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Abstract: According to the roadmap toward clean energy, natural gas has been pronounced as the
perfect transition fuel. Unlike usual dry gas reservoirs, gas condensates yield liquid which remains
trapped in reservoir pores due to high capillarity, leading to the loss of an economically valuable
product. To compensate, the gas produced on the surface is stripped from its heavy components and
reinjected back to the reservoir as dry gas thus causing revaporization of the trapped condensate. To
optimize this gas recycling process compositional reservoir simulation is utilized, which, however,
takes very long to complete due to the complexity of the governing differential equations implicated.
The calculations determining the prevailing k-values at every grid block and at each time step account
for a great part of total CPU time. In this work machine learning (ML) is employed to accelerate
thermodynamic calculations by providing the prevailing k-values in a tiny fraction of the time
required by conventional methods. Regression tools such as artificial neural networks (ANNs) are
trained against k-values that have been obtained beforehand by running sample simulations on small
domains. Subsequently, the trained regression tools are embedded in the simulators acting thus as
proxy models. The prediction error achieved is shown to be negligible for the needs of a real-world
gas condensate reservoir simulation. The CPU time gain is at least one order of magnitude, thus
rendering the proposed approach as yet another successful step toward the implementation of ML in
the clean energy field.

Keywords: transition fuel; natural gas recycling; reservoir simulation; regression; machine learning

1. Introduction

Despite the surprisingly fast development of renewable energy sources to fully replace
traditional fossil fuels, as of today renewables account for a significant but still limited
percentage of global energy demands [1]. Renewable sources’ high cost, poor storage
capability and inability to form a base load, have forced people to rely on traditional
technologies to securely provide energy, while in the meantime, more environmentally
friendly solutions are sought [2]. Natural gas, being considered the cleanest burning fossil
fuel, can be used as a temporary substitute for the highly polluting oil and coal as it reduces
CO2 emissions by at least half and can be transported and stored as liquefied natural gas
(LNG) or compressed natural gas (CNG). Hence, it can successfully deal with both seasonal
and short-term demand fluctuations [3]. Increasing demand has led to efforts to optimize
production by utilizing more complex gas condensate methods [4–6].

Gas condensate reservoirs are quite exceptional in that it is the thermodynamic behav-
ior of the fluid rather than the petrophysical state of the reservoir that regulates the optimum
development plan [7]. When gas condenses to liquid in the reservoir pores, it stays trapped
there due to surface tension forces. As a result, the richer and more valuable hydrocarbon
components are trapped, and liquid accumulation blocks the gas flow and weakens the
well’s productivity [8,9] by forming condensate banks [10–13]. More than 50% of well
productivity was lost in the Arun field in Indonesia [14–18] due to condensate banking.
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Gas recycling is the most utilized method to maintain pressure and minimize liquid
condensation [10]. The produced gas’s liquefiable components are separated on the surface,
and the lean, “dry” gas is reinjected into the reservoir, achieving revaporization of the
condensed liquids, partial pressure maintenance and prevention of further condensation.

The complexity of gas condensate systems undergoing gas recycling imposes the need
to employ compositional reservoir simulators, run various hypothetic production scenarios
and optimize the production scheme [6]. This process is remarkably time-consuming
due to the need to solve numerically intricate systems of nonlinear differential equations,
accounting for the conservation principles by densely discretizing space and time [19–21].
Additionally, the ratio of the equilibrium vapor and liquid phase compositions must get
specific values known as k-values. It is the numerous iterative calculations required that
lead to massively long computational times.

Various noniterative k-value estimation methods are available offering a variety of
tradeoffs between simplicity and accuracy. Wilson’s correlation [22] is probably the most
pronounced one, while correlations by Standing [23], Hoffman et al., [24], Whitson and
Torp [25] and the convergence pressure method [26] are also available. Correlations by Katz
and Hachmuth [27], Winn [28] and Campbell [29] have been developed for the plus-fraction
whereas Lohrenze et al. [30] handles nonhydrocarbons. As the accuracy of such estimates
is not sufficient when dealing with challenging phase behavior calculations such as in gas
recycling projects, suitable equation of state (EoS) models are preferred. These, however,
operate at the cost of vastly increased simulation times. Therefore, any faster k-values
estimation method for accelerating the simulation process is welcome.

ML emerged a few decades ago as a set of techniques allowing the development
of numerical models to describe physical tasks, solely using data collected through the
observation of a system. Face, voice and medical images recognition, expert diagnostic
systems and decision making are just a few of the numerous ML applications. ML has
been applied extensively in the upstream oil and gas industries, including exploration,
reservoir, drilling and production engineering, predictive maintenance, etc. Adegbite et al.
investigated the relationship among porosity, permeability and pore throat radii using
multiple regression analysis (MRA), ANNs and adaptive neuro-fuzzy inference systems
(ANFIS) for modeling permeability in the transition zone [31]. Martyushev et al. proposed
using random forest (RF) for predicting reservoir pressure based on a nonparametric
multidimensional model that links well performance over time [32]. Hung et al. introduced
the utilization of Gaussian process regression (GPR), support vector machines (SVM) and
RF to predict CO2 trapping efficiency in saline formations [33]. Ali et al. used similarity
patterns of various wells to predict accurately missing shear sonic log responses. Deep
neural network (DNN) has been used to examine relationships between wells [34]. Umar
Ashraf et al. introduced a workflow through ANNs and ant colony optimization (ACO)
for the recognition of fracture networks [35]. Finally, Ashraf et al. utilized petrophysical,
mineral composition, well-log facies and horizon attribute analyses in conjunction with VQ
and sequential indicator simulation (SIS) modeling [1] to define subsurface geobodies. ML
based fluids properties models have also been proposed [36–38].

