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Abstract: Growing demand for road infrastructures and accompanying environmental footprint calls
for the replacement of pavement materials with recycled options. The complexities in real-world
usability are dependent upon project-specific characteristics and are affected by budgetary constraints
of local governmental agencies, material applicability, and climatical conditions. This study conducts
a comprehensive lifecycle cost analysis (LCCA) of an urban highway section “E10” in the hot Middle
Eastern climate of Abu Dhabi, where virgin asphalt usage is dominant, using actual cost data under
multiple scenarios and recycled construction waste (RCW) usage across aggregate layers and recycled
asphalt pavement (RAP) across wearing, binder, and asphalt base courses. Blast furnace slag as
partial cement replacement for road concrete works is also analysed. Impacts across all lifecycle
stages from initial earthworks and construction to routine maintenance and operation were compared.
Results found that cost of sustainable construction is lower. Cost reduction was highest for RAP
and RCW usage, particularly when the usage was accumulated. The optimum cost scenario used
25% RCW in the sub-base, 80% RCW in the unbound base, 25% warm-mix asphalt (WMA) RAP in
the asphalt base, 15% warm-mix RAP in the binder and wearing courses, and 65% slag for concrete
roadworks and resulted in USD 2.6 million (15%) cost reduction over 30 years from 2015 to 2045.

Keywords: lifecycle cost analysis; highways; scenario analyses; granulated blast furnace slag; recycled
asphalt pavements

1. Introduction

Roads are a critical part of urban settlements, and their construction, maintenance,
and rehabilitation (M&R) activities are often assessed by the extent of the capital available
for execution, while public agencies base it on the cost of raising capital against meeting the
public road demand trade-off, exemplified by municipal transport agencies in the study by
Rahman and Vanier [1]. International Road Forum [2] notes that the construction, opera-
tion, and M&R of pavements alone constitute a global investment of USD 400 billion per
annum. Increasing global focus on sustainability implementation for road and pavement
works has shifted the debate from just cost–benefit analyses to performance across the
overall sustainability triple-bottom-line cost ( environmental and social factors), with the
environmental parameter given considerably higher weight by experts, but this has yet
to reach large-scale application because of lack of accompanying economic analyses [3,4].
On the industry side, pavement works still begin initially with the economic feasibility
of the construction endeavour and then the cost evaluation of alternate options. Thus, a
detailed cost assessment of recycled/greener pavement materials using real-world data
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from large-scale worldwide projects is still needed when promoting practical applications
because of their influence on the successful management of road transport assets [5,6].

In a study by Rahman and Vanier [1] surveying owners and managers on the man-
agement practices involved in Canadian infrastructures, it was found that the majority
of the respondents (91%) asserted the need for a decision-support tool for infrastructure
asset management, whereas 70% identified lifecycle cost analysis (LCCA) as an effective
tool to ensure timely maintenance. The studies conducted on the potential application
of LCCA generally focus on the design phase; however, its application during construc-
tion and maintenance phases has also been researched. LCCA can be implemented as
a standalone process without its complementary component of lifecycle analysis (LCA), an
environmental and social aspect assessment approach discussed in pavement research [7,8].

However, the practical usage of LCCA beyond research is dependent upon addressing
uncertainty in collected data as well as the need for an easy to use “knowledge-based
dataset”. The identified LCCA models need uncertainty and reliability evaluations beyond
the feasibility phase toward identifying the optimal decision based on durability, func-
tionality, and economic efficiency. Probabilistic and deterministic LCCAs are examples
of traditional LCCA models; where the former approach acknowledges the uncertainties
in the values of input variables in terms of probability distributions, the latter disregards
them in favour of deterministic input variables [9,10].

