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Abstract: The construction sector is responsible for a great environmental impact. The cement
industry, which is included in this sector, emits about 650 to 800 kg of CO2 per each tonne of
cement produced, being one of the most polluting industries in terms of greenhouse gas emissions.
The cement manufacturing process releases about 7% of the total worldwide CO2 emissions. However,
concrete and cement-based materials present CO2 uptake potential during their service life and
post-demolition through carbonation processes. The carbonation reactions rate depends on several
factors, namely type and content of cement, porosity of concrete, temperature, relative humidity and
exposure conditions area. Therefore, to estimate the CO2 capture of concrete during its life cycle is
not a straightforward calculation. Some studies have been developed using different methodologies
in order to evaluate the CO2 potential of cementitious elements in service and post-demolition.
This paper reviews the documented approaches that quantify the CO2 uptake of concrete over time,
summarizing the assumptions adopted for each previous work. Overall, it was concluded that part
of the CO2 emissions released during cement production are reabsorbed by concrete products during
their life cycle, which partially offsets the environmental impact and reduces the CO2 footprint of the
cement industry.
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1. Introduction

The cement industry is responsible for about 7% of the total worldwide CO2 emis-
sions [1–3], mainly from the burning of fossil fuels and calcination of limestone for the
manufacture of clinker. In summary, the production of 1 kg of Portland cement generates
approximately 0.8 kg of CO2 [2]. Therefore, the search for alternatives to reduce green-
house gas emissions is essential. It is necessary to improve cement production to avoid the
emission of gases into the atmosphere and to reduce other types of environmental impacts.
Mortars and concrete can capture CO2 over time through carbonation; thus, this process
tends to partially compensate for CO2 emissions from cement production [4]. Usually,
cementitious materials in service are exposed to water, which affects their characteristics
over time. The CO2 present in the water can also accelerate reactions with calcium silicate
hydrate gel, namely C-S-H, increasing the formation of CaCO3 [5,6]. It is well known that
the concrete exposed to CO2 in aqueous solution may carbonate faster when exposed to
the air.

Carbon dioxide sequestration rate of cementitious materials depends on several factors.
The increment of this rate is responsible for a more carbon neutral concrete structure.
Therefore, the carbonation of the cementitious structures in service must be investigated
in order to update their life cycle in terms of carbon emissions [7]. This way, even though
the production of Portland cement generates carbon dioxide emissions due to the energy
usage and calcination process, a significant amount of CO2 can be re-absorbed through
carbonation reactions [8,9]; bearing in mind that this process occurs very slowly, and usually
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takes decades to reach significant levels. The carbonation reactions (responsible for CO2
absorption) of cement-based products have not been deeply reported and consequently
have not been considered in the CO2 emissions assessment of cement production. Therefore,
CO2 emissions generated by cement factories can be overestimated [8]. In order to calculate
the amount of CO2 uptake from the atmosphere through carbonation processes by building
materials, several studies have been carried out to estimate the proportion of CO2 emitted
by cement production which is re-absorbed over the years. This paper encompasses
previous research that analyses carbonation during the service life of concrete structures
as well as after demolition, namely in the form of recycled aggregates. This review is a
summary of studies that have quantified the CO2 uptake of cementitious structures over
the years. However, each quantification of large-scale CO2 uptake flux is based on several
assumptions which allow these calculations.

2. Carbonation Reaction in Concrete

The carbonation process in concrete and mortars is the reaction between the cal-
cium hydroxide (Ca(OH)2) present in the cementitious matrices and carbon dioxide (CO2).
CO2 ingresses into concrete through its pores. The cement hydration products in con-
tact with CO2 form CaCO3 [10,11], changing the physical and chemical properties of
concrete [5,12,13]. In the carbonation reaction, Ca(OH)2 is consumed and Ca2+ and hy-
droxyl ions are released. The CaCO3 content increases as long as there is availability of
portlandite and calcium-silicate hydrates to react with CO2 [14].

