [36], Broere and van Tol [37]).
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Figure 3. Vertical stress distribution for different arching implementations (a) Vertical stress distribu-
tion (b) Top view of failure mechanism (c) Side view of failure mechanism.
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3. Limit Analysis Method (LAM)

The limit analysis method is applied to materials which can be idealized as perfectly
plastic with the associated plastic flow rule. The concept of limit analysis is based on the
theorems of plasticity developed by Drucker et al. [38], namely the lower and upper bound
theorem. By using the lower and upper bound theorems, the range in which true collapse
load is expected can be found.

The principle of the upper bound theorem is based on the work done by external load
in an increment of displacements for a kinematically admissible mechanism being equal
to the energy dissipated by internal stresses. This external load is not lower than the true
collapse load. For this reason, it represents an upper bound on the actual solution.

The lowest possible upper bound solution is determined with an optimization scheme
by trying various possible kinematically admissible failure mechanisms. The lower bound
theorem states that if an internal stress field is in equilibrium with external loads without
overcoming the yield criterion in the soil mass, the external load is not higher than the
true collapse load. The highest possible lower bound solution can be determined by trying
different possible statically admissible stress fields.
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Many researchers have also used the upper bound method to examine the stability of
the tunnel face. A number of authors has assumed different shapes of the failure mechanism
to obtain the upper bound solution for calculating the minimum support pressure.

Leca and Dormieux [13] proposed two mechanisms for the failure zone at the front of
the tunnel face; one consists of a single conical block and other is composed of two solid
conical wedges with elliptic cross sections at the intersection of the tunnel face, see Figure 4.
Both failure mechanisms are characterized by only one parameter, namely, the angle α
between the axis of the cone and the horizontal tunnel axis.

(a) (b)

(c)

Figure 4. Upper bound failure mechanisms, Leca and Dormieux [13] (a) One conical failure mecha-
nism (b) Two conical failure mechanisms (c) Cross section of the tunnel face.

Leca and Dormieux [13] assumed the velocity of each rigid block collinear with
the axis of each linked cone. This implies that the plastic energy dissipation along the
discontinuities obeys the associated flow rule. The two-blocks mechanism given by
Leca and Dormieux [13] is constrained by the normality condition required by plastic-
ity theory. However, this condition does not allow the three-dimensional slip surfaces to
develop more freely.

The minimum support pressure at the tunnel axis is expressed by the following
equation:

p = Ns · qs + Nγ · γ · D, (6)

where Ns and Nγ are the non-dimensional coefficients and qs is the surcharge pressure.
Leca and Dormieux [13] present two sets of graphs for non-dimensional coefficients Ns and
Nγ with respect to friction angle.

An improved failure mechanism composed of several rigid conical blocks was pro-
posed by Mollon et al. [14]. This failure mechanism is an extension of the 3D failure
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mechanism developed by Leca and Dormieux [13], see Figure 5. Mollon et al. [14] found
that a total number of five blocks is sufficient to calculate the minimum support pressure.
The improvement of the solution by Mollon et al. [14] is due to the increase in the degree
of freedom of the failure mechanism. Moreover, the mechanism is able to account for the
whole circular tunnel face.

axis for the upper block is not adequate and leads to nonoptimal
collapse pressures.

The failure mechanism presented by Mollon et al. �2009� and
described in more detail in Oberlé �1996� is an improvement of
the two-block collapse mechanism presented by Leca and
Dormieux �1990�. This mechanism is a multiblock �cf., Fig. 2�.
It is composed of n truncated rigid cones with circular cross sec-
tions and with opening angles equal to 2�. A mechanism with
n=5 is presented in Fig. 2. The geometrical construction of this
mechanism is similar to that of Leca and Dormieux �1990�, i.e.,
each cone is the mirror image of the adjacent cone with respect to
the plane that is normal to the contact surface separating these
cones. This is a necessary condition to ensure the same elliptical
contact area between adjacent cones. In order to make clearer the
geometrical construction of the 3D failure mechanism, Fig. 3
shows how the first two truncated conical blocks adjacent to
the tunnel face are constructed. The geometrical construction of
the remaining truncated conical blocks is straightforward. As for
the mechanism by Leca and Dormieux �1990�, Block 1 is a trun-
cated circular cone adjacent to the tunnel face. The intersection of
this truncated cone with the tunnel face is an elliptical surface that
does not cover the entire circular face of the tunnel. This is a
shortcoming not only of the multiblock mechanism by Mollon
et al. �2009� but also of the two-block mechanism by Leca and
Dormieux �1990�. On the other hand, Block 1 is truncated with
Plane 1 which is inclined at an angle �1 with the vertical direction
�cf., Fig. 3�. In order to obtain the same contact area with the
adjacent truncated conical block, Block 2 is constructed in such a
manner to be the mirror image of Block 1 with respect to the
plane that is normal to the surface separating the two blocks �i.e.,
Plane 2 as shown in Fig. 3�. The mechanism by Mollon et al.

�2009� is completely defined by n angular parameters � and �i

�i=1, . . . ,n−1� where n is the number of the truncated conical
blocks �cf., Fig. 2�.

Notice finally that the upper rigid cone in the mechanisms by
Leca and Dormieux �1990� and Mollon et al. �2009� will or will
not intersect the ground surface depending on the � and C /D
values. This phenomenon of no outcropping at the ground surface
was also pointed out by Chambon and Corté �1994� and Takano et
al. �2006� while they performed experimental tests: As mentioned
before, a failure soil mass which has the shape of a chimney that
does not necessarily outcrop at the ground surface was observed
by these writers.