The k-value estimation problem has already been cast to ML terms by various authors.
The idea lies in that k-values are implicit functions of the prevailing pressure p and tem-
perature T conditions as well as of the composition z, i.e., f (z, p, T, k) = 0. Therefore, an
explicit model can be setup by training an ML model to predict k-values as a function of
p, T and z, i.e., k = g(z, p, T). Gaganis et al. [39] were first to propose ML to develop a
proxy model for the phase equilibrium problem, namely support vector classifiers (SVC)
to perform phase stability test and single layer ANNs to run flash calculations. Later, he
presented two simplified discriminating functions to achieve rapid stability determina-
tion [40]. Kashinath et al. [41] extended the application by applying a relevance vector
machine (RVM) to classify phases together with an ANN to determine phase composition.
Zhang et al. [42] developed a self-adaptive deep learning model to predict the number of
phases and the phase properties. Li et al. [43] proposed a deep ANN model to address the
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iterative flash problem for phase equilibrium calculations in the moles, volume, and temper-
ature (NVT) framework. In a similar approach, Poort et al. [44] handled both phase stability
and phase property predictions by using classification and regression neural networks,
respectively. Wang et al. [45] introduced an ANN model for stability testing that predicts
the saturation pressure. Similar works have been presented by various authors [46–49]. Re-
cently Gaganis et al. [50] presented a method, based on simple cubic splines, that produces
k-values for depletion and water flooding production schemes where k-values depend
mostly on pressure and temperature rather than on composition.

Despite the remarkable acceleration of the reservoir simulation process shown by
the above methods, there has been no work at all on the gas recycling aspect. Although
the extension may sound easy, generating the training database is not straightforward
at all as, unlike already treated depletion, water flooding or CO2 injection scenarios, the
grid block composition now exhibits great variability, thus imposing the need to fully
cover the expected compositional space. In this paper, we propose the use of ML to build
regression tools directly providing the prevailing k-values, thus achieving the solution
of the flash problem at a fraction of the time needed by conventional iterative methods,
and greatly accelerating the simulation process. A simple, novel, method is proposed to
generate representative training data, and the method is evaluated by a series of crash
tests. We further demonstrate that the approximation error introduced is negligible as
it provides practically the same phase molar composition and mass to the conventional,
iterative approach. The CPU time gain of the proposed ML approach is shown to be of at
least one order of magnitude compared to the traditional iterative method.

The rest of the paper is organized as follows: first, the method and the techniques
involved to generate k-values and to develop the machine learning tools are presented in
Section 2. Section 3 demonstrates the results obtained by applying the proposed methodol-
ogy to a real rich-gas condensate. We close with the conclusions of the present work.

2. Machine Learning Models Development
2.1. Casting the Flash Problem to Machine Learning

When solving the digitized differential equations over the reservoir domain, the pre-
vailing pressure p, temperature T and composition z at each grid block are the parameters
that determine the prevailing k-values k, provided the fluid is found to be thermodynami-
cally unstable. In such case, the feed composition z will split to a liquid and a vapor phase
of composition x and y, respectively which will satisfy yi

xi
= ki. Additionally, the vapor

phase will occupy a molar fraction of β, whereas the liquid phase will occupy the comple-
mentary 1− β. Note that the vapor phase molar fraction β is uniquely determined from
the prevailing k-values k by satisfying the mass balance with the Rachford–Rice equation:

∑n
i=1

zi

β− βi
= 0 (1)

where
βi =

1
1− ki

(2)

when β is determined by Equation (1), the equilibrating phases composition is given by

xi =
zi

β− βi
, yi = ki·xi (3)

The equilibrium coefficients k, hence the equilibrium phase compositions x, y and
the molar fraction β need to minimize the total system’s Gibbs energy. Therefore, they are
obtained by solving the following optimization problem:

(x, y, β) = argmin︸ ︷︷ ︸
k

{Gmix(z, p, T, k)} (4)
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where the system’s Gibbs energy is given as the sum of the partial Gibbs energy of the two
equilibrating phases:

Gmix = β·G(y, p, T) + (1− β)·G(x, p, T) (5)

Clearly, the optimization problem is a highly nonlinear one that needs to be solved
iteratively by means of any suitable numerical algorithm. The k-values, k, are iterated and
at each iteration the feed is split into x and y according to Equation (3). Subsequently, the
total Gibbs energy is computed by Equation (5), and the procedure is repeated until Gmix
reaches its minimum.

Based on the above discussion, the flash problem can be described by the following
implicit problem:

F({k, β}, {z, p, T}) = 0 (6)

where the unknowns {k, β} are obtained as functions of the parameters {z, p, T}. As the
parameters values vary at each grid block and at each timestep, Equation (6) needs to be
solved a huge number of times.

If a closed-form solution would be available, the unknowns could be obtained as a
direct function of the parameters values, i.e.,

{k, β} = g({z, p, T}) (7)

As regular algebra does not allow for the development of an analytic form of the
unknown solution g(.), machine learning is proposed as the appropriate means to derive a

proxy model, i.e., an approximation
^
g(.) of the exact function. {z, p, T} and k will constitute

the machine learning model input and output, respectively. Once k has been predicted, β
can be obtained simply by solving Equation (1).

To build such a machine, an arbitrarily large set of possible parameters values needs
to be generated which will fully cover the range of the parameters values expected during
the reservoir simulation run. Full space compositional space coverage is a prerequisite
to avoid extrapolation of the trained models to ensure performance. Subsequently, the
iterative solution of Equation (4) needs to be obtained for each parameter value to obtain
the prevailing k which will constitute the model’s output. The combined input/output
pairs information is then introduced to the machine learning tool to allow for its training.