The propagation of CO2 into concrete is a complex mechanism. After the development
of a thin layer of carbonated concrete on the surface exposed to the atmosphere, the further
propagation of CO2 is hindered by the less porous carbonated layer. Therefore, CO2
propagation does not occur at a constant rate, since concrete is a heterogeneous material
and also due to the densified carbonated surface zone, which becomes thicker over time.
Therefore, the carbonation depth increases linearly with the square root of reaction time,
since the cementitious products carbonation rate is influenced by CO2 diffusion [14–16].

Cementitious matrices capture CO2 throughout their life cycle. Several factors influ-
ence the propagation of CO2 into the concrete. The main aspects are the moisture content
and the permeability of concrete, the content of pozzolanic material, the CO2 concentration
and the time of exposure [17–20]. CO2 uptake capacity of cementitious materials depends
on internal and external factors. Internal characteristics refer to the cement type, water to
binder ratio, chemical composition and porosity. The carbonation rate is also related to the
compressive strength of the cementitious product [21]. Higher carbon dioxide uptake for
lower compressive strength and higher water to binder ratio leads to higher porosity, which
can promote better CO2 diffusion and achieve higher carbonation efficiency [22–25]. The
carbonation rate also increases with the increase in limestone content and the introduction
of filler in the cement [26].

External factors are related to the exposure environment: humidity, temperature,
pressure and CO2 concentration [27–30]. Therefore, the natural carbonation process occurs
slowly over the years, since carbon dioxide concentration in the atmosphere is about
0.03–0.04% [31].

The cementitious carbonation process has been deeply investigated and the carbona-
tion reactions are well known. However, carbonation rate is still unexplained due to many
complex factors [32].

Natural CO2 exposure environmental conditions are difficult to reproduce, due to it
being a very slow process. Exposure conditions are constantly changing, along with the
gases present in the atmosphere and their percentages ratio. Thus, accelerated carbonation
may not reflect exactly the reality, however a good approximation can be achieved.

Forced and accelerated carbonation are carried out under controlled conditions such
as in enclosed chambers and CO2 diffusion is well distributed on the whole surface of
concrete [33]. Different parameters can be applied in lab-scale, such as gas pressure,
temperature, relative humidity and CO2 concentration. However, since many variables
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cannot be controlled and assimilated to in situ natural CO2 exposure, especially those
related to time, evaluating the carbonation rate and degree of concrete during its service
life is complex.

In artificial accelerated forced carbonation, it is possible to control CO2 concentration
and increase the carbonation rate of the concrete structures by exposing them to higher
CO2 concentrations than the natural concentration in the atmosphere [34,35]. However,
the increment of CO2 should not be higher than 20% of CO2 due to pore clogging, which
affects CO2 diffusion [36–38].

The carbonation process is also influenced by CO2 concentration and by the Ca(OH)2
and calcium-silicate hydrate (C-S-H) contents, but the carbonation of these compounds
does not occur simultaneously [33,39,40]. Portlandite (Ca(OH)2) consists of about 20–25%
hydrated Portland cement and it is well known that the expose areas carbonate readily [41].
In the studies of Han et al. [42], calcite content increased when Ca(OH)2 crystals were
exposed to CO2. The carbonation occurs by nucleation of CaCO3 on the portlandite
surface and this calcite layer formed surrounding the portlandite reduces the in-depth
carbonation rate. The carbonation of cementitious materials decreases their total porosity
due to CaCO3 precipitation and the formation of a CaCO3 layer covering the surface
of Ca(OH)2 may hinder further carbonation of portlandite [41]. On the contrary, C-S-H
exposed to CO2 experiences a reduction in volume, since calcium ions are released due to
decalcification, which contributes to the development of a larger pore structure in a process
of decalcification-polymerization of the C-S-H, forming an amorphous silica gel [43].