Frameworks based upon probability powered LCCA performance, durability, and
cost parameters have been proposed to varying degrees of success within the domain
of infrastructure design and management [1,11–16], and the limitations of probabilistic
analysis during infrastructure investment decision making have also been recognised. For
example, Walls and Smith [11] highlight that in order to compensate for the deterministic
inputs provided for various parameters in an LCCA model, the impact of the variability of
the values on the obtained results is assessed through sensitivity analysis which might fail
to acknowledge certain aspects of uncertainties that can be critical and, therefore, affect the
“trueness” of the alternative with the lowest LCC.

On the other hand, in an effort to reduce the considerable environmental footprint
associated with the usage of virgin materials in the construction and M&R of roadworks
and pavements, recycled asphalt pavement (RAP), warm-mix asphalt (WMA), and other
alternate material options for asphalt and concrete works have been explored [17,18]. These
studies [18–21] have indicated that recycled and alternate material production technology
usage has shown a significant drop in energy consumption and global warming potential
of road construction and rehabilitation projects without comprising the durability and
structural performance of pavements. Other studies [22] have noted that adding stabilised
crumb rubber in RAP-based asphalt pavements provides adequate structural performance
and durability by up to 50% RAP content. Thus, the use of recycled or alternate mate-
rials offers an opportunity to reduce the overall environmental burden of construction
endeavours without compromising structural performance. However, because of the lack
of comprehensive assessment methodology across all pavement components, including
pavement cross sections and roadside concrete works (foundations for road lights, carriage-
way barriers, curbs, etc.), an environmentally optimal pavement alternative might not be
identifiable [3,23].

Conversely, assessing environmental needs from a comprehensive approach merits
different alternatives; the decisive criteria are usually based on the initial economic (design–
build) and other client-end cost factors. Waheed et al. [24] proposed that the costs occurring
at various stages in the lifecycle of any road transport system project are a vital part of
the design and management process to assess all the probable costs occurring within its
expected service life. If the operational and long-term costs are neglected while selecting
an option, the chosen alternative may have a lower upfront cost but can be more expensive
over the life cycle of a civil engineering structure. The issue is more prevalent in regions and
large-scale road pavement projects where the lack of accurate data collection from primary
data sources and verification of the quality of the collected data for an LCCA evaluation may
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influence the reliability of results. Additionally, the existing research on pavement LCCA,
as covered above, had only focused on a limited number of components of a pavement by
assessing either the cross section, surface/wearing courses, or structural members. Some
studies only focused on the deterioration and M&R of roads and pavements.

In the current study, based on the pavement LCA literature on the different envi-
ronmental impacts reducing the alternate pavement cases, a holistic LCCA methodology
is presented, which analyses the cost benefits of alternate materials for pavement cross-
section (RAP and WMA) and road concrete works (ground granulated blast furnace slag or
GGBFS) in a unified assessment approach for the entire pavement lifecycle. A case study
large-scale pavement project from Abu Dhabi city in the United Arab Emirates (UAE) is
selected. Over the last two decades, the region has seen unprecedented growth with the
commencement of ambitious infrastructure development projects with multi-million-dollar
high-profile road projects constantly being constructed. There have been some studies
analysing the lifecycle environmental impact of using recycled or alternate materials for
roadworks [7,25]; however, the feasibility evaluation of these solutions remains limited
from a cost perspective.

In the UAE, road projects are valued at USD 122.6 billion [26]. To support its antici-
pated economic growth, the country is expected to spend another USD 354 billion from 2019
to 2038 for developing roads and other infrastructures, representing an annual expenditure
of approximately USD 18 billion [27]. However, a study [28] on infrastructure projects in
Abu Dhabi found average cost overruns of approximately USD 10 million (adjusted for
inflation). The study identified improper estimation and lack of LCCA approach as the
main reason for cost overruns due to unfamiliarity with lifecycle costs, which provides
an evaluation opportunity that has been explored in this study. To that end, this study
applied the LCCA methodology for calculating the cost of recycled materials against the
conventional materials approach for roadworks, including pavement cross section and
roadside concrete works. Actual field data for the road section using virgin materials and
traditional asphalt production mix for pavement works and Portland cement concrete for
the complete concrete works are used as the baseline “B1” case. For sub-base and base
courses, virgin unbound granular aggregates are used; virgin HMA asphalt concrete is used
in the second base course and binder and wearing courses. Additionally, HMA emulsion
prime coat on top of the u-base course and tack coat on top of the asphalt base course and
asphalt binder course at a rate of 0.5 kg/m2 are also applied on the case study road section
as the baseline case. The impact of using RAP and WMA, recycled construction waste
(RCW), and GGBFS is then analysed as alternate cases.