Both mechanisms by Leca and Dormieux �1990� and Mollon
et al. �2009� are translational kinematically admissible failure
mechanisms. The different truncated conical blocks of these
mechanisms move as rigid bodies. These truncated rigid cones
translate with velocities of different directions, which are collin-
ear with the cones axes and make an angle � with the conical
discontinuity surfaces in order to respect the normality condition
required by the limit analysis theory. The velocity of each cone is
determined by the condition that the relative velocity between the
cones in contact has the direction that makes an angle � with the
contact surface.

The numerical results obtained by Mollon et al. �2009� have
shown that a five-block �i.e., n=5� mechanism was found suffi-
cient since the increase in the number of blocks above five blocks
increases �i.e., improves� the solutions by less than 1%. The im-
provement of the solution by Mollon et al. �2009� with respect to
the one by Leca and Dormieux �1990� is due to the increase in the
degree of freedom of the failure mechanism by Mollon et al.
�2009�. Notice however that the solutions by Mollon et al. �2009�
and those by Leca and Dormieux �1990� suffer from the fact that
only an inscribed elliptical area to the entire circular tunnel face is
involved by failure due to the conical shape of the rigid blocks;
the remaining area of the tunnel face being at rest. This is striking
and is contrary to what was observed in numerical simulations.
This shortcoming will be removed in the following failure mecha-
nisms developed in this paper.

Kinematical Approach for the Computation
of the Tunnel Face Collapse Pressure

The aim of this paper is to compute the tunnel face collapse
pressure of a shallow circular tunnel driven by a pressurized
shield in a frictional and/or cohesive soil. The theoretical model is
based on a three-dimensional multiblock failure mechanism in the
framework of the kinematical approach of the limit analysis
theory. In order to render clearer the theoretical formulation of the
multiblock mechanism, the geometrical construction of a mecha-
nism composed of a single rigid block is first presented. It is then
followed by the presentation of the multiblock mechanism. The
one- and multiblock mechanisms developed in this paper will be
referred to as improved mechanisms since they allow �1� to con-
sider the entire circular area of the tunnel face and not only an
inscribed ellipse inside this area; �2� to improve the solutions
presented by Leca and Dormieux �1990� and Mollon et al. �2009�
in the framework of the kinematical approach of limit analysis.

Improved One-Block Mechanism M1

M1 is a rigid translational one-block mechanism. It is defined by
a single angular parameter 	 �cf., Fig. 4�. This angle corresponds

Fig. 2. Multiblock failure mechanism by Mollon et al. �2009� �after
Mollon et al. 2009�

Fig. 3. Detail of the construction of the multiblock failure mecha-
nism by Mollon et al. �2009� �after Mollon et al. 2009�
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Figure 5. Conical multiblocks failure mechanism, Mollon et al. [14].

The results obtained by Leca and Dormieux [13] and Mollon et al. [14] indicated that
for cohesionless or a frictional-cohesive soil with a friction angle greater than or equal to
20◦, the minimum support pressure is independent of the tunnel cover depth.

More recently, the upper bound model used by Leca and Dormieux [13] was
evolved for investigating the effect of layered soil on the minimum support pressure.
Tang et al. [15] amended the solution of Leca and Dormieux [13] to be applicable in
a layered soil. Tang et al. [15] studied the influence of soil properties of the crossed
layered soil and the cover layered soil on the minimum support pressure. Their results
indicated that the minimum support pressure is highly influenced by the shear strength
of crossed soil more than the shear strength of the cover soil.

Zhang et al. [39] proposed a new 3D failure mechanism using the kinematic approach
of limit analysis. The new 3D failure mechanism was composed of four conical blocks.
The failure mechanisms only consider a portion of the tunnel face (an ellipse on a circular
tunnel face). In addition, the numerical simulations using an FLAC3D were performed
to analyze the stability of a tunnel with different tunnel cover to diameter ratios. Finally,
the minimum support pressure obtained through the FLAC3D were compared to results
obtained by the upper bound solution. It was found that the results from the upper bound
solution were in very good agreement with the results of numerical simulations. Moreover,
the failure zones are compared and the results corresponded with one another.

Using an FLAC3D, Li et al. [40] carried out numerical simulations to investigate the
characteristics of the velocity distribution at the front of the tunnel face. Based on the
velocity field obtained from the numerical simulations, an improved failure mechanism
is constructed using the spatial discretization technique, which takes into account the soil
arching effect. Both the minimum support pressure and the failure pattern were compared
with the results of the numerical simulations. It was found that the critical face pressure
provided by the improved failure mechanism corresponded well to that of the numerical
simulation.

Ibrahim et al. [16] improved the 3D failure mechanism of Mollon et al. [14] to compute
the minimum support pressure in dry multilayered purely frictional soil. The improved 3D
failure mechanism is proposed for two and three soil layers.

Senent and Jimenez [41] extended the solution of Mollon et al. [14] to study the possi-
bility of partial collapse in layered soils. The proposed model by Senent and Jimenez [41]



CivilEng 2022, 3 124

examined the influence of soil properties of the crossed soil and the cover soil on the
minimum support pressure.

Khezri et al. [42] investigated the effect of linear variation of cohesion with depth on
the minimum support pressure. Their results show that adopting the mean soil cohesion
that does not vary with depth would lead to conservative predictions for tunnel face
support pressure. However, adopting the cohesive determined for the centreline of the
tunnel underestimating the tunnel face support pressure and leads to an unsafe design.