Liu and Meng [22] described the carbonation steps of cementitious products. The
initial phase of carbonation is the transportation and dissolution of CO2, which releases
carbonate ions. Then, Ca2+ released in the pores of cement reacts with the cement-hydrated
products. This reaction results in calcium carbonate (CaCO3).

Peter et al. [44] indicate that the C-S-H phases start to carbonate as soon as calcium
hydroxide stops being available for reaction. At this stage, even though some calcium
hydroxide content can still exist, the CO2 gas does not reach it via diffusion; it needs
previous solubilization. Another reaction can still occur simultaneously to carbonation:
the hydration of concrete. More specifically, C2S (dicalcium silicate) and C3S (tricalcium
silicate) react with water (key element for carbonation) to form more calcium hydroxide
and C-S-H. Therefore, the reactions occur in this order: first, the carbonation of calcium
hydroxide, then, the carbonation of the other compounds, namely C-S-H, and finally the
hydration of cement. All these reactions compete for CO2. In terms of consumption, calcium
hydroxide consumes the most of CO2, about three times more the amount consumed for
C-S-H carbonation.

Therefore, the increment of CaCO3 content is not only due to the carbonation of
Ca(OH)2, but also of other cement hydrates (i.e., calcium silicate hydroxide and calcium
aluminate hydroxide) that can also carbonate [45], as already mentioned. CaCO3 is formed
due the Ca2+ and CO2 through the dissolution of calcium hydroxide and the decalcification
of C-S-H [5]. Other hydrated cement phases such as ettringite and Ca-Al-Fe monosulfates
are also decomposed by carbonation forming CaCO3 [15].

Despite water as a fundamental key in the process of carbonation, there is also water
formed during some carbonation reactions, which may have a negative effect. This formed
water may block the pores, which prevents CO2 diffusion, and, consequently, decreases the
carbonation rate. During the process of natural carbonation three polymorphs of calcium
carbonate are formed, namely calcite, aragonite and vaterite. Under natural conditions,
carbonation of the cementitious products is a very slow process. Therefore, to investigate
the CO2 uptake of the cement-based materials over time, the CO2 concentration in the
environment should be increased. In order to simulate the carbonation during its service life
it is necessary to accelerate and force the carbonation [20,46]. However, during accelerated
forced carbonation only calcite is formed [47].
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The following Equations (Equations (1)–(9)) represent the main reactions that occur
during carbonation.

CaO + H2O→ Ca(OH)2 (Calcium hydroxide) (1)

H2O + CO2 → H2CO3 (Carbonic acid) (2)

Ca(OH)2 + CO2 → CaCO3 + H2O (Calcium Carbonate) (3)

H2CO3 + Ca(OH)2 → CaCO3 + 2H2O (4)

C-S-H + CO2 → CaCO3 + SiO2·αH2O (5)

CaO·Al2O3.CaSO4·H2O + CO2 + H2O→ CaCO3 + CaSO4·H2O + Al2O3·H2O + H2O (6)

3CaO·Al2O3·CaSO4·32H2O+ 32H2CO3 (ettringite)→ 3CaCO3 + 2Al2(OH)3 + 3CaSO4·2H2O + 23H2O (7)

3CaO·SiO2 + 3CO2 + nH2O→ CaCO3 + SiO2 + nH2O + 3CaCO3 (8)

2CaO·SiO2 + 2CO2 + nH2O→ CaCO3 + SiO2 + nH2O + 3CaCO3 (9)