The input material and unit cost dataset were coordinated with the relevant local
government agencies and the local material suppliers in the case study location to determine
the initial agency costs for both approaches (virgin and recycled materials), including the
cost of initial designs, rental of equipment and vehicles for site work, and labour costs. The
proposed methodology can then be extended to alternate pavement materials assessment
for any road transport system decision-making process using the developed decision criteria
based on the potential initial economic, discounted operation, maintenance, and end-of-life
(EOL) costs. It can also serve as a potential case study for launching an investigation into
the real-world cost of implementing sustainable practices and materials for roadworks
in developing countries where a large percentage of projects still rely on conventional
materials for construction projects [7].

2. Methodology
2.1. Goal and Scope

This research is based on the asset management case study of actual roadworks in the
UAE and aims to focus on two aspects: initial construction of a pavement and lifecycle
management of the built asset after procurement of new projects. LCCA approach is
applied for this purpose to calculate the environmental impacts of a 3.5 km-long asphalt
dual carriageway section case study in Abu Dhabi, shown in Figure 1.
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Figure 1. Case study of the asphalt pavement section.

System Boundary, Alternate Scenarios, and Lifecycle Inventory

According to ISO 14040 guidelines for estimating lifecycle impacts, the system bound-
ary of this study is extended across all lifecycle stages, starting from preconstruction
activities. The following lifecycle stages are considered: raw material extraction and pro-
cessing, material and equipment transport to the construction site, initial construction,
routine maintenance, and rehabilitation after every five years by milling and repaving.
Wearing course (<4.5 cm depth) is analysed assuming a 30-year lifetime. In this study,
a regular mill and inlay every five years for the top 4.5 cm of wearing course have been
considered based on the actual field practice and consultation with the local experts. This
periodic mill and inlay of top layers of the wearing course, in addition to the minor sur-
ficial repairs, is a commonly recommended practice in many parts of the world for high
traffic and major roads/highways due to rutting (~3.5 cm deep) and fatigue, etc. For
example, Giani et al. [29] chose a periodic five-year mill and inlay of wearing course,
Scheving [30] proposed a 5–6-year periodic mill and inlay of 4.5 cm of wearing course with
AADT ≥ 12,000 (case study has same traffic level), and Celauro et al. [31] evaluated periodic
four-year mill and inlay of wearing course as a cost-environment-technical balanced option.
The lifecycles assumed in these studies and others for the pavement section facing similar
daily traffic are 30 years [29], 50 years [32], and 100 years [33], which is similar to or longer
than the pavement lifetime assumed in the current study (30 years). Similar to these studies
and the expert practices in the case study region, major rehabilitation or extension work is
assumed at the end of the 30-year lifecycle.

The base year selected is 2015, as per the most recent cost and construction data for the
selected road project. The operation and usage stage costs of vehicles are not modelled as
they are usually attributed to the road users and vehicle usage [34] and are dependent on
large-scale policies related to traffic management and user mode choice behaviour [35,36].
Routine maintenance, minor pavement patchworks, and wear-and-tear costs are modelled
as part of the M&R costs. Similarly, the EOL stage is not modelled because of the lack of
data, and it can also be reasonably assumed that the salvage value could be offset at the
EOL by replacement costs by adopting a conservative approach. Figure 2 illustrates the
modelled system boundary for this study.