Based on the kinematic approach of limit analysis, Pan and Dias [43] proposed a 3D
failure mechanism to study the effect of anisotropy and cohesion on the stability of the
tunnel face, including two types of non-homogeneous cohesion—linear variation with
depth and layered soil. The results obtained from the presented approach show that
both anisotropy and non-homogeneity have a significant effect on the support pressure,
especially when the cohesion is relatively large.

Han et al. [44] proposed a 3D multiblocks failure mechanism for multilayered cohesive-
frictional soils (see Figure 6). Their failure mechanism combines the silo theory (upper part)
with the upper bound solution (lower part). The failure mechanism is composed of five
truncated cones in the wedge. The distributed force acting on top of the truncated cone is
calculated using silo theory with Ksilo = K0. The minimum support pressure is obtained
using the upper bound solution in failure mechanism of the wedge.

v i;iþ1 ¼ v i
sin 2Wi;iþ1
� �

cosðWi;iþ1 �u0
0Þ

ð for i P 1Þ ð2Þ

where

W0;1 ¼ a
Wi;iþ1 ¼ bi �Wi�1;i; ði P 1Þ

�
ð for i P 1Þ

The intersections of adjacent blocks are ellipses and are called
R1, Ri,i+1[1 6 i 6 4] and R5. The semi-axis lengths of the ellipses
are a1(b1), ai,i+1(bi,i+1)[1 6 i 6 4] and a5(b5).

The intersection of the first truncated cone (adjacent to the tun-
nel face) with the circular tunnel face is an ellipse, with semi-axis
lengths of a1 and b1 that are calculated as (cf. Fig. 1)

a1 ¼ D
2

ð3Þ

b1 ¼ D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosða�u0

0Þ cosðaþu0
0Þ

p
cosu0

0
ð4Þ

where u0
0 defines the opening angles of the five truncated rigid

cones that are equal to 2u0
0, and a is the angle between the axis

of the first truncated rigid cone and the horizontal.
Therefore, the area A1 of the first truncated cone base is

A1 ¼ pD2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosða�u0

0Þ cosðaþu0
0Þ

p
cosu0

0
ð5Þ

The areas of the contact elliptical surfaces between two succes-
sive truncated cones i and i + 1 are ellipses with semi-axis lengths
of ai,i+1 and bi,i+1(for 1 6 i 6 4) that are described as follows:

ai;iþ1 ¼ D
2

Yi
k¼1

cosðWk�1;k þu0
0Þ

cos Wk;kþ1 �u0
0

� � ð6Þ

Fig. 1. Improved failure mechanism.

K. Han et al. / Computers and Geotechnics 79 (2016) 1–9 3

Figure 6. Combined multiblocks failure mechanism, Han et al. [44].

Lee and Nam [45] included the effect of seepage forces emerging from the groundwater
flow in the upper bound solution. They found that the minimum support pressure for the
face stability is equal to the sum of the effective support pressure obtained from the upper
bound solution and the seepage pressure acting on the tunnel face.

Pan and Dias [46] studied the stability of the tunnel face in water-bearing ground under
steady seepage flow conditions. The distributions of to pore water pressure resulting from
numerical calculation by FLAC3D are adopted to interpolate on the 3D failure mechanism
of Mollon et al. [14]. The results indicated that the effective support pressure increases with
water table elevation. The influence of anisotropic permeability on tunnel face stability is
also discussed, showing that the isotropic model leads to an overestimation of the necessary
tunnel face pressure for anisotropic soils.
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4. Comparative Calculations Concerning Minimum Support Pressure

Analogous to the method proposed by Terzaghi [1] for bearing capacity analysis, the nor-
malized support pressure (pu/γD) is represented by the following form (Vermeer et al. [21],
Anagnostou [11], Mollon et al. [14]):

pu

γ · D
= Nγ − c

γ · D
· Nc +

q
γ · D

· Nq, (7)

where the contribution of different loads and soil parameters including self-weight (γ),
internal friction angle (ϕ), surface surcharge (q) and cohesion (c) are expressed by the non-
dimensional bearing capacity coefficients Nγ, Nq and Nc as a function of the friction angle
of the soil. Due to the active conditions around the tunnel face the cohesion is reducing the
necessary support pressure.

4.1. Homogeneous Soil

The comparative studies are performed on seven tunnel stability models, covering
three different approaches—Limit Equilibrium Method (LEM), Limit Analysis Method
(LAM), and Finite Element Method (FEM) calculations. The effect of friction angle (ϕ),
cohesion (c), and depth to diameter ratio (C/D) on normalized support pressure (pu/γD)
will be discussed in the following subsections. The soil conditions are assumed to be
homogeneous. The dry unit weight is set to γ = 20 kN/m3, and the tunnel diameter is set
to D = 10 m. For simplicity, the surcharge is neglected (q = 0 kPa).

4.1.1. Influence of the Friction Angle and Cohesion

Using the results calculated from seven tunnel stability models, Figure 7 represents the
relationship between the normalized support pressure (pu/γD) and normalized cohesion
(c/γD). The analysis of the normalized support pressure is conducted for ϕ = 20◦ and 40◦.
C/D ratio is assumed to be 2.
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Figure 7. Normalized support pressure (pu/γD) as a function of normalized cohesion (c/γD).

Figure 7 shows that for ϕ = 20◦ and ϕ = 40◦, the slope of the line represents the
solution of Krause [31] has higher value than the other solutions indicating that the value
of Nc has much more effect on the support pressure compared to the other approaches.