3. Uptake of CO2 Emissions by Carbonation of Concrete and Other Cementitious
Products: Quantification

Cementitious materials are subjected to carbonation during their life cycle. However,
the carbonation kinetics are still under investigation [48]. In fact, it is well known that
cementitious materials indeed carbonate, but the question is how fast they will carbon-
ate [48]. The carbonation process is related to exposure time and surface. The surfaces of
cementitious materials in direct contact with CO2 carbonate promptly, but the carbonation
of the interior is slower since the carbonation creates a thin layer that hinders the diffusion
of CO2. The transport mechanism of carbon dioxide through the already carbonated layer
is difficult and depends on the CO2 content, the type of binder, temperature, pressure and
porosity. The carbonation rate slows down with the square root of time [16]. In general,
concrete structural buildings are designed to last 50 years without considerable rehabil-
itation interventions and civil engineering structures are designed to have a lifetime of
100 years. Therefore, it is expected that the demolition of most buildings occurs within
100 years. After concrete is demolished, the carbonation process considerably increases due
to the larger uncarbonated exposure surfaces and to the much lower volume of concrete
pieces. Therefore, CO2 uptake and the carbonation rate drastically increase [48], following
the surface carbonation reactions which are influenced by the thickness of the cement paste
and considering that the carbonation rate reduces with the square root of time.

Guo et al. [49] studied the global CO2 uptake by cementitious elements from 1930 to 2019.
The authors estimated that 52% of CO2 from the corresponding process fabrication of clinker
had been absorbed and sequestered in cementitious products that had been produced
between 1930 and 2019. Mortars are considered the most significant contributor of the total
uptake, contributing to approximately 58% of the estimated CO2 sequestration.

In order to quantify CO2 uptake the time frame for calculation has to be considered, as
well as the use of concrete over time, the end uses of concrete in different types of structures
and cement-based products, the amount of concrete/cement used in the different end
uses, surface area of the different products and structure details related to the amount of
concrete/cement, the exposure environments for the different surfaces and the speed of
carbonation (k-value) for different concrete qualities and concrete with different types of
cement and in different environments [21]. Table 1 presents the maximum amount of CO2
that different cements can absorb. It was observed that the CO2 uptake capacity is related to
the clinker content of the cements. CEM I with 95% of clinker presents the highest amount
of carbon dioxide capture.
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Table 1. Maximum amount of carbon dioxide that different EN 197-1 cement can absorb, adapted
from Sanjuán et al. [21].

Types Type Name Notification Clinker
CO2,max

kg CO2/kg Cement

CEM I Portland cement CEM I 95–100 0.49

CEM II

Portland slag cement CEM II/A-S 80–88 0.41–0.48
CEM II/B-S 65–79 0.34–0.41

Portland silica fume cement CEM II/A-D 90–94 0.46–0.48

Portland pozzolana cement

CEM II/A-P 80–94 0.41–0.48
CEM II/B-P 65–79 0.34–0.41
CEM II/A-Q 80–94 0.41–0.48
CEM II/B-Q 65–79 0.34–0.41

Portland fly ash cement

CEM II/A-V 80–94 0.41–0.48
CEM II/B-V 65–79 0.34–0.41
CEM II/A-W 80–94 0.41–0.48
CEM II/B-W 64–79 0.34–0.41

Portland burnt shale cement
CEM II/A-T 80–94 0.41–0.48
CEM II/B-T 65–79 0.34–0.41

Portland limestone cement

CEM II/A-L 80–94 0.41–0.48
CEM II/B-L 65–79 0.34–0.41

CEM II/A-LL 80–94 0.41–0.48
CEM II/B-LL 65–79 0.34–0.41

Portland composite cement CEM II/A-M 80–88 0.41–0.48
CEM II/B-M 65–79 0.34–0.41

CEM III Blast furnace cement
CEM III/A 35–64 0.18–0.33
CEM III/B 20–34 0.10–0.18
CEM III/C 5–19 0.03–0.10