Finally, the trained model, i.e., the explicit
^
g(.) function form, needs to be incorporated to the

reservoir simulator and to fully replace the iterative routine that solves Equation (4). During
any future reservoir simulation that aims at evaluating a production scheme considering
dry gas recycling, the proxy model will provide the prevailing thermodynamic results

by utilizing the direct
^
g(.) function form in a tiny fraction of the time required by the

conventional iterative approach.

2.2. Setting Up the k-Values Generation Procedure

It has been shown that the k-values space during depletion and water flooding can be
captured simply by the constant mass expansion experiment as functions of the pressure
solely [50], whereas those of a typical CO2 flooding can be modeled by considering the
CO2 as a single extra parameter on top of pressure [45]. However, composition becomes
a strong parameter when it comes to dry gas recycling. To account for the complexity of
the compositional space, a simple approach is proposed based on the fact that the k-values
in miscible displacement processes only depend on the fluids involved, rather than in
the porous medium itself and its petrophysical properties [51]. Therefore, the (p, T, z)
combinations collected in a simple simulation that is run on a small size grid and shares a
production scheme similar to the one of the original simulation problem, are expected to
be good representatives of those encountered in the latter. In the following sections, such
small grid size simulations will be called “sample simulations”.
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The amount of dry gas produced at surface and reinjected back into the reservoir has a
severe effect on compositional space. The more the amount of the reinjected gas, the more
the alteration of the reservoir gas composition needs to be accounted for. Moreover, the
separation the produced gas undergoes at the surface that is a direct flash or a separator
train of one to three separators also affects the surface-produced dry gas that is reinjected.
Therefore, to capture the reservoir gas-mixing effect to its full extent, a comprehensive
set of sample simulations need to be setup covering a range of recycling amounts and
separation schemes.

2.3. The Machine Learning Method

In the present context, ML regression tools are used to perform phase split calculations
in a fast, noniterative and robust way by directly predicting the prevailing k-values as
a function of pressure, temperature, and composition. The ML method considered here
needs to exhibit an optimal tradeoff between training simplicity, speed, and autonomy
vs its speed to provide answers, i.e., k-values predictions, in real time. As a result, tree-
based methods, or ensembles [52], are not applicable, whereas traditional feed forward
ANNs exhibit a balanced behavior as the finally obtained product is a straightforward
formula [53]. Training time is not an issue as the model preparation can be run in parallel to
any other preparatory step of the simulation. Additionally, the continuity, compactness, and
density of the training data, as well as the lack of noise (the data is obtained by repeatedly
running the rigorous, iterative EoS approach) render this task an easy one for which no
“big weapons” such as deep systems are of any use.

In their simplest form, feed forward ANNs comprise three layers with the first level
being the one that contains all input values x, that is {p, T, z} (Figure 1). The last layer is
called the output one, and it contains all desired output values y, i.e., the k-values. The
hidden layer lies between the two and acts as the mapping level where the input is nonlin-
early mapped to a feature space by means of the well-known sigmoid function. The hidden
layer output is further forwarded to the output layer by a simple linear transformation.
The input-to-hidden and hidden-to-output layer relationships are controlled by the model
parameters known as weights W and biases b.

Figure 1. A Typical feed forward ANN structure.

The output of an ANN of the structure described above is expressed in compact matrix
form by

y = s(W2·s(W1x + b1) + b2) (8)
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where s(.) represents the activating sigmoid function given by

s(x) =
1

1 + exp(−x)
(9)

The vectors size in Equation (8) is x(n × 1), y(m × 1), W1(s × n), W2(m × s), b1(s × 1),
b2(m × 1) for a system of n inputs and m outputs and s units in the hidden layer. The
training procedure needs to provide optimal values for s(n + m + 1) + m model weights
in total.

2.4. Data Compression

Although gas recycling enhances the effect of composition to the prevailing k-values,
this effect is still expected to be weak compared to that of pressure and temperature thus
implying that the extended fluid composition exhibits high cross correlation over the
datasets generated by the sample simulations. Such correlation needs to be removed prior
to introducing the composition to the model input to exclude ANN input redundancy,
reduce the input vector size and achieve easier and faster training. Similarly, it has been
shown that the prevailing k-values live in a space the dimensionality of which depends
on the binary interaction coefficients (BICs), and it can be reduced down to only three
regardless of the number of components when all BICs are set to zero [54].

Clearly, the application of some dimensionality reduction method is a necessity to
simplify the training procedure and it will only slightly affect the trained ANN speed
performance as it will be used only to preprocess any future input during the real reservoir
simulation. In this work, it was decided to utilize only the simplest, linear compression
method, that is principal components analysis [52]. Although this method only accounts
for linear relationships between individual inputs, it was shown that in this specific ap-
plication, the input and output dimensionality can still be greatly reduced. PCA aims at
identifying directions in the original data space, known as principal components, on which
the data points projections exhibit maximum variance. Every next direction is selected to
be orthogonal to the previous ones to ensure a new uncorrelated coordinates system. The
fact that the variance percentage captured by each component is maximized leads to their
ordering from the most to the less important ones. Therefore, the original data space can be
reproduced fairly and accurately by fewer components, thus leading to the formation of a
coordinate system of fewer coordinates, hence to dimensionality reduction.

More specifically, let N data points xi, each of size (n× 1), be treated with the PCA
method. The principal components are obtained by considering the mean-centered data
points xi − µ, and they are collected in the columns of matrix C. The projection si of any
original datapoint to a subset of p < n components is obtained by

si = CT
p(xi − µ) (10)

Matrix Cp is (n× p) and the projection of datapoint xi of size (n× 1) in the reduced
space is si of size (p× 1). The fewer are the components to be retained, i.e., the smaller
is p, the more is the dimensionality reduction. The optimal number p is determined by

considering the error between the original and the reconstructed data points
^
xi, i.e.,

d =
^
xi − xi = (Cs + µ)− xi =

(
CCT − I

)
(xi − µ) (11)

3. Results and Discussion

To demonstrate the value of the proposed method, the EoS model of a real, high yield
gas condensate was utilized. The EoS model was used to setup the sample simulations that
generate the training dataset. Subsequently, the trained models were evaluated for their
accuracy against the training, validation, and testing datasets. To cross-check the trained
models performance, each one of the sample simulation models was forced to reproduce
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the datasets used by the other models which were alien to it. The results are analyzed in a
concise, visual manner that proves the value of the proposed ML application.