In addition, the solutions of Broere [8], Anagnostou and Kovari [7] and Anagnostou [11]
have a close slope value. Therefore, the value of Nc for these models has a very close effect
on the support pressure.

It can be seen from Figure 7 that for ϕ = 20◦ and c/γD ≥ 0 (cohesionless and frictional-
cohesive soil), the solution of Anagnostou and Kovari [7] using the limit equilibrium
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method overestimates the value pu/γD with regard to the other approaches. However, at
ϕ = 40◦ and c/γD ≥ 0, the solution of Broere [8] is above the solution of Anagnostou and
Kovari [7]. The alteration of Anagnostou and Kovari [7] results comparing to Broere [8]
results can be attributed to two reasons; firstly, the simplified way of considering the
vertical stress distribution along the sides of the wedge, i.e. linear vertical stress distribution.
Secondly, for ϕ > 35◦ Anagnostou and Kovari [7] assumed Kwedge = 0.4 which is higher
than the assumed value of Broere [8] (Kwedge = K0). Consequently, in the Anagnostou and
Kovari [7] model, the vertical stress and the frictional resistance acting on the wedge are
considerably higher than vertical stress and the frictional resistance acting on the wedge
obtained using Broere [8] model. Finally, at ϕ = 40◦, the integration of the two previews
reasons during the optimization process leads to reduce distinctly the calculated minimum
support pressure for Anagnostou and Kovari [7] model comparing to Broere [8] model.

Moreover, for ϕ = 40◦, the values of pu/γD obtained from Vermeer et al. [21] are
much more close to Mollon et al. [14] model, the difference of pu/γD between these two
methods is less than 5 %. Whereas, for ϕ = 20◦, the values of pu/γD obtained from
Vermeer et al. [21] and Mollon et al. [14] results are almost identical.

According to Figure 7, for cohesionless and frictional-cohesive soil with the two friction
angles (ϕ = 20◦ and 40◦), the numerical results of Anagnostou [11] which are based on the
infinitesimally thin slices method and the results of Mollon et al. [14] using multi-blocks
mechanism are located between the results of Broere [8] and the upper bound solution of
Leca and Dormieux [13].

For the two friction angles (ϕ = 20◦ and 40◦) and c/γD ≥ 0, the values of pu/γD
obtained from Leca and Dormieux [13] using the upper bound method are clearly below
the results given by the others, this is due to the shape of the tunnel face being considered
as an elliptic cross section inscribed to the circular face. The two-blocks mechanism given
by Leca and Dormieux [13] is constrained by the normality condition, required by plasticity
theory, the velocity vector must make an angle ϕ with discontinuity surfaces along the
sliding surfaces. However, this condition does not allow the three-dimensional slip surfaces
to develop more freely.

4.1.2. Influence of C/D

Figure 8 presents the influence of cover to diameter ratio (C/D) on normalized support
pressure (pu/γD). From Figure 8, we can see that with any friction angle, the normalized
support pressure (pu/γD) predicted from Leca and Dormieux [13] and Mollon et al. [14]
solutions remain constant for C/D ≥ 1.
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The constant support pressure in Leca and Dormieux [13] and Mollon et al. [14] upper
bound solutions explained by both failure mechanisms of Leca and Dormieux [13], and
Mollon et al. [14] are translational kinematically admissible failure mechanisms, the 3D
rigid conical blocks of these mechanisms move with velocities, which are collinear with
the cones axes, making an angle ϕ with the conical discontinuity surfaces, and fulfilling
the normality rule required by the limit analysis theory. Due to this condition, the failure
mechanism obtained from the maximization process does not change with C/D ≥ 1 [14].

In Krause [31] solution, the support pressure is not influenced by the cover to diameter
ratio (C/D), which is attributed to the Krause [31] model being based on the internal
equilibrium of a half sphere failure mechanism at the front of the tunnel face, where the
soil weight of the cover depth is not taken into account in calculating the support pressure.
Similarly, in Vermeer et al. [21] numerical results, the normalized support pressure (pu/γD)
with C/D ≥ 1 is independent of the cover to diameter ratio.

In limit equilibrium models, the vertical stress tends exponentially to asymptotic
value at specific tunnel depth. When the vertical stress reaches its asymptotic value, the
minimum support pressure is only dependent on the friction angle and not on the depth of
the tunnel, see Equation (1). The rate of approach to the asymptote of the vertical stress is a
function of Ksilo· tanϕ and therefore differs in Anagnostou and Kovari [7], Broere [8], and
Anagnostou [11] solutions with different friction angles.

For the case of ϕ = 20◦, the normalized support pressure of Anagnostou and Kovari [7],
Broere [8] and Anagnostou [11] solutions increase nonlinearly for increasing C/D and the
increasing rate became flatter in deeper tunnel depth.

Moreover, for ϕ = 20◦ and ϕ = 40◦, the normalized support pressure calculated by
Anagnostou [11] model is slightly impacted by the depth ratio if it is less than 2. Once the
cover to diameter ratio is bigger than 2, the support pressure gets constant and is no longer
influenced by the cover to diameter ratio. We can also conclude from Figure 8, for ϕ = 40◦,
in Anagnostou [11] solution, once the cover to diameter ratio is bigger than 2, the support
pressure gets constant and is no longer influenced by the cover to diameter ratio. However,
in Broere [8], the effect of C/D starts to vanish for C/D > 2.5.