CEM IV Pozzolanic cement
CEM IV/A 65–89 0.34–0.46
CEM IV/B 45–64 0.23–0.33

CEM V Composite cement CEM V/A 40–64 0.21–0.33
CEM V/B 20–38 0.10–0.20

Therefore, the amount of Ca(OH)2 in the cement influences the carbonation reactions.
Since other types of cement can replace clinkers with additives, the material that can
carbonate is lesser than the Ordinary Portland Cement, thus the reabsorption of CO2
is lower. On the other hand, blended concrete carbonates faster than the concrete with
only cement, since it presents less Ca(OH)2 available [50]. Lagerblad [48] also relates this
increment in the carbonation rate of concrete with cement and supplementary materials to
the decrease in content of portlandite and hydration products that can be carbonated. Pade
and Guimarães [8] highlighted that the use of other types of cement may affect CO2 uptake,
since, for instance, in CEM II, an amount of clinker content is replaced by limestone, which
accelerates the carbonation rate. Indeed, the addition of fly ash, slag, metakaolin or silica
fume also increases the carbonation rates due to the higher porosity of concrete, which
presents greater CO2 penetration, and, consequently, faster carbonation. The replacement
of cement by supplementary cementitious materials or fillers reduces the hydration rate
and leads to an increase in permeability, which enhances CO2 diffusion at early ages [22,51].

A fixed conservative value was considered in order to estimate the amount of carbon
dioxide absorbed during the service life of cementitious materials by Sanjuán et al. [21].
The authors established that 15% or 20% of CO2 emissions during the cement manufac-
turing is reabsorbed by the cementitious elements during their service life. According to
Sanjuán et al. [21], the total amount of carbon dioxide that can be absorbed by concretes
and mortars made with Portuguese cements, consumed from 2005 to 2015, was quantified
until the year 2100, and the results indicate that the total carbon dioxide uptake is, on
average, 14.8% to 19.6% of the total CO2 emissions.
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Xi et al. [52] investigated the CO2 uptake of cement materials during their service life,
demolition and secondary use of concrete waste between 1930 and 2013, using an analytical
model. The authors estimated the exposed surface area, thickness and time. On average,
during their service life, concrete structures can absorb around 16% of the initial emissions.
In short, it is observed that the total CO2 emissions are 68% from concrete production
and 27% from mortars. Regarding the CO2 uptake of all the cementitious products, it is
estimated that 43% of the emitted CO2 is sequestered and that according to Xi et al. [52],
60% of this corresponds to CO2 uptake only by mortars.

Pade and Guimaraes [8] developed a methodology to estimate CO2 uptake in the
life cycle of concrete from the Nordic countries, namely Denmark, Iceland, Norway and
Sweden in 2003. The results show that the concrete produced in this year can uptake,
during its service life and after demolition, on the whole, over 100 years, around 40% of the
CO2 emitted due to clinker production.

The authors considered a period of service life for concrete structures of 70 years,
and additionally 30 years after demolition. The calculation of CO2 uptake considered the
rate of carbonation and the stability of hydrated products. Additionally, the authors also
took into account the strength classes, cement contents and exposed surface area of the
concrete structures. The estimated carbonation rate was calculated considering CEM I
cement type [8].

Felix and Possan [53] also analysed the balance emissions of CO2 in concrete structures
through cement produced and CO2 sequestration during the concrete life cycle. The authors
stressed that the carbonation of non-reinforced concrete elements is beneficial, since it may
compensate for the CO2 generated in cement production. In conclusion, CO2 uptake is
linked to the type of cement used. Concerning the balance of CO2 emissions, concrete
with blended cement consuming around 400 kg/m3 captures approximately 90% of CO2
emitted during its production, considering the lifetime and post-demolition.

Possan et al. [27] investigated CO2 absorption by a concrete dam structure located in
Brazil (Itaipu), considered one of the largest engineering projects of the world and built
without reinforcement. The authors concluded that considering a period of almost 40 years
in service, the concrete structure captured approximately 14,000 tons of CO2. This study
also verified that the environment and moisture conditions are significant influencing
factors, in addition to the strength of the concrete. CO2 diffusion is very slow at high and
low relative humidity [54], since, in saturated conditions, the pores are filled with water and
block CO2 penetration, whereas a dry cementitious matrix does not present enough water
for carbonations reactions [55]. It is also important to bear in mind that high temperatures
speed up the carbonation of concrete [56].