3.1. Generation of the Training Data

To generate the training dataset, sample simulations were set up to capture the effects
of dry gas recycling on k-values in liquid condensation and revaporization. A 10 × 10 × 1
grid block model was selected as a simplistic representation of a gas condensate reservoir
with a uniformly distributed porosity in [0.15–0.25] and normally varying permeability
around 20 mD, across both the x and y directions [55]. An isothermal reservoir was assumed
at 220 ◦F, and the initial pressure was set at 3000 psia.

The reservoir fluid EoS model consisted of 20 components, and it was deliberately
chosen to be rich in heavy components as this is typical of a retrograde gas condensate
system. Two components were permanent gases (N2 and CO2), and the ten heaviest
components were pseudos. The component properties and composition of the utilized
fluid are shown in Table 1. The phase envelope of the reservoir fluid is given in Figure 2,
and the liquid dropout curve, showing a maximum condensation level of more than 6%, is
illustrated in Figure 3. The fluid’s saturation pressure at reservoir conditions equaled 2950
psia, that is slightly below the initial one (3000 psi).

Table 1. Component properties and composition of the reservoir gas.

Component pc (atm) Tc (K) ω zi (mole%) BIC N2- BIC CO2-

N2 33.5 126.2 0.040 3.80 - −0.020
CO2 72.8 304.2 0.225 0.35 −0.020 -
CH4 45.4 190.6 0.008 67.91 0.031 0.103
C2H6 48.2 305.4 0.098 11.36 0.042 0.130
C3H8 41.9 369.8 0.152 5.43 0.091 0.135
iC4 36.0 408.1 0.176 1.15 0.095 0.130
nC4 37.5 425.2 0.193 2.03 0.095 0.130
iC5 33.4 460.4 0.227 0.75 0.095 0.125
nC5 33.3 469.6 0.251 1.01 0.095 0.125
nC6 29.3 507.4 0.296 1.15 0.100 0.125
pC6 32.5 507.5 0.275 0.83 0.120 0.150
pC7 31.0 543.2 0.308 0.73 0.120 0.150
pC8 29.1 570.5 0.351 0.65 0.120 0.150
pC9 26.9 598.5 0.391 1.63 0.120 0.150
pC10 25.0 622.1 0.444 0.70 0.120 0.150
pC11 23.2 643.6 0.477 0.30 0.120 0.150
pC12 21.6 663.9 0.522 0.13 0.120 0.150
pC13 20.4 682.4 0.560 0.06 0.120 0.150
pC14 19.3 700.7 0.605 0.02 0.120 0.150
pC15 18.3 718.6 0.651 0.01 0.120 0.150

To simulate the gas recycling process, the produced gas during the simulation runs
was either flashed directly at standard conditions, where it was separated into reinjection
dry gas and liquid condensate, or it was driven at the surface through a more complex
series of separators before being flashed at standard conditions. The surface utilization
system directly affects the maximum condensate amount produced thus leading to a
leaner reinjection gas (stronger gas stripping from its heavier components) when the
separator train is used. Five scenarios were setup by utilizing three amounts of gas
reinjection and two alternative surface treatment procedures. The first three scenarios
considered surface gas to be produced at the surface by direct flash and 80%, 60% and
20% of that gas be reinjected back to the reservoir. Two more scenarios utilized 40% and
80% of the dry gas produced after being treated through a separator train. All scenarios
are listed in Table 2.
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Figure 2. Phase envelope of the retrograde gas condensate used in the study.

Figure 3. Liquid dropout curve of the retrograde gas condensate used in the study.

Table 2. Sample simulation runs.

Scenario Amount of Recycled Gas
(vol%) Surface Treatment

1 20 Direct flash
2 60 Direct flash
3 80 Direct flash
4 40 Separator train
5 80 Separator train

As the reservoir gas feed that arrives at the producers keeps changing slowly over
time, so does the composition of the reinjected dry gas. To study that effect, the feed
composition was monitored throughout the sample simulations, and it was verified that the
composition change rate was quite slow. As commercial simulators cannot continuously
update the injection gas composition, a five-year reoccurring gas composition update was
forced. The produced gas composition of a specific cell in the reservoir model was regarded
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as representative of the reservoir’s production stream at that time. The cell selected was
(3,2) in the 10 × 10 × 1 block reservoir, as shown in Figure 4, as it was located close to
a production well (producer 1) and therefore exhibited a composition equivalent to that
of the produced fluid without being affected by the pressure drop that the near wellbore
region experienced. At the same time, it was close to an injection well (gas injector 1) to
allow for the injected gas effect to be pronounced by making its composition leaner.

Figure 4. The 10 × 10 block simplistic gas condensate reservoir. The composition in cell (3,2) was
regarded as representative of the average overall reservoir composition.