In the virgin material-based scenario, virgin crushed stone and sand sub-base and
unbound-base courses, virgin hot-mix asphalt (HMA) base, binder and wearing courses, and
100% ordinary Portland cement (OPC) are used for performing the pavement and concrete
works. Different alternate material techniques are applied, as stated earlier, constituting RCW,
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RAP, and WMA for pavement cross section and GGBFS for the concrete components. The
most cost-effective alternates are then combined to create an optimum performing alternative,
and the whole lifecycle costs are then calculated for only this optimum alternative against the
virgin material-based baseline scenario to estimate the overall cost savings.

As soil courses of different strength and compaction rates may affect the performance
of the supported pavement structure, the recycled material option must carry adequate
structural strength and durability. Arulrajah et al. [37] and Arulrajah et al. [38] have
found that RCW generates adequate friction angle and compression and shear strength,
while other studies have noted their strength and stability for soil courses while carrying
a considerably lower environmental footprint [39,40]. In recycled material-based alternates,
60% replacement of virgin backfill material with RCW for earthworks, 25% replacement of
sub-base aggregates with RCW, and 80% replacement of unbound virgin aggregate for the
base course with RCW are analysed.

Figure 2. System boundary considered for the studied pavement section.

Similarly, Debbarma et al. [41] have found that pavements containing upward of 80% or
more RAP content have adequate flexural strength of 3.67 MPa and compressive strength of
27.6 MPa, while WMA mixtures have been found to exhibit higher strength and durability
values for asphalt pavements [42,43]. As such, we analysed five different scenarios containing
10–25% RAP content across pavement cross sections. Based on strength and durability studies
on GGBFS usage, ordinary Portland cement (OPC) was partially replaced by GGBFS as an
alternate cementitious material. These alternate pavement scenarios are initially tested for
the initial costs, and then the optimum cost alternates are combined to create an optimum
“alternate material scenario” or “A1”, which is then analysed against the baseline “B1” case
for the entire 30-year (2015–2045) lifecycle cost impacts. For the M&R stage, the milled RAP
content is used to replace 15% of virgin asphalt in the wearing course. Although other studies
have shown using even higher RAP content during the M&R stage, an upper limit of 15% is
applied in this study because of the lack of performance data.



CivilEng 2022, 3 321

The accuracy and transparency of the reported LCCA results for lifecycle stages of the
road network assets depend upon the proper acknowledgement of the quality and extent of
the material and unit cost data. The lifecycle inventory (LCI) is developed based on the data
procured from local material suppliers, contractors initially used for the construction, and
the local municipality (Abu Dhabi Municipality) and is shown in Table 1. It includes the
expected costs for material procurement, transport to the construction site, and construction
and the potential personnel and equipment costs (including repairs), as quoted and billed
in the lump-sum bill of quantities charged by contractors for any real-world construction
project. The future costs “Ct” occurring after “n” years are discounted to the present value
“PV” based on Equation (1) [3] to provide a more realistic and common basis for comparison
between different alternatives for costs occurring over the entire lifecycle of the pavement.
The discount rate of 5% is used [44]:

PV =
n

∑
t=0

Ct

(1 + i)t (1)
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Table 1. Lifecycle inventory for the different pavement section alternatives considered in this study 1.

Preconstruction Earthworks and Initial Construction

Backfill Component Water Sand Local Silica sand Geotextile Fabric
(Polypropylene) 20 MPa Concrete Gravel RCW Unit Cost (USD)

Virgin backfill 454.6 × 103 L 19.8 × 103 m3 13.10 × 103 m3 93,650 m2 650 m3 9100 m3 - 12,001,567
60% RCW backfill 454.6 × 103 L 19.8 × 103 m3 13.10 × 103 m3 93,650 m2 650 m3 3640 m3 5460 m3 6,820,652,699

Construction pavement stage and roadside concrete works

Pavement Courses Varied between Alternates (Material Unit: Tonnes) Crushed gravel Sand Virgin Bitumen Hydrated lime RCW RAP Unit cost (USD
per tonne)

Baseline (virgin HMA)