Jacobsen and Jahren [57] estimate that 16% of CO2 emitted due to clinker production
is reabsorbed by concrete during its service life of 70 years in Norway. Lee et al. [58]
reported a CO2 uptake of 2.9% by the cementitious structures over a service life of 20 years.
In the studies of Gajda [54,59], it is estimated that an average concrete construction in
the United States may absorb approximately 2.1 million metric tons of carbon dioxide
in 100 years after construction, which corresponds to 7.6% of CO2 emissions in cement
production for this country. The authors assumed for each concrete element, defined mix
design proportions, thickness and area of exposure surface. These studies concluded that
all the concrete from 1950 to 2000s in the United States absorbed about 70 million metric
tons of atmospheric CO2.

Andrade et al. [60] updated the calculation of carbon storage capacity of Spanish
cements. The results showed that cement products in service absorbed 10.8–11.2% of the
calcination emissions, considering the surface exposed area and the volume of the ele-
ment. The authors verified that the highest CO2 uptake occurred in unsheltered rainwater
conditions and the smallest CO2 absorption was for indoor conditions.

The CO2 uptake of a specific building in South Korea was carried out by Yang et al. [61].
The authors calculated that the concrete structure could reabsorb between 5.5% and 5.7%
of CO2 during its service life and after being demolished, it could present a CO2 uptake of
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10 to 12%. In short, this CO2 uptake corresponds to 18–21% of the CO2 emissions from the
cement Portland production.

AzariJafari et al. [62] estimated the CO2 uptake of concrete in the US pavement
network. The authors calculated that up to 5.8 million metric tons (Mt) of CO2 is sequestered
by the pavement during its service life and end-of-life. It is important to highlight that
all the studies depend on the adopted methodology and assumptions by each researcher,
which makes it difficult to compare the results. The results from the literature differ by
several factors in concrete carbonation, namely strength, exposure environment conditions,
cement type and content, age of the structure, etc. Nonetheless, all the studies show that
CO2 uptake by the natural carbonation of cementitious products during their service life
exists and partially compensates for the greenhouse gas emissions of cement production.
The calculation of CO2 reabsorption also depends on the considered time for a service life
of a construction product and if it takes into account the carbonation of concrete element
after demolition.

The type of cement element is also an important factor to be considered in order to
quantify carbon storage capacity [63]. Table 2 synthesizes the CO2 uptake of buildings’
concrete quantified by previous works; bearing in mind that the calculations refer to
different regions and lifetime of the constructions.

Table 2. Cumulative CO2 uptake of cementitious’ products by previous researchers.

CO2 Cumulative UPTAKE of
Building Concretes

Service Life Considered
in Years References

16% 40 Kim and Chae [64]
19%

70
Jacobsen and Jahren [57]

43% Xi et al. [52]
55% 90 Guo et al. [49]

18–21%

100

Yang et al. [61]
24% Sanjuán et al. [21]
38% Gajda and Miller [54]
40% Pade and Guimaraes [8]

Therefore, most authors estimated that when considering the elements of all concretes
during their service life reveals a CO2 uptake between 16 and 32% of the total emissions
from cement production. However, regarding cement elements as mortars, the authors
verified that this CO2 absorption is much higher than the buildings’ concretes. Xi et al. [52]
reported that mortars can absorb an average of 97.9% of the annual initial emissions during
their service life. This is due to the high exposure area and thin layers, which contribute
to CO2 uptake in short periods, in addition to a higher permeability than concrete. In the
study of Sanjuán et al. [21], it is also assumed that a full carbonation in mortars is achieved
after 10–15 years of service. Mortars carbonate faster than civil works concrete due to the
larger exposed surface area and higher porosity.