The dry gas composition collected at the surface was obtained by running regular
flash calculations using the reservoir fluid’s EoS model. For the direct flash, the surface
conditions were set to the regular values of 14.7 psi and 60 ◦F. For the separator selected,
two separators were set at pressures equal to 500 and 150 psi and at temperatures of 120 ◦F
and 80 ◦F, respectively. The second separator liquid stream was eventually driven to a tank
at standard conditions. Note that for the case of a separator train, the dry gas reinjected is
usually the average gas stream from the separators or even by all separators and the tank.
Although the averaging needs to be done on a molar basis, a gas-to-oil ratio, GOR, basis
can also be used thanks to the ideal gas law that governs the dry gas behavior at the surface
and renders volumetric ratios as equal to molar ones. In this work, the gas averaging was
performed by considering the gas streams obtained by all separation stages, that is, the
two separators and the tank. The separation process is shown in Figure 5. The calculated
reinjected dry gas composition at various time instances during the sample simulations is
shown in Table 3.

Figure 5. The produced gas passes through a train of separators before its recombination and
reinjection in the reservoir.
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Table 3. Sample simulation reinjected gas composition.

Direct Flash Separator Train

Recycled Gas All 80% 60% 20% All 80% 80% 80% 40%

Time (y) 0 5 5 5 0 5 10 15 5

N2 3.96 3.97 3.99 3.86 4.11 4.13 4.12 4.12 4.08
CO2 0.36 0.37 0.37 0.36 0.38 0.37 0.38 0.37 0.38
CH4 70.78 70.84 71.00 69.85 73.46 73.54 73.57 73.56 73.34
C2H6 11.83 11.81 11.79 11.99 12.21 12.19 12.17 12.19 12.36
C3H8 5.63 5.61 5.57 5.88 5.55 5.52 5.51 5.52 5.65
iC4 1.18 1.18 1.16 1.27 1.04 1.03 1.04 1.04 1.05
nC4 2.07 2.06 2.03 2.25 1.68 1.67 1.66 1.66 1.68
iC5 0.74 0.73 0.72 0.82 0.45 0.44 0.44 0.44 0.44
nC5 0.97 0.96 0.95 1.08 0.54 0.53 0.53 0.52 0.51
nC6 0.92 0.92 0.90 1.00 0.32 0.32 0.32 0.32 0.30
pC6 0.69 0.69 0.67 0.76 0.15 0.15 0.15 0.15 0.13
pC7 0.42 0.43 0.42 0.44 0.06 0.06 0.06 0.06 0.05
pC8 0.20 0.20 0.21 0.20 0.02 0.02 0.02 0.02 0.02
pC9 0.20 0.20 0.20 0.19 0.02 0.02 0.02 0.02 0.02
pC10 0.03 0.03 0.03 0.03 0.005 0.005 0.004 0.004 0.01
pC11 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.001
pC12 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000
pC13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pC14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pC15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

According to scenario 1, only 20% of the produced surface dry gas was reinjected to
the reservoir. Four production wells were set to produce at a fixed rate of 7 MMscf/day
and two gas injectors to inject dry gas at 2.8 MMscf/day for a 10-year production period.
The composition of the initial injection gas and the updated one five years later are given in
Table 3, based on the composition of cell (3,2). As expected, the limited amount of reinjected
gas could not reverse the condensation; therefore, the produced gas composition and its
dry gas version were changing over time (for example, the methane content drops from
70.78% to 69.85%). Due to the limited amount of reinjection gas the reservoir pressure at
the end of the production period was 260 psia that, clearly, corresponds to a research rather
than a realistic production scenario. The liquid saturation reached a maximum value of 5%
before starting to decrease again as a response to the reduction in reservoir pressure and
the leaning of the reservoir gas.

In scenario 2, four production wells were producing at a fixed rate of 7 MMscf/day
each, and two wells were injecting dry gas at a fixed rate of 8.4 MMscf/day each for a
production period of 10 years. Based on the composition of cell (3,2), the injected gas
composition was updated after five years of production, as shown in Table 3. The reservoir
pressure was constantly declining since the amount of the reinjection gas did not provide
sufficient pressure maintenance, and it reached 1500 psia at the end of the production
period. The liquid saturation reached a maximum average value of 3.6% followed by a
reduction due to revaporization.

Scenario 3 also considered a direct flash of the production to a tank followed by an
80% reinjection of the produced gas. Four production wells and two injectors operated
at fixed rates of 7 MMscf/day and 11.2 MMscf/day, respectively. The injection rate was
further increased to 12 MMscf/day after five years of production. The reservoir pressure
exhibited a constant decline and reached 2300 psia by the end of the production period
with the partial pressure maintenance being more pronounced during the second period
when the injected gas amount was increased. The liquid saturation reached a maximum
average value of 3.8%.

Scenarios 4 and 5 utilized the separator train described above to strip the produced
gas from its heavy components. More specifically, scenario 4 considered four production
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wells operating at a fixed rate of 7 MMscf/day each for a 10-year period and two gas
injectors injecting surface dry gas at a fixed rate of 5.6 MMscf/day. The initial reinjection
composition was updated once in 5 years, as shown in Table 3. The reservoir pressure
exhibited a constant decline and reached almost 700 psia at the end of the production
period due to the limited reinjection. The liquid saturation reached a maximum value of
about 4.2% before declining to about 3% at the end of production.

Finally, scenario 5 utilized four production wells producing at a fixed rate of 7 MM-
scf/day each for a period of twenty years. This time, two injector wells were injecting
during the first 10 years at a fixed rate of 11.2 MMscf/day, each followed by an increased
rate of 12 MMscf/day for the next 10 years. The recycling process provided partial pres-
sure maintenance, thus allowing for the extension of the production period to 20 years.
The injection gas composition was revised three times during the production period on
a five-year basis by separating each time the composition of cell (3,2). At each update
the reinjected gas remained constantly lean thanks to the strong stripping by the surface
separators leading to a leaner overall reservoir composition through the recycling process.
The liquid saturation exhibited a maximum of about 3.8% which was reduced after five
years of production, reaching a value as low as 1.8% in the reservoir, while the reservoir
pressure at this stage at the end of production was about 1200 psia.