Granular sub-base course 448 - - - - - 0.03376
Unbound-base course 12,600 - - - - - 0.03498
4% bitumen asphalt-base course 6177 2901 384.3 144.1 - - 2.75602
4% bitumen asphalt binder course 5719 2686 355.8 133.4 - - 2.45536
4.5% bitumen asphalt wearing course 9242 4353 650.9 216.9 - - 11.42118

80% RCW u-base course Unbound-base course 10,080 - - - 2520 - 0.016220
25% sub-base, and 80% RCW
unbound-base course

Granular sub-base course 336 - - - 112 - 0.028202
Unbound-base course 10,080 - - - 2520 - 0.016220

10% RAP asphalt base, binder
and wearing courses

4% bitumen asphalt-base course 5563 2613 345.9 122.9 - 960.7 2.639400
4% bitumen asphalt binder course 5149 2419 321.2 113.8 - 889.5 2.351500
4.5% bitumen asphalt wearing course 8331 3920 585.8 183.7 - 1446 11.416232

15% RAP asphalt base, binder
and wearing courses

4% bitumen asphalt-base course 5255 2469 326.6 116.3 - 1441 2.581091
4% bitumen asphalt binder course 4865 2286 302.4 107.6 - 1334 2.299570
4.5% bitumen asphalt wearing course 7868 3703 552.5 173.6 - 2170 11.413758

25% RAP asphalt base, 15% RAP
binder and wearing courses

4% bitumen asphalt-base course 4640 2181 288.2 101.8 - 2402 2.569224
4% bitumen asphalt binder course 4865 2286 302.4 107.6 - 1334 2.299570
4.5% bitumen asphalt wearing course 7868 3703 552.5 173.6 - 2170 11.413758

Warm-mix asphalt case

Granular sub-base course 448 - - - - - 0.033760
Unbound-base course 12,600 - - - - - 0.034979
4% bitumen asphalt-base course 6177 2901 384.3 144.1 - - 2.497642
4% bitumen asphalt binder course 5719 2686 355.8 133.4 - - 2.225168
4.5% bitumen asphalt wearing course 9242 4353 650.9 216.9 - - 11.410277

25% RCW sub-base, 80% RCW
unbound-base, 25% WMA RAP
asphalt-base, 15% WMA RAP
binder and wearing courses

Granular sub-base course 336 - - - 112 - 0.028203
Unbound-base course 10,080 - - - 2520 - 0.01622
4% bitumen asphalt-base course 4640 2181 288.2 101.8 - 2402 2.328360
4% bitumen asphalt binder course 4865 2286 302.4 107.6 - 1334 2.083986
4.5% bitumen asphalt wearing course 7868 3703 552.5 173.6 - 2170 11.403551

Concrete Works Component (Material Unit: Tonnes) Clinker Gypsum Limestone GGBFS Sand Gravel Unit cost (USD)

Baseline scenario (100% OPC) 416.053 21.897 23.050 - 2090.330 2280.153 4.19946/tonne
Recycled material scenario (65% GGBFS) 216.809 11.387 - 232.806 2090.330 2280.153 4.16667/tonne
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Table 1. Cont.

Maintenance and Rehabilitation Stage Pavement and Roadside Concrete Works

Pavement Courses Varied between Alternates (Material Unit: Tonnes) Crushed gravel Sand Virgin bitumen Hydrated Lime RCW RAP Removed
RAP Unit cost (USD)

Baseline (virgin HMA)

Premaintenance surveying, site clearance and traffic control
during construction - - - - - - - 145,841/month

Pavement wearing course milling (cold planning) 4413.533 0.07293/tonne
4.5% bitumen asphalt wearing course 2820 1328 198.6 66.2 - - - 13.846/tonne

15% RAP asphalt wearing course

Premaintenance surveying and Traffic control
during construction - - - - - - - 145,841/month

Pavement wearing course milling (cold planning) 4413.533 0.0729/tonne
4.5% bitumen asphalt wearing course 2401 1130 168.6 53.0 - 662.2 - 13.4725/tonne