4.1.3. Verification by Physical Model Tests

Three series of physical model tests from the literature have been chosen to verify the
accuracy of selected models for predicting the minimum support pressure. The specifica-
tions of the physical model tests are summarized in Table 1.

Table 1. Selected physical model tests for he verification of tunnel face stability models.

Author Model Tested Material ϕ [◦] c [kPa] C/D [−]

Chambon and Corte [3] ng test Fontainebleau sand 38–42 0–5 0.5, 1, 2, 4
Kirsch [22] 1g test Ottendorf-Okrilla sand 32.5 0 0.5, 0.75, 1, 1.5, 2
Chen et al. [47] 1g test Yangtze River sand 37 0–0.5 0.5, 1, 2

The results of normalized support pressure obtained from Chambon and Corte [3],
Kirsch [22] and Chen et al. [47] physical models are compared with the results of the wedge-
silo models by Anagnostou and Kovari [7], Broere [8], Anagnostou [11], the upper bound
solution by Mollon et al. [14], Leca and Dormieux [13], and the finite element method by
Vermeer et al. [21]. The predicted results are shown in Figure 9a–f.

From Figure 9a we can see that the normalized support pressure obtained from 1 g
tests of Kirsch [22] increases slightly with the increase in C/D ratio. This dependency
of C/D ratio was also detected by Anagnostou and Kovari [7] and Broere [8] but is not
revealed by Mollon et al. [14], Leca and Dormieux [13], Krause [31], Vermeer et al. [21] and
Anagnostou [11]. Besides, the results obtained from Vermeer et al. [21], Mollon et al. [14]
and Anagnostou [11] models agree very well with 1g tests of Kirsch [22] results, when the
soil is cohesionless soil (c = 0 kPa). According to Figure 9b, we can also see that Leca and
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Dormieux [13], Mollon et al. [14] and Anagnostou [11] models show a good agreement
with the results obtained by the 1g test results of Chen et al. [47] for friction-cohesive soil.
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Figure 9. Comparison of pu/γD values obtained from different methods with physical model tests.

As shown in Figure 9c,e, the normalized pressure (pu/γD) obtained from ng tests of
Chambon and Corte [3] are less than the results calculated by the seven stability models
in cohesionless soil. However, if the cohesion is considered in the calculation of the
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pressure (c = 5 kPa), see Figure 9d,f, Leca and Dormieux [13], Anagnostou and Kovari [7],
Vermeer et al. [21], Mollon et al. [14] and Anagnostou [11] predict the minimum support
pressure much more closer to the 1g test results of Chambon and Corte [3]. Moreover, it can
be seen that Anagnostou and Kovari [7], Broere [8], and Krause [31] relatively overestimate
the (pu/γD) value compared to the results of Chambon and Corte [3], Kirsch [22] and
Chen et al. [47].

4.2. Layered Soil

In this section, the tunnel face stability in layered soils is investigated using different
approaches; the model considers two layers (cover and cross layer) of the soil is shown in
Figure 10. The cover and the cross layer are assumed to be located above the groundwater
table. The soil strength parameters and geometry of the tunnel are described in Table 2.

The effect of the soil parameters of the cover layer on the minimum support pressure
is investigated by varying the friction angle of the cover layer, while the soil properties
of the cross layer are kept constant. The variation of the normalized minimum support
pressure with the friction angle of the cover layer is shown in Figure 11.

D

C

D

Cover layer

Cross layer

D

C

D

Cover layer

Cross layer

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

Figure 10. Model considering two layers of soil.

Table 2. Soil parameters and tunnel geometry (soil with two layers).

Model Description Parameter Value Unit

Cover layer Cover depth (C) 9 [m]
Friction angle (ϕ) 15–45◦ [Deg.]

Unit weight(γ) 18 [kN/m3]
Cohesion (c) 2.5 [kPa]

Cross layer Tunnel diameter (D) 6 [m]
Friction angle (ϕ) 20◦ [Deg.]

Unit weight(γ) 18 [kN/m3]
Cohesion (c) 2.5 [kPa]
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Figure 11. Minimum support pressure as a function of different friction angles.

It is clear from Figure 11 that the results obtained from the different approaches are
quite different. It can be noticed that the wedge-silo models (Jancsecz and Steiner [6];
Anagnostou and Kovari [7]; Broere [8]) give much larger support pressures than the limit
analysis models (Tang et al. [15]; Han et al. [44]). The results of Han et al. [44] are above the
results of Tang et al. [15]. This can be attributed to the fact that the 3D failure mechanism
of Han et al. [44] is composed of five truncated cones which offer many more degrees of
freedom. However, the failure mechanism assumed by Tang et al. [15] is composed of two
cones proposed by Leca and Dormieux [13], which is restricted in the number of degrees of
freedom.

Furthermore, it can be seen from Figure 11 that the minimum support pressure de-
creases with increasing friction angle in the case of the upper bound solution of Han et al. [44],
Tang et al. [15] and the Anagnostou and Kovari [7] model. The steepest trend is predicted by
the model of Anagnostou and Kovari [7]. Surprisingly, applying the solution of Broere [8],
the minimum support pressure decreases up to a minimum value at ϕ = 40◦ before in-
creasing again with further increase of ϕ. A similar trend is obtained from the approach of
Jancsecz and Steiner [6]. In that case, the minimum support pressure decreases slightly to
the minimum value at ϕ = 30◦, while it increases subsequently.