3.2. Machine Learning Models Development

All five scenarios described above were simulated to generate training datapoints. A
single input/output combination {{z, p, T}, k} was collected at each timestep and at each
grid block, thus leading to several thousands of data points per scenario. As each scenario
ended up at different average pressure, different number of datapoints were collected in
each case. To align the datasets and to allow for a cross-checking (as will be described in
Section 3.4), 10,000 datapoints were randomly subsampled from the total population of
each sample simulation.

Subsequently, principal component analysis was applied to the compositions in the
inputs data set as well as to the k-values in the outputs data sets. As expected, the dimen-
sionality reduction achieved came at the expense of accuracy. To identify the number of
principal components (PCs) that need to be retained, the original data was reconstructed by
applying the inverse transformation, and the maximum reconstruction error was evaluated
according to Equation (11). By reducing the number of composition PCs from 20 to 7 and
the number of the k-values PCs from 20 to 5 for the directed dataset, the mean absolute
relative reconstruction error fell below 0.1% for the composition and less than 0.0003% for
the k-values. Similarly, for the datasets utilizing a separator train, the required number of
PCs increased to nine and six, respectively. The mean relative error achieved for all scenar-
ios is shown in Table 4. Clearly, despite its simplicity through its linear treatment of the
data, the application of the PCA method led to a major reduction of the input/output pairs
size. Note that the input vector consists of the reduced composition and of the prevailing
pressure, while temperature is not included as the reservoir is isothermal.

Table 4. Reconstruction error of the PCA method.

Scenario
Mean abs rel. Error %

Composition K-Values

1 (20D) 0.0590 2.93 × 10−4

2 (60D) 0.0435 1.04 × 10−4

3 (80D) 0.0072 8.40 × 10−5

4 (40S) 0.0362 1.30 × 10−4

5 (80S) 0.0530 1.21 × 10−4

With the length of the input and output vectors fixed, the number of ANN neurons
in the hidden layer needs to be investigated to ensure enough flexibility and an accurate
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training of the model. To minimize the risk of overfitting, each dataset was randomly split
into three subsets, namely the training, the validation and the testing ones, corresponding
to 75%, 10% and 15% respectively. The error over the training dataset is minimized by
varying the model parameters, i.e., W1, W2, b1 and b2, using an unconstrained optimization
algorithm (in this case it was the Levenberg-Marquardt one [56]), and the training is
terminated by the time the training error reaches a local minimum or when the error of
the validation dataset begins to increase significantly, whichever comes first. The testing
dataset is used to provide an unbiased evaluation of the model fit after the conventional
training is completed. It should be noted that overfitting and poor generalization are almost
inapplicable in the present context as the training data is abundant and noiseless.

After exhaustively trying various numbers of hidden neurons for each network, it
was found that 20 hidden neurons provided sufficiently accurate training for all networks
except for scenario 5 (80S) which required slightly more neurons (23) to capture the more
complex phase behavior phenomena. Each training took approximately one minute on a
regular computing PC, and each combination was attempted 10 times to investigate the
possibility of the ANN getting stuck in a local minimum. In all training attempts, the
training was discontinued due to the algorithm trapping to a local error minimum rather
than an increase of the validation error.

3.3. Trained Models Performance Evaluation

The ANN-based k-values estimators that were built can be utilized in a two-fold
manner. They can be used either to provide direct predictions of the k-values or to introduce
them as initial guesses to the conventional flash calculations, replacing Wilson’s equation, to
determine the phase molar fraction, phase compositions, component masses and fugacities.
In the latter case, the conventional algorithm could converge in no more than one iteration
as the ANN output consists a very accurate estimate of the exact k-values.

To evaluate the trained models performance and, therefore, to identify which of
the two implementation options needs to be utilized, a loss function was defined. In
the present case, the relative error was adopted to describe the deviations of the model
prediction from the exact solution of the iterative flash calculation and is described by the
following equation:

di,j =
k̂i,j − ki,j

ki,j
(12)

where k̂i,j and ki,j correspond to the estimated and the exact k-value, respectively, of the
jth component of the ith pair. A similar loss function has been defined for the vapor molar
fraction relative error where the β value estimate is obtained from Equation (1).

By examining the differential equations governing the flow problem in the porous
medium [19–21], it can be seen that the k-values are combined to the vapor phase molar
fraction to come up with the mass of each component in each phase. In fact, mass appears
in the equations through the density of each phase. Therefore, it is reasonable to evaluate
the accuracy of the final product of interest, that is, the components mass error rather
than other measures commonly used such as the error in the components mole fractions
or fugacities. For that purpose, the loss function over the components mass predictions
accounts for the components mass error in the liquid phase relative to the total mass in the
grid block and it is defined by

di,j =
m̂(x)

i,j −m(x)
i,j

m(z)
i,j

(13)

Note that thanks to mass conservation, the errors of the gas phase are complementary,
and they provide no additional information. The basic statistics of each loss function
include the average error (µ), the standard deviation (σ) and the average absolute error
|µ| as shown in Table 5. As mentioned above, the performance of the ANNs, which
were trained against abundant and noiseless data, was similar to all three data clusters,



Clean Technol. 2022, 4 165

i.e., training, validation and prediction. For that purpose and to simplify the results, the
statistics are shown over the full population utilized per model.

Table 5. Statistics on the training of the ANN models.