From the literature, it can be noted that to estimate CO2 uptake through carbonation of
the concrete during its lifetime depends on several factors. However, it is gaining consensus
that CO2 absorption of concrete elements should be taken into account in its life cycle, in
order to partially offset the impact of its production. The size and exposure conditions
of the concrete elements are the most determining factors. Cementitious elements with a
larger surface/volume ratio, are more prone to carbonate, i.e., mortars. The external factors
such as humidity and temperature may influence carbonation. Overall, it is stated that the
concrete elements indicate CO2 uptake potential not only during their service life, but also
after demolition.

4. Carbonation of Recycled Aggregates

The use of recycled aggregates (RA) from construction and demolition waste
(CDW), as replacement for natural aggregates (NA), has been considered as one of the
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most effective approaches for recycling and contributes to greater sustainability [65,66].
Moreover, CDW may have potential to capture and store CO2 due to its alkalinity, to
hydroxides and calcium and magnesium silicates available and the larger exposure
surface area [1,2,49,67] in comparison with built structures. In general, the carbonation
of concrete is limited to a relatively thin layer near the exposed surface due to the fact
that the carbonated layer reduces CO2 diffusion. Therefore, CO2 uptake of concrete
during service life calculations, previously mentioned, indicate that it still presents high
carbonation potential when it is demolished [36,68–70]. The crushed CDW presents
a large source of non-carbonated old concrete, which contributes to the increase in
carbonate minerals. The CO2 uptake significantly increases after the demolition of
concrete [23]. Furthermore, CO2 sequestration can improve the quality of CDW [2,5,71],
since this rapid carbonation increases the particle density and strength and decreases the
water absorption [67,72,73]. Pamenter and Myers [74] highlighted that the CO2 uptake
of the cementitious elements after the end-of-life depends on how the CDW is processed;
if these materials are deposited in landfill, their CO2 absorption is lower than those
crushed and recycled.

The particle size of the RA is an influencing factor in the rate of carbonation. The
CO2 uptake in CDW significantly increases for smaller particle sizes due to the higher
specific exposure area of CO2 [4,45,55,75–77]. In the study of Ueno et al. [70] the smaller
particles captured more CO2 during exposure than the coarser ones. Another influencing
aspect is the preparation conditions of RA before carbonation: dried or wetted and
dried. Kikuchi and Kuroda [45] reported that the CDW carbonated faster when it was
alternatively wetted and dried, since the wetting initiates the dissolution of Ca(OH)2
and drying allows the diffusion of the CO2 solution, increasing the carbonation rate.
Zhan et al. [55] optimized the moisture of CDW before carbonation by soaking it in water
for 2 h, thus increasing the carbonation percentage.

Nedunuri et al. [68] analysed the carbonation potential of the recycled concrete
fines at different ages. Concrete CDW were collected at ages of 1, 4, 25, 35 and 60 years
of the building at the time of demolition. The CDW was collected immediately from the
demolished site, and then crushed, stored and protected from the air environment. The
results indicate that in all samples, carbonated phases such as calcite, vaterite and arago-
nite were present. Portlandite was not observed in the samples over 4 years old, which
is probably due to the carbonation reactions that occurred before and have consumed
all the available Ca(OH)2. The carbonation potential of CDW was measured though
thermal analysis and the results showed that even though the CO2 capture depends on
the age of the concrete when demolished, all the CDW still present carbonation potential.
The authors estimated that 16–48% of CO2 emitted was captured by the concrete during
the service life of the structure. It is estimated that the CO2 uptake increases around
2.4 times when the concrete structure is demolished [8]. Dodoo et al. [56] estimated that
nearly 50% of CO2 emissions are captured by concrete after being crushed and exposed
for one year.

Pade and Guimaraes [8] analysed the CO2 uptake of four different Nordic countries.
The authors found out that in the countries where the demolished concrete is crushed,
the carbonated rate significantly increases when compared to the countries that place the
demolished concrete in a landfill, since the crushing process rapidly increases the surface
area of the recycled concrete. The CO2 uptake increase after demolition is between
30 and 50% during thirty years.