The trends of the support pressure predicted by the wedge-silo models (Jancsecz and
Steiner [6]; Anagnostou and Kovari [7]; Broere [8]) can be explained as follows. From
silo theory (Equation (1)), the value of vertical stress above the tunnel crown is mainly
dependent on the value of Ksilo · tan ϕ (for the same soil strength parameters). For the model
of Anagnostou and Kovari [7], this value will be 0.8 · tan ϕ, for the Broere [8] solution it will
be (1-sin ϕ) · tan ϕ, and for the Jancsecz and Steiner [6] solution (tan2(45− ϕ/2)) · tan ϕ. As
shown in Figure 12, the value of Ksilo · tan ϕ in the solution of Anagnostou and Kovari [7]
increases exponentially. According to the approach of Broere [8], the value of Ksilo · tan ϕ
increases up to a maximum value of ϕ = 40◦ before it decreases again. The same trend is
obtained for the equations of Jancsecz and Steiner [6], where the maximum value is reached
at ϕ = 30◦.

The effect of Ksilo · tan ϕ on the vertical stress distribution in the different model is
shown in Figure 13. From those diagrams one it conclude that in the models of Jancsecz
and Steiner [6] and Broere [8], the vertical stress for ϕ = 45◦ is close or slightly higher than
that for ϕ = 35◦ at any depth. In contrast, in the approach of Anagnostou and Kovari [7],
the vertical stress for ϕ = 35◦ is always higher than that for ϕ = 45◦.
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Figure 12. Ksilo · tan ϕ as a function of the friction angle of the cover layer obtained from different
approaches.
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Figure 13. Vertical stress distribution in different models: (a) Anagnostou and Kovari [7] model;
(b) Broere [8] model; (c) Jancsecz and Steiner [6] model.
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Based on the previous results, it can be concluded that for the set of soil parameters and
geometry of the tunnel used in this study (see in Table 2) the approaches of Jancsecz and
Steiner [6] and Broere [8] predict a trend of the minimum support pressure with friction
angle which contradicts practical experience. The discrepancies between the support
pressure predicted by the different approaches are obvious in Figure 11.

5. Conclusions

This paper presents a review of analytical models based either on the principle of
limit equilibrium or the limiting analysis, which have both been used to analyze the
stability of the tunnel face for dry frictional and frictional-cohesive soil. The following main
conclusions can be drawn:

1. To use Janssen’s solution in the wedge-silo model, it is required to have explicit value
for the lateral earth pressure coefficient of the silo. However, the advised values of it
vary in a wide range. Due to this, the face support pressures calculated by the existing
wedge-silo models are quite different. So, the question about the proper value for the
lateral earth pressure Ksilo remains unanswered.

2. According to the results of comparative calculations, the wedge-silo models give
higher support pressure than conical block models, but the differences in the two
methods for the prediction of the support pressure are small for higher friction angles.

3. Comparing the results of physical model tests to the results of Anagnostou and Kovari [7]
and Broere [8] models, indicating that both models are relatively conservative models for
estimating the minimum support pressure. The results obtained from Vermeer et al. [21],
Mollon et al. [14], and Anagnostou [11] models show a good agreement with those of
the experiments. However, comparing to the experiments results, the upper bound
solutions proposed by Leca and Dormieux [13] underestimate the minimum support
pressure especially when soil is cohesionless.

4. The solution of the limit equilibrium method revealed that the cover to diameter
ratio has significant influence on the minimum support pressure. This effect is also
deduced by Chen et al. [4] and Chambon and Corte [3], whereas the solution of the
upper bound theorem for the minimum support pressure is only independent, when
the failure mechanism of the upper bound theorem does not intersect at the ground
surface in a certain soil condition (e.g., C/D ≥ 1), this outcome has also been reported
by Vermeer et al. [21].

5. In the case of a ground composed of two soil layers, the minimum support pressure
obtained from wedge-silo models is higher than that predicted by the upper bound
solution. In addition, the discrepancies in the results between the support pressure
predicted by the different models are obvious.

6. Finally, the analytical approaches such as the Limit Equilibrium Method (LEM) and
Limiting Analysis Method (LAM) are used to assess the stability of the tunnel face
assuming various failure mechanisms. However, the results are quite different. There-
fore, there are still considerable potential efforts for calculating the support pressure
more accurately.

Author Contributions: Conceptualization, M.Q.; methodology, D.K.; software, M.Q.; valida-
tion, M.Q., D.K. and T.W.; formal analysis, M.Q.; investigation, M.Q. and D.K.; resources, M.Q.
and D.K.; data curation, M.Q. and D.K.; writing—original draft preparation, M.Q., D.K. and
T.W.; writing—review and editing, M.Q., D.K. and T.W.; visualization, M.Q.; supervision, T.W.;
project administration, D.K.; funding acquisition, T.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



CivilEng 2022, 3 133

References
1. Terzaghi, K. Theoretical Soil Geomechanics; Wiley and Sons: New York, NY, USA, 1943.
2. Terzaghi, K. Stress distribution in dry and saturated sand above a yielding trap-door. In Proceedings of the First International

Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, 1 August 1936; pp. 307–311.
3. Chambon, P.; Corte, J. Shallow Tunnels in Cohesionless Soil: Stability of Tunnel Face. J. Geotech. Eng. 1994, 120, 1148–1165.