Dataset 20D 60D 80D 40S 80S

Variables

k-values
µ 2.1 × 10−9 4.2 × 10−5 −3.3 × 10−5 −3.0 × 10−4 −4.0 × 10−4

σ 9.4 × 10−4 2.6 × 10−3 3.2 × 10−3 7.1 × 10−3 6.2 × 10−3

|µ| 5.8 × 10−4 1.7 × 10−3 2.0 × 10−3 4.2 × 10−3 3.9 × 10−3

β
µ 4.4 × 10−6 2.2 × 10−5 −2.1 × 10−5 −6.2 × 10−5 1.1 × 10−4

σ 9.3 × 10−4 1.3 × 10−3 3.2 × 10−3 1.7 × 10−3 5.2 × 10−3

|µ| 5.2 × 10−4 7.9 × 10−4 1.8 × 10−3 1.0 × 10−3 2.2 × 10−3

Liquid mass
µ 1.0 × 10−8 −1.6 × 10−8 1.7 × 10−8 5.4 × 10−8 3.8 × 10−8

σ 9.4 × 10−7 1.4 × 10−6 3.5 × 10−6 1.9 × 10−6 5.1 × 10−6

|µ| 4.1 × 10−7 6.3 × 10−7 1.4 × 10−6 8.3 × 10−7 1.6 × 10−6

To further investigate the performance of the trained models, the histogram of the
relative errors together with their superimposed Gaussian distribution curves are shown
in Figures 6–8. The vertical axis shows the relative error % of each variable considered
(k-values, β and liquid phase mass). The dashed green lines correspond to the µ ± σ
confidence interval whereas the dashed blue line corresponds to the average absolute
relative error |µ|. Each figure consists of five plots, one for each trained ANN model.
All five plots per figure have been normalized to the same scale to allow for their direct
comparison. Finally, the red columns at the top and at the bottom of some plots correspond
to the sum of cases which exhibit error beyond the limits of the vertical axis.

Figure 6. Average statistics of the prediction of the k-values.
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Figure 7. Average statistics of the prediction of the vapor phase molar fraction (β).

Figure 8. Average statistics of the prediction of the liquid phase components mass.
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From the plots it can be directly seen that all ANNs provide fully balanced predictions
as the mean error is almost zero not only for the direct predictions, i.e., the k-values, but
also for the vapor phase molar fraction and condensate mass deviations, which all depend
on the former. Despite the complexity of the sample scenarios, all ANNs were trained
in excellent accuracy as shown by the standard deviation values which indicate perfect
predictions for the finally obtained component masses.

Interestingly, all plots verify that the more complex is the gas recycling scenario the
wider is the error distribution. Indeed, when switching from the 20D to the 60D and
eventually to the 80D, the standard deviation σ and the average absolute relative error
both increase. The error grows even more when considering the separator train-based
models as the more stripped recycling gas enhances the variance of the reservoir fluid
composition, therefore that of the training data and eventually the complexity of the
input-output relationship to be learned by the models. Nevertheless, the liquid mass
errors remain negligible, thus guaranteeing accurate calculations during the large-scale
reservoir simulation.

The figures in Table 5 and the performance plots clearly indicate that despite their
small size, the learning capacity of the ML models suffices to handle the complexity of
the relationship between composition, pressure, and temperature on one hand and the
prevailing k-values on the other hand. Therefore, the trained models can be safely used
during a real reservoir simulation run at practically no cost with the accuracy of the
thermodynamic calculations. Even if the ANN predictions would have been used as
initial estimates for a conventional, iterative flash algorithm, the latter would not proceed
to any iterations as the terminating accuracy would have been achieved by the initial
estimates. Note that the number format utilized (A e+XX) corresponds to the exponential
form A × 10XX.

3.4. Trained Models Cross-Check

As discussed above, the purpose of the ANNs training is to generate models that can
adapt properly to new, previously unseen data. To evaluate that ability, five cross-check
sets were setup where a trained ANN was asked to provide predictions against the data
utilized to train another model, which is alien to the former. The selected combinations were
divided into three galleries according to the ANNs combination, and they are demonstrated
in Table 6. The first gallery (D2D) considers pairs of ANNs trained against scenarios that
both utilized direct flash of the produced gas at the surface. Gallery 2 (S2S) combines ANNs,
both trained against separator train-based data, and gallery 3 (D2S) is the most demanding
one as a direct flash ANN is asked to predict the output against which a separator train-
based model has been trained. To ensure a fair comparison, each ANNs combination was
utilized to predict data that were sharing the same pressure range to avoid extrapolation.

Table 6. Galleries and ANN combinations in the cross-check exercise.

Combination Gallery Use trained ANN Apply to Dataset of ANN

1 D2D 60D 20D
2 D2D 60D 80D
3 S2S 40S 80S
4 S2S 80S 40S
5 D2S 60D 80S

Similar to the ANN training section, the results of the cross-check are illustrated in
Table 7 where the average error (µ), the standard deviation (σ) and the average absolute
error |µ| are shown for the vapor phase molar ratio and the liquid phase components mass.
Note that this time all results correspond to predictions on brand new data which have
never been seen before by the evaluated ANN models.
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Table 7. Statistics on the performance of the ANN models in the cross-check exercise.