Concrete Works Component (Material Unit: Tonnes) Clinker Gypsum Limestone GGBFS Sand Gravel Unit cost (USD)

Baseline scenario (100% OPC) 8.321 0.438 0.461 - 41.807 45.603 4.19946/tonne
Recycled material scenario (65% GGBFS) 4.336 0.228 - 4.656 41.807 45.603 4.16667/tonne

1 Material inventory is based on local data resources [7] and data collected from the contractor and client [45] for the case study project.
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3. Results and Discussion

The lifecycle cost impact results for the applied LCCA are provided in this section.
It compares the cost performances of the different alternatives coupling the benefits of
recycled materials for earthworks, pavement aggregate, asphalt courses, and roadside
concrete works, based on strategies for improving the sustainability performance of the
case study highway section in Abu Dhabi city. It should be noted here that the cost
distributions are based on the actual project costs for the studied highway section. The road
network in Abu Dhabi, U.A.E., is highly developed [46], and the expansion towards desert
areas in the west has increased the availability of infrastructure, material supply chain, and
utilities in the desert regions [47], making the results more robust against location changes
within the region.

3.1. Distribution of Baseline Cost Impacts across Pavement Cross Section and Concrete Works

Figure 3 shows the lifecycle cost results for the section of the studied road, including
pavement cross section and the roadside concrete works (concrete curbs, barriers, and foun-
dation works for the traffic signs and lighting systems) in a concise work using a discount
rate of 5% to include the M&R costs discounted to the year 2015 values, i.e., original year of
the pavement cost data obtained from local resources; it shows that pavement cross section
costs were the highest because of their discernable contribution. For initial construction, it
contributed 88% (USD 10.75 million) to lifecycle costs, while concrete works constituted a
12% (USD 1.45 million) share.

Figure 3. LCCA results for the studied road in the baseline scenario using virgin materials for
included lifecycle stages.

During the M&R stage, 25% (USD 0.89 million) of costs came from concrete works,
while 75% (USD 0.29 million) came from pavement cross sections over the 30-year lifecycle
from 2015 to 2045. The highest costs were generated by general earthworks during initial
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construction at USD 5.0104 million which not only highlights its importance for reducing
the overall cost but also raises an important question about previous studies not including
it within the system boundary of LCCA works. Regarding pavement works, the HMA base
course (USD 2.6948 millions) and HMA wearing course (USD 1.4861 millions) construction
contributed the largest cost share.

3.2. Cost Impacts of All Recycled and Alternate Material Scenarios during Initial Road
Construction

Cost results for the initial construction activities have been provided in Figure 4. These
results show significant cost savings across all considered scenarios. For earthworks, re-
placing 60% of virgin backfill with RCW reduced construction costs by USD 0.246 million
(4.92%), while using 80% RCW for the unbound aggregate base course of pavement reduced
the construction costs by $0.236 million (4.12%), and combining RCW usage in sub-base
(at 25% replacement), and 80% in aggregate base approximately caused a reduction of
USD 0.239 million (4.16%). On the other hand, replacing 10% of virgin HMA with RAP
content exhibited a construction cost difference of only around USD 0.223 million (3.88%).
Following this, after a 15% RAP addition in the pavement HMA courses, a higher con-
struction stage cost reduction of USD 0.334 million (5.82%) was noted, which was further
escalated by the addition of 10% RAP (totalling 25%) in the HMA base course showing
a cost difference of USD 0.448 million (7.81%).

Figure 4. Comparison of cost impacts for the studied alternate material scenarios during initial
construction across pavement and concrete works components.
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However, the results from Figure 4 also illustrate that the improvement in pavement
asphalt mixing technology carries a far greater benefit than recycling pavement asphalt
content. After using virgin WMA instead of HMA across all bituminous pavement courses,
the construction cost was reduced by USD 0.494 million (8.61%). Construction costs of
the alternate material option combining the optimum performing recycled materials and
WMA for the pavement works in the 25% RCW sub-base, 80% RCW base, 25% WMA RAP
base, and 15% WMA RAP binder and wearing courses showed a significant cost reduction
of USD 1.139 million (19.85%), making it the ideal option for further evaluation across all
lifecycle stages.