[CrossRef]
4. Chen, R.P.; Tang, L.J.; Ling, D.S.; Chen, Y.M. Face stability analysis of shallow shield tunnels in dry sandy ground using the

discrete element method. Comput. Geotech. 2011, 38, 187–195. [CrossRef]
5. Horn, N. Horizontaler Erddruck auf senkrechte Abschlussflächen von Tunnelröhren. In Proceedings of the National Conference

of the Hungarian Civil Engineering Industry, Budapest, Hungary, 18–21 June 1961; pp. 7–16.
6. Jancsecz, S.; Steiner, W. Face support for a large mix-shield in heterogeneous ground conditions. In Proceedings of the 7th

International Symposium Tunnelling, London, UK, 12 June 1994; pp. 189–195.
7. Anagnostou, G.; Kovari, K. The face stability of slurry-shield-driven tunnels. Tunn. Undergr. Space Technol. 1994, 9, 165–174.

[CrossRef]
8. Broere, W. Tunnel Face Stability and New CPT Application. Ph.D. Thesis, Delft University, Delft, The Netherlands, 2001.
9. Kirsch, A.; Kolymbas, D. Theoretische Untersuchung zur Ortsbruststabilität. Bautechnik 2005, 82, 449–456. [CrossRef]
10. Chen, R.P.; Tang, L.J.; Yin, X.S.; Chen, Y.M.; Bian, X.C. An improved 3D wedge prism model for the face stability analysis of the

shield tunnel in cohesionless soils. Acta Geotech. 2015, 10, 683–692. [CrossRef]
11. Anagnostou, G. The contribution of horizontal arching to tunnel face stability. Geotechnik 2012, 35, 34–44. [CrossRef]
12. Chen, W.F. Limit Analysis and Soil Plasticity; Elsevier Scientific Publishing Company: London, UK, 1975.
13. Leca, E.; Dormieux, L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material.

Geotechnik 1990, 40, 581–606. [CrossRef]
14. Mollon, G.; Dias, D.; Soubra, A.H. Face stability analysis of circular tunnels driven by a pressurized shield. J. Geotech. Geoenviron.

Eng. 2010, 136, 215–229. [CrossRef]
15. Tang, W.; Liu, W.; Albers, B.; Savidis, S. Upper bound analysis of tunnel face stability in layered soils. Acta Geotech. 2014,

9, 661–671. [CrossRef]
16. Ibrahim, E.; Soubra, A.H.; Mollon, G.; Raphael, W.; Dias, D.; Reda, A. Three-dimensional face stability analysis of pressurized

tunnels driven in a multilayered purely frictional medium. Tunn. Undergr. Space Technol. 2015, 49, 18–34. [CrossRef]
17. Zou, J.; Chen, G.; Qian, Z.T. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved

failure models. Comput. Geotech. 2019, 25, 526–542. [CrossRef]
18. Li, W.; Zhang, C. Face Stability Analysis for a Shield Tunnel in Anisotropic Sands. Int. J. Geomech. 2020, 20, 04020043. [CrossRef]
19. Peila, D. A theoretical study of reinforcement influence on the stability of a tunnel face. Geotech. Geol. Eng. 1994, 12, 145–168.

[CrossRef]
20. Ohta, T.; Kiya, H. Experimental Study and Numerical Analysis on Stability of Tunnel Face in Sandy Ground; ISRM International

Symposium: Tokye, Japan, 2001.
21. Vermeer, P.A.; Ruse, N.M.; Marcher, T. Tunnel heading stability in drained ground. Felsbau 2002, 20, 8–18.
22. Kirsch, A. On the Face Stability of Shallow Tunnels in Sand; Logos Verlag Berlin GmbH: Berlin, Germany, 2009.
23. Qarmout, M.; König, D.; Gussmann, P.; Thewes, M.; Schanz, T. Tunnel face stability analysis using Kinematical Element Method.

Tunn. Undergr. Space Technol. 2019, 85, 354–367. [CrossRef]
24. Qarmout, M.; Schmüdderich, C.; König, D.; Thewes, M.; Wichtmann, T. Face stability of a circular tunnel excavated in dry

frictional- cohesive soil. In Proceedings of the ETS Tunnelling and Underground Construction Conference & Exhibition, Luxor,
Egypt, 3–5 December 2019.

25. Takano, D.; Otani, J.; Nagatani, H.; Mukunoki, T. Application of X-ray CT Boundary Value Problems in Geotechnical Engineering-
Research on Tunnel Face Failure; ASCE: Reston, VA, USA, 2006; pp. 1–6.

26. Idinger, G.; Aklik, P.; Wu, W.; Borja, R. Centrifuge model test on the face stability of shallow tunnel. Acta Geotech. 2011, 6, 105–117.
[CrossRef]

27. Lü, X.; Zhou, Y.; Huang, M.; Zeng, S. Experimental study of the face stability of shield tunnel in sands under seepage condition.
Tunn. Undergr. Space Technol. 2018, 74, 195–205. [CrossRef]

28. Janssen, H. Versuche uber Getreidedruck in Silozellen. Z. Des Vereines Dtsch. Ingenieure 1895, 39, 1045–1049.
29. Jaky, J. The coefficient of earth pressure at rest. J. Soc. Hung. Archit. Eng. 1944, 78, 355–358.
30. Walz, B.; Prager, J. Der Nachweis der äusseren Standsicherheit suspensionsgestützter Erdwände nach der Elementscheibentheorie.

In VerÖffentlichungen des Grundbauinstitutes der Technischen Universität Berlin; Grundbauinst Technology University: Berlin,
Germany, 1978.

31. Krause, T. Schildvortrieb Mit flüssigkeits und Erdgestützter Ortsbrust. Ph.D. Thesis, Delft University, Delft, The Netherlands,
1987.