Cross-Check Sets 60D to 20D 60D to 80D 80S to 40S 40S to 80S 60D to 80S

Variables

β
µ −3.2 × 10−3 −2.6 × 10−2 6.9 × 10−3 −2.9 × 10−3 −5.6 × 10−1

σ 2.7 × 10−3 1.1 × 10−2 2.7 × 10−2 3.8 × 10−2 1.5 × 10+0

|µ| 3.5 × 10−3 2.6 × 10−2 2.4 × 10−2 2.9 × 10−2 6.2 × 10−1

Liquid mass
µ 2.5 × 10−6 2.1 × 10−5 −7.3 × 10−6 3.5 × 10−6 2.8 × 10−4

σ 3.8 × 10−6 2.3 × 10−5 2.8 × 10−5 3.8 × 10−5 1.7 × 10−3

|µ| 2.7 × 10−6 2.1 × 10−5 1.8 × 10−5 2.3 × 10−5 6.1 × 10−4

When downgrading from the 60D to the 20D, the model is forced to predict the
prevailing k-values at compositions lying rather close to the original one due to the limited
amount of gas recycling (20% of the surface produced gas rather than 60%). As a result, all
predictions are perfectly balanced with the β relative error exhibiting a standard deviation
of less than 0.003% and the liquid mass relative errors exhibiting an average absolute
relative error value of less than 0.000003%. When it comes to the opposite combination,
the 60D model is forced to extrapolate toward the compositional space of the 80D sample
simulation. In that case, the errors grow bigger, and the standard deviation in the vapor
phase molar fraction and liquid phase mass relative errors are found to be equal to 0.01%
and 0.00003% (Figure 9). The offset introduced, although very small, does push all relative
errors of β to negative values (i.e., more gas is produced), thus forcing the liquid phase
components mass to positive errors for the vast majority of the data points. Note that both
the departing and the arriving model share the same way to bring production to the surface,
that is the direct flash to a surface tank.

Figure 9. Average statistics of the D2D gallery ANN combinations.

Sharing the same surface system greatly enhances the prediction capability of the
developed models, even when a complex separator train is involved. Indeed, the same
stripping process implies similar composition of the recycled gas, hence of the reservoir
gas. When switching from the 80S to the 40S model and vice versa, the error distributions
are found to be well balanced. Despite the great difference in the amount of recycled gas
(80% vs. 40%), the standard deviation of the vapor phase molar fraction error is less than
0.03% while that of the liquid phase components mass is less than 0.00003%, thus rendering
the predictions as highly accurate (Figure 10). When the 40S model is extrapolated to
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predict the performance of the 80D dataset, the errors grow slightly larger with the average
absolute relative error increasing from 0.024% to 0.029% and from 0.000018% to 0.000023%
for the vapor phase molar fraction and for the liquid mass errors respectively.
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Forcing a D model to provide predictions on the training dataset of an S model is a
complex task as it causes severe extrapolation of the former. The problem becomes even
more challenging when the recycling gas amount increases as in the D2S gallery case where
a 60D model is forced to provide answers against the training dataset of an 80S one. Results
indicate that even in that case the predictions are quite accurate as the vapor phase molar
fraction deviation may occasionally be as high as 5% but the average absolute relative
deviation equals only 0.6% (Figure 11). The deviation of the liquid phase components
mass exhibits significantly low values compared to the previous cross-checks but still
exhibits an average absolute relative error value of only 0.0006% which implies that it can
be safely used is a regular simulation. Of course, the whole prediction procedure can be
safeguarded by a single iteration of the conventional algorithm, in the rare case that this
might be needed.

3.5. Proposed Method Features and Performance

Clearly, the selection of the proper sample simulations plays an important, though
not critical, role to the development and the performance of the ML tools to be used in the
large-scale reservoir simulation. Bearing in mind that the CPU time required to setup a
sample simulation scenario, run it in a regular simulator and train a single ANN against
that data is only a few minutes, dozens of sample simulations can be run to build an ANN
against a data superset. This way the ANN will have been trained against each possible
combination of pressure and reservoir fluid composition and provide very high-quality
predictions throughout the simulation of any realistic reservoir simulation. Therefore,
unlike other training data generation methods, which might require complex coding, it has
been shown that the sample simulations approach can fully serve that task in a simple and
elegant manner.

For the CPU time requirements, it was shown that traditional feed forward ANN
models of size 8-20-5 can provide all required k-values throughout a regular simulation.
Such a network requires two matrix-vector multiplications (W1x and W2s(W1x) of size
20 × 8 and 5 × 20 respectively) and 20 exponential function evaluations when implement-
ing the sigmoid function. Additionally, a 7 × 20 matrix needs to be multiplied with the
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input for the PCA transformation of the data as well as another 20 × 5 one for the back
transformation of the predicted output to the k-values space. In fact, the transformation
matrices, being just linear transformations, can be embedded to W1 and W2 respectively as
a right-hand side and a left-hand side matrix multiplication respectively, thus relieving the
need to spend CPU time on them. In addition, the matrix size is expected to become by
far smaller when it comes to more realistic EoS models, which usually consist of only 5–10
components.

Figure 11. Average statistics of the D2S gallery ANN combinations.

The calculations described above only account for a very tiny fraction of the time
required by a regular flash calculation. It has been shown [39] that such calculations are
comparable to the CPU cost to obtain the fugacity of a single-phase trial composition which
appears twice in every iteration of the rigorous algorithm, not to mention the cost to set
up a Jacobian or a Hessian matrix when a Newton–Raphson or a Newton optimization
method are used respectively. Based on the above considerations, it is safe to say that
phase behavior calculations, even in their hardest implementation, i.e., in a gas condensate
simulation, can be greatly accelerated to stop constituting the bottle neck of compositional
reservoir simulation.

4. Conclusions

The need to produce condensate gas fields for meeting the ever-increasing need for
the cleanest possible fossil fuel resources has become immense. Gas recycling is necessary
to mobilize the trapped liquid condensate and time consuming reservoir simulation is a
must in order to optimize the production, but current simulation frameworks are far too
time-intensive. To greatly accelerate the simulation CPU time, thus allowing for a more
detailed analysis and scheduling of production, ML is proposed. Regression tools are
employed to provide direct answers to the k-values prediction issue which, when treated
with conventional methods, account for the lion’s share of the total simulation CPU time.

It has been shown that by setting up suitable sample simulations, representative sets of
noiseless k-values training data can be obtained which, in turn, are used for the preparation
of the ANN-based proxy models. Although the test fluid utilized in this study consisted of
20 components, i.e., it was unusually large, the developed models were shown to exhibit
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great accuracy, comparable to that of the conventional, rigorous approach, thus rendering
machine learning as the appropriate technology to apply to this field.
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