Regarding the usage of GGBFS as the alternate material for roadside concrete con-
struction works, it was found from Figure 4 that to construct concrete foundations of
traffic lights and illumination systems, 65% replacement of OPC with GGBFS resulted in a
cost benefit of approximately USD 0.019 million (1.15%) and the same 65% GGBFS usage
for the concrete curbs resulted in a higher degree of cost savings at USD 0.032 million
(2.23%). These benefits are largely due to the change in raw material costs because the
cost of procuring GGBFS is considerably lower than the OPC as the former is generally
produced as industrial waste from steel and iron production. Yet, a high-cost difference
was not noted here because of the slight difference in production costs of both types of
concretes, as the supply chain in the UAE is not currently optimised for slag usage. For
example, Elchalakani et al. [48] have noted that the cost of OPC concrete production in UAE
is 0.17 USD/kg in a bulk batch-mixing plant, while 65% GGBFS concrete can be produced
at an average price of 0.16 USD/kg.

Nonetheless, the lower cost results from this study for using GGBFS-based concrete
still serve as a proof of concept for further adoption of sustainable materials for roadside
concrete works in the UAE and other countries in the developing world which largely rely
on OPC for large-scale infrastructure projects.

3.3. Reduction Potential of Cost Impacts across Lifecycle Stages for Optimum Recycled and
Alternate Materials across All Roadwork Components

The literature review conducted in this paper has argued that the application of a cost-
efficient analysis for investment decisions is not limited to the initial design and must
be extended to the management, routine maintenance, rehabilitation, and other stages of
a road section lifecycle to achieve true optimisation across all cost-related items. Following
a cost assessment of conducting and maintaining complete roadworks (including pavement
courses, roadside concrete kerbs, barriers, and foundation works for traffic signals and
lighting systems) using conventional virgin materials, the lifecycle cost was calculated for
the alternative recycled material contribution to road components constructions and M&R
stages using the cost-wise optimum performing scenario from Section 3.2, with 25% RCW
sub-base, 80% RCW base, 25% WMA RAP base, and 15% WMA RAP binder and wearing courses
for construction of pavement cross section and 65% GGBFS for the roadside concrete works.

During M&R, the baseline scenario used virgin HMA for repaving the milled wearing
course, while the alternate recycled material scenario used over 80% of the milled RAP
content to replace the virgin bituminous material, following the local guidelines and results
from previous studies [33,49,50]. The milled RAP from the pavement location is transported
to a batch-mix plant as in situ recycling is not currently available in the country, and the
results for structural performances and durability of in site recycled pavements from
developing countries are considerably limited, which might affect the extendibility of the
study results to other regions which lack such technologies for pavement works.

Figure 5 presents the results for the comparative analysis of lifecycle costs of this
alternate recycled material scenario against the currently practised baseline scenario using
100% virgin materials for all roadwork components discounted from a 30-year lifecycle to
the base year 2015 present value. It can be seen from these results that the largest share
of cost impacts was contributed by construction cost, which had an 82.7% share in the
baseline approach, and it increased to constitute an 88.2% share for the recycled material
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approach. However, this increase was offset by the reduction in routine maintenance cost,
which is based on the day-to-day minor surficial repairs of the pavement cross section and
the roadside concrete works, as it was reduced to 1.1% of the cost share for the recycled
material scenario compared with the 1.6% share in the baseline approach.

Figure 5. Cost impacts and reduction potential distribution across all lifecycle stages for complete
roadworks.

Similarly, the periodic (every five years) M&R costs also offset the cost share for the
recycled material option with a 10.7% portion claimed for the recycled material approach
compared with the 15.7% allocation for the baseline approach. Despite the changes in the
cost share of the different roadworks components, Figure 5 illustrates a considerable cost
benefit of using recycled alternate material for the studied pavement section over the entire
lifecycle as the full cost from LCCA for the baseline approach was reduced by 16% (USD
2.7 million) after using recycled pavement materials.