32. Perazzelli, P.; Leone, T.; Anagnostou, G. Tunnel face stability under seepage flow conditions. Tunn. Undergr. Space Technol. 2014,
43, 459–469. [CrossRef]

33. Zingg, S.; Anagnostou, G. An investigation into efficient drainage layouts for the stabilization of tunnel faces in homogeneous
ground. Tunn. Undergr. Space Technol. 2016, 58, 49 –73. [CrossRef]

http://doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1148)
http://dx.doi.org/10.1016/j.compgeo.2010.11.003
http://dx.doi.org/10.1016/0886-7798(94)90028-0
http://dx.doi.org/10.1002/bate.200590151
http://dx.doi.org/10.1007/s11440-014-0304-5
http://dx.doi.org/10.1002/gete.201100024
http://dx.doi.org/10.1680/geot.1990.40.4.581
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000194
http://dx.doi.org/10.1007/s11440-013-0256-1
http://dx.doi.org/10.1016/j.tust.2015.04.001
http://dx.doi.org/10.1016/j.compgeo.2018.10.014
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001666
http://dx.doi.org/10.1007/BF00426984
http://dx.doi.org/10.1016/j.tust.2018.11.024
http://dx.doi.org/10.1007/s11440-011-0139-2
http://dx.doi.org/10.1016/j.tust.2018.01.015
http://dx.doi.org/10.1016/j.tust.2014.03.001
http://dx.doi.org/10.1016/j.tust.2016.04.004


CivilEng 2022, 3 134

34. Anagnostou, G.; Perazzelli, P. Analysis method and design charts for bolt reinforcement of the tunnel face in cohesive-frictional
soils. Tunn. Undergr. Space Technol. 2015, 74, 162–181. [CrossRef]

35. Anagnostou, G.; Serafeimidis, K. The dimensioning of tunnel face reinforcement. In Proceedings of the ITA-AITES World Tunnel
Congress, Prague, Czech Republic, 5–10 May 2007; Volume 1, pp. 291–296.

36. Dias, T.; Bezuijen, A. A Different View on TBM Face Equilibrium in Permeable Ground; ITA World Tunnel Congress-Uniting an
Industry: San Francisco, CA, USA, 2016.

37. Broere, W. Influence of Infiltration and Groundwater Flow on Tunnel Face Stability; Geotechnical Aspects of Underground Construction
in Soft Ground: Tokyo, Japan, 2000; pp. 339–344.

38. Drucker, D.; Greenberg, W.; Prager, W. The safety factor of an elastic plastic body in plane strain. Trans. ASME J. Appl. Mech.
1951, 73, 371–378. [CrossRef]

39. Zhang, C.P.; Han, K.H.; Zhang, D.L. Face stability analysis of shallow circular tunnels in cohesive—Frictional soils. Tunn. Undergr.
Space Technol. 2015, 50, 345–357. [CrossRef]

40. Li, W.; Zhang, C.; Zhang, D.; Ye, Z.; Tan, Z. Face stability of shield tunnels considering a kinematically admissible velocity field of
soil arching. J. Rock Mech. Geotech. Eng. 2021. [CrossRef]

41. Senent, S.; Jimenez, R. A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse. Tunn.
Undergr. Space Technol. 2015, 47, 182–192. [CrossRef]

42. Khezri, N.; Mohamad, H.; Hassani, M.; Fatahi, B. The stability of shallow circular tunnels in soil considering variations in
cohesion with depth. Tunn. Undergr. Space Technol. 2015, 49, 230–240. [CrossRef]

43. Pan, Q.J.; Dias, D. Face Stability Analysis for a Shield-Driven Tunnel in Anisotropic and Nonhomogeneous Soils by the
Kinematical Approach. Int. J. Geomech. 2016, 16. [CrossRef]

44. Han, K.; Zhang, C.; Zhang, D. Upper-bound solutions for the face stability of a shield tunnel in multilayered cohesive-frictional
soils. Comput. Geotech. 2016, 79, 1–9. [CrossRef]

45. Lee, M.; Nam, W. Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face. Tunn. Undergr. Space
Technol. 2004, 19, 273–281. [CrossRef]

46. Pan, Q.J.; Dias, D. The effect of pore water pressure on tunnel face stability. Int. J. Numer. Anal. Meth. Geomech. 2016, 40, 2123–2136.
[CrossRef]

47. Chen, R.P.; Li, J.; Kong, L.G.; Tang, L.J. Experimental study on face instability of shield tunnel in sand. Tunn. Undergr. Space
Technol. 2013, 33, 12–21. [CrossRef]

http://dx.doi.org/10.1016/j.tust.2014.10.007
http://dx.doi.org/10.1115/1.4010353
http://dx.doi.org/10.1016/j.tust.2015.08.007
http://dx.doi.org/10.1016/j.jrmge.2021.10.006
http://dx.doi.org/10.1016/j.tust.2014.12.014
http://dx.doi.org/10.1016/j.tust.2015.04.014
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000569
http://dx.doi.org/10.1016/j.compgeo.2016.05.018
http://dx.doi.org/10.1016/j.tust.2003.11.005
http://dx.doi.org/10.1002/nag.2528
http://dx.doi.org/10.1016/j.tust.2012.08.001

	Introduction
	Overview of Recent Advances in Tunnel Face Stability Analysis
	Limit Analysis Method (LAM)
	 Comparative Calculations Concerning Minimum Support Pressure
	Homogeneous Soil 
	Influence of the Friction Angle and Cohesion 
	Influence of C/D
	Verification by Physical Model Tests 

	Layered Soil 

	Conclusions
	References