Several studies have quantified the CO2 uptake of CDW. In the work of Kikuchi
and Kuroda [45], it was reported that 1 ton of recycled crushed stone could take
up 11 kg of CO2, while Xuan et al. [4] verified that 1 ton of RA from CDW seques-
trated about 8 kg of CO2. Other studies analysed the CO2 uptake by recycled con-
crete aggregates [67,72,78,79]. The results indicate that CO2 uptake was faster for
thinner particles.
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Mazurana et al. [80] investigated CO2 uptake by rendering mortars produced with
recycled aggregates from CDW. The authors verified that the full replacement of nat-
ural sand by RA increased the CO2 capture up to 57% of the cementitious element.
Andrade et al. [81] also studied the CO2 uptake of mortars with replacement of recycled
aggregates. The results showed that for the mortars with RA the CO2 sequestration
increased when increasing the RA content, since RA present higher alkalinity com-
pared to the natural ones and modified mortars are also more porous, which facilitates
CO2 penetration.

In summary, CO2 sequestration through CDW has been found to be a promising
solution to reduce the emission of greenhouse gases and achieve a better CO2 balance
cycle for cement and construction industries. The use of carbon dioxide capture and
storage techniques in the cement sector is necessary to maintain CO2 emissions at a
low rate.

5. Conclusions

From this review, the following conclusions can be drawn:

- In terms of the CO2 capture capacity of the concrete structures in service, it is
necessary to take into consideration several influencing factors, including concrete
permeability, type of cement, water to binder ratio, CO2 concentration and time
and environment of exposure. Therefore, it can be expected that concretes pro-
duced with blended cements have a higher carbonation rate than Portland cement.
Moreover, concretes with a higher porosity present greater CO2 penetration, thus
faster carbonation. Relative humidity should be around 50–60% to increase the
natural carbonation rate of the concrete. The studies analysed concretes with com-
pressive strengths between 15 and 35 MPa and showed that concrete with a lower
compressive strength increased the natural carbonation rate.

- In general, it is reported by several studies that around 19–55% of the CO2 emitted is
captured by the cementitious elements. The type of cementitious element is also an
influencing aspect, since rendering mortars present a higher CO2 uptake than civil
works and building concretes, due to the larger surface exposed to the environment
and to higher porosity. Even though the mortars consume approximately only 30%
of all the cement produced, they sequestrate around 60% of the CO2 captured by
the cementitious materials.

- Regarding the CO2 capture of CDW aggregates, it has been reported that the car-
bonation rate of demolished concrete is faster than during service life, since after
demolition, the exposed surface drastically increases. Concrete after demolition
can increase CO2 uptake by up to 50% in comparison with the structures in service.
Influencing factors such as particle size, cement content and relative humidity affect
the carbonation. Thinner recycled aggregates carbonate faster than the others. The
age of the building at demolition time is also important, since old constructions
are prone to be more carbonated. The time that the recycled aggregate has been
stockpiling also increases the carbonation percentage, since the more time the CDW
is in contact with the air, the more fully carbonated the particle will be. Generally,
considering several studies, recycled concrete aggregate from demolition captures
about 10 kg of CO2 per 1 ton of waste.

Overall, the CO2 uptake of cementitious structures in service and post-demolition
is influenced by several factors. However, the carbonation potential can partially com-
pensate the carbon dioxide emissions of clinker production, released by the calcination
process and energy usage attributed to manufacturing. Even though it seems difficult to
quantify the amount of CO2 reabsorbed by cement products, there are some approaches
that allow this quantification over time. Cementitious products uptake CO2 during their
service life; however, this uptake considerably increases after demolition; published
results indicate an increase of up to 50%. Thus, the potential of CO2 capture of cemen-
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titious elements after demolition should be used by the industry in order to reduce its
carbon footprint.
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