The majority of these cost savings were contributed by the change in lifecycle costs
for pavement cross section, with a difference of approximately USD 4.77 million between
the recycled and baseline options. This was followed by the lifecycle cost savings for
RCW-based earthworks, which were USD 0.493 million less than the virgin backfill option.
This further iterates the significance of extending the LCCA system boundary to include
the preconstruction site works and earthworks and shows the benefit of introducing
recycled materials for constructing this stage of pavement works. Utilising GGBFS for
roadside concrete works in curbs and pedestrian pavers contributed to a lifecycle cost
saving of around USD 0.069 million, while the concrete foundation works of traffic lights
and illumination systems had a cost reduction of around USD 0.042 million.
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It should be noted here that these cost reduction results are due to the lower cost of
recycled materials, particularly the high RAP content in the asphalt base course during
construction and in the wearing course during the M&R stage. However, the performance
aspects, particularly rutting resistance, moisture susceptibility, and fatigue resistance of
recycled material and virgin WMA mixes, are different from the conventional HMA option.
However, the higher RAP is only used during the maintenance stage by in-plant recycling
techniques, and only the top 4.5 cm of the wearing course is milled and recycled. The
application of WMA and RAP-based recycled options during construction and M&R stages
in the studied region here is novel, yet it has been applied in other regions in pavement
literature. For example, Harvey et al. [51], Giani, Dotelli, Brandini and Zampori [29] and
Vidal et al. [52] applied similar practices in both stages for the pavement cross section.

Considering the performance aspects of RAP and WMA mixtures, one study [42] ob-
served that irrespective of the alternate pavement design mix, stripping resistance, moisture
susceptibility, and cracking resistance were higher than conventional HMA without any
RAP content. Another study [53] found deformation resistance, fatigue and stiffness for
RAP-WMA mix to be comparable to HMA pavements. The current study builds upon these
external studies to provide a basis for using a much conservative RAP content in construc-
tion and M&R of asphalt pavements in the studied region to provide a proof-of-concept
and create precedence in terms of some cost benefits of recycled and sustainable road
construction works in the Middle Eastern region where the practice is limited. Additionally,
the environmental benefits of using recycled materials for the studied pavement section
were not captured in this study and have been previously published by the authors under
a separate study [25].

4. Conclusions

Typically, the LCCA of using recycled materials for a road section, including pavement
courses and roadside concrete works, are not compared against virgin materials in sus-
tainable construction literature. This study exhibited a comprehensive LCCA of roadwork
for a case-study 3.5 km-long highway section in the United Arab Emirates over 30-year
(2015–2045) lifecycle period as representative of developing countries with high virgin
material demand. Results showed that the construction stage had the highest cost at 82.7%,
followed by periodic M&R at 15.7% and routine maintenance at 1.6%. These results used
a 5% discount rate for converting potential future costs to the base year 2015 costs.

Using recycled material for earthworks where 60% virgin backfill was replaced with
adequate quality RCW reduced costs by USD 0.493 million. For pavement cross sec-
tion, using a combination of RCW for aggregate courses and 15% to 25% RAP for the
asphalt courses mixed in a batch-mix plant using WMA reduced lifecycle costs by USD
4.769 million. Considering 65% GGBFS as partial OPC replacement for roadside concrete
works resulted in a lifecycle cost benefit of USD 0.110 million. Overall, after using recycled
materials, the construction costs were reduced by 10.3%, and M&R costs were reduced by
42.9%. This generated an overall cost savings of approximately 16% (USD 2.69 million)
over the lifecycle. Thus, this study shows that the benefit of recycled pavement materials is
not only an environmental factor but is also supported by substantial cost benefits. An ad-
ditional cost model may be added to the work here to include cost fluctuations modelling
for external economic factors, such as market changes, war conflicts, price variations, etc.
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