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Abstract: A techno-economic analysis has been used to evaluate three processes for hydrogen
production from advanced steam reforming (SR) of bio-oil, as an alternative route to hydrogen with
BECCS: conventional steam reforming (C-SR), C-SR with CO2 capture (C-SR-CCS), and sorption-
enhanced chemical looping (SE-CLSR). The impacts of feed molar steam to carbon ratio (S/C),
temperature, pressure, the use of hydrodesulphurisation pretreatment, and plant production capacity
were examined in an economic evaluation and direct CO2 emissions analysis. Bio-oil C-SR-CC or
SE-CLSR may be feasible routes to hydrogen production, with potential to provide negative emissions.
SE-CLSR can improve process thermal efficiency compared to C-SR-CCS. At the feed molar steam
to carbon ratio (S/C) of 2, the levelised cost of hydrogen (USD 3.8 to 4.6 per kg) and cost of carbon
avoided are less than those of a C-SR process with amine-based CCS. However, at higher S/C ratios,
SE-CLSR does not have a strong economic advantage, and there is a need to better understand the
viability of operating SE-CLSR of bio-oil at high temperatures (>850 ◦C) with a low S/C ratio (e.g., 2),
and whether the SE-CLSR cycle can sustain low carbon deposition levels over a long operating period.

Keywords: sorption enhancement; chemical looping; hydrogen; bio-oil; carbon capture; techno-
economics

1. Introduction

With ever-increasing global energy demand and calls for all-sector decarbonisation,
interest in green and blue hydrogen is swelling. Hydrogen is and will continue to be a vital
component for chemical and fertiliser manufacturing [1]. Whilst hydrogen is flexible and
able to provide for a range of energy applications such as transport and energy storage, it
is also highly attractive for heat in future energy landscapes [2]. Hydrogen production is
currently dominated by steam methane reforming (SMR), which uses fossil-based natural
gas as its feedstock [1]. The streamlined SMR process, which has benefitted from decades
of optimisation, produces a cost-effective product, and the tailored global infrastructure has
led multiple SMR plant operators to be open to operation with carbon capture utilisation
and storage (CCUS) [3]. Combining fossil-derived hydrogen with CCUS has been termed
“blue hydrogen”.

Green hydrogen includes that derived from renewably fueled electrolysis of water or
from biogenic feedstock [3]. Biogenic hydrogen is of particular interest from an environmen-
tal perspective due to the potential of introducing CCUS and therefore providing negative
CO2 emissions. Bioenergy with carbon capture and storage (BECCS) is one of the most
promising options in not just limiting but reducing emissions according to the IPCC [4].
One encouraging method of generating H2 from biomass is via the steam reforming of bio-
oil. Bio-oil is the energy-dense liquid formed from pyrolysis of biomass-derived feedstocks,
and its steam reforming has shown advantages in yield for hydrogen production compared
to alternatives such as biomass gasification with shift conversion [5]. H2 production may
be an effective method to upgrade bio-oil, which suffers from medium–low heating value,
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high acidity, and chemical instability [6]. However, bio-oil is far easier to transport than H2
and provides the potential for centralised plants that can benefit from economies of scale.

Recent advancements in reforming techniques such as sorption enhancement and
chemical looping may provide the spark to bring hydrogen from biomass and BECCS into
future energy markets [7]. Sorption-enhanced steam reforming (SE-SR) performs in situ
CO2 removal with a high-temperature sorbent in the reformer, providing a product stream
of high H2 purity. Moreover, the in situ CO2 removal provides a favourable chemical
equilibrium shift, aiding yields, meeting high temperature requirements, and forming an
ideal foundation for CCUS. CaO is the most popular sorbent choice due to its low cost and
availability, whilst demonstrating strong affinity for CO2 sorption and capture [7].

Chemical looping steam reforming (CLSR) uses oxygen transfer material (OTM) for
partial oxidation of the feedstock, which provides heat for autothermal conditions. The
partial oxidation produces CO2 as a by-product which also lends itself to CCU opportunities.
The OTM is normally formed of a metal oxide such as Cu, Fe2O3, NiO, or Mn3O4 supported
on an inert material such as Al2O3, MgAl2O4, SiO2, TiO2, or ZrO [8]. The OTM not
only provides the oxygen for partial oxidation, but also often acts as a catalyst for steam
reforming or water gas shift. As such, OTM analysis and selection make up the bulk of
literature on CLSR, with nickel-based options being the most extensively researched [9]. Ni-
based OTMs not only show high reactivity, high temperature stability and high selectivity to
syngas production [8,10–12], but also are relatively low-cost and commercially widespread.

Sorption-enhanced chemical looping steam reforming (SE-CLSR) integrates the techni-
cal aspects behind both CLSR and SESR to provide autothermal operation and a high-purity
product with in situ carbon capture [7,13–15]. SE-CLSR is characterised by at least two-stage
cycling, where saturated sorbent is regenerated at higher temperatures by heat generated
by OTM re-oxidation. The thermodynamic study presented by Spragg et al. [15] showcased
the benefits of bio-oil SE-CLSR in purity, yield, carbon deposition, and process efficiency.

Because of the predominance of experimental and thermodynamic studies on bio-oil
reforming, there is a need for techno-economic investigation to assess the potential for
commercialisation and widespread implementation. Previous studies on steam reforming
of bio-oil have revealed it can produce cost-competitive H2. In 2010, Sarkar and Kumar [6]
showed H2 from autothermal bio-oil steam reforming from whole-tree biomass, forest
residue, and agricultural biomass could be costed at USD 2.40, USD 3.00, and USD 4.55
per kg H2, respectively. In 2014, Brown et al. [16] calculated conventional steam reforming
(CSR) of bio-oil to produce H2 at USD 3.25 to USD 5 per kg.

There is also scope to produce a techno-economic evaluation of the CO2 capture
potential in line with bio-oil reforming to H2. Numerous studies have investigated CO2
capture with steam methane reforming [17–19]. In 2021, a review by Yang et al. [20] detailed
the avoidance costs for SMR plants ranging from EUR 40 to EUR 130 per t CO2. In the same
review, CLSR avoidance costs of EUR 86 per t CO2 and advanced autothermal reforming
systems as low as EUR 18 per t CO2 were showcased. To the authors’ knowledge, this
paper will be the first of its kind to perform techno-economic studies on the CO2 capture
from bio-oil steam reforming, which can be compared to alternatives. This is of particular
interest due to the negative emission potential of using a biogenic feedstock such as bio-oil.

2. Materials and Methods

The methods used for the techno-economic analysis operate on the basis that the plant
is located in an industrial area such as Teesside (United Kingdom), where H2 pipeline
infrastructure can be taken advantage of. It is proposed that the H2 is prepared under the
same conditions as the H21 Leeds City Gate project [21] which also sets its plant location at
Teesside. A H2 export pressure of 40 bar was therefore assumed, at 25 ◦C and hydrogen
purity greater than 99.98%.

Teesside was also chosen as the location for the case study due to the region’s inevitable
participation in future CO2 capture and storage (CCS), where CO2 will be piped to empty
North Sea oil fields [22]. Where CO2 capture was considered, a set of purity conditions
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were applied to the separated CO2 to maintain transportation and storage infrastructure
integrity. Given a lack of standardised CO2 purity specifications, those used in this study
and presented in Table 1 were based on those generated by CCS stakeholders in the CO2
Europipe project [23]. For supercritical phase transportation, 110 bar was assumed as the
specified CO2 pressure.

Table 1. CO2 specifications.

Component Limit in CO2

CO2 >95 vol%

Ar

Total noncondensables
<5 vol%

CH4
H2
N2
O2

H2O No free water (<500 ppmv)

The discussed facility is assumed as a centralised reforming plant that receives feed-
stock from multiple pyrolysis sites. This combines the benefits of economies of scale for the
reforming stage with providing realistic capacities for pyrolysis from bio-compounds and
associated feedstock limitations. A range of 5000 to 100,000 Nm3 h−1 of bio-oil from 1 to
20 pyrolysis plants, to feed a central reforming facility, was used to analyse the impact of
scale on the techno-economics.

2.1. Bio-Oil Feedstock

Bio-oil was modelled using a surrogate mixture, as in the work of Spragg et al. [15],
closely resembling the elemental composition and differential thermogravimetric (DTG)
curve of a real palm empty fruit bunch (PEFB) bio-oil [24]. Sensitivity analysis on PEFB
bio-oil model mixtures shows equilibrium results are not sensitive to the exact mixture
composition, provided a known elemental composition [25]. The bio-oil surrogate mixture
was based on the work of Dupont et al. [26], and the bio-oil has been represented with a
mixture of 6 macro-families following the methodology of García-Pérez et al. [27]. The mass
fraction of each compound is described by Spragg et al. [15] and in the Supplementary
Materials (S1). In this study, it is assumed that the bio-oil is mixed with 10 wt% methanol
to reduce its viscosity and density [6]. Stainless steel tanks are used to store the bio-oil due
to its corrosive nature [28].

2.2. Desulphurisation

Many existing techno-economic studies on bio-oil reforming, have assumed sufficiently
low sulphur content in bio-oils to avoid the requirement for desulphurisation [6,29,30].
However, as this is a potentially important sensitivity for reforming catalysts, the impact
of desulphurisation is considered and compared to a base case without. Assumptions
for desulphurisation are based upon data available for naphtha hydrodesulphurisation
(HDS), a common approach in refining [31]. Transition metal catalysts, such as sulphided
CoMo/Al2O3 and NiMo/Al2O3, convert sulphur compounds in the liquid feedstock into
H2S, via reaction with hydrogen [32]. As well as consuming hydrogen, the process is a net
consumer of power and steam, as well as fuel gas for a fired heater.

Sulphur levels are assumed equivalent to those used for the inlet to naphtha reforming,
around 0.5 to 1 ppmwt [31,33]. Detailed process design was not performed for desulphuri-
sation, rather order of magnitude estimates were used for techno-economic considerations
based on data from Maples [31], such as the utilities presented in Table 2 and single point
cost data in Table 3. Hydrogen consumption for a given wt% sulphur in the feed was
derived from a correlation within the same work. The analysis performed details only
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the costs associated with desulphurisation and does not illustrate the potential benefits of
improving catalyst lifetime and performance.

Table 2. Utilities consumption for desulphurisation.

Utility Requirement per m3 Bio-Oil/Methanol Feed

Power 12.58 kWh
Steam 42.79 kg

Fuel gas 55.30 kWh

2.3. Economic Costing

Levelised cost of hydrogen (LCOH) was used for a consistent comparison between the
processes and the comparative systems in the literature. LCOH estimates the H2 product
value required to recover lifetime project costs, as calculated in Equation (1):

LCOH =
∑n

t=1
TCIt+COMd,t

(1+r)t

∑n
t=1

Ht
(1+r)t

(1)

where n is the lifetime of the project, TCIt is the capital investment, and COMd,t is the cost
of manufacture in year t. Ht is the hydrogen generated in year t. The time value of money
is accounted for by the discount rate (r), which discounts costs to the present value over
the plant’s lifetime.

For economic quantification of CO2 capture, the cost of CO2 avoided (CCA) was
calculated; the CCA can be defined as the required carbon tax value for competitive CO2
capture against a benchmark plant [18], as calculated in Equation (2):

CCA =
LCOH − LCOHre f

EH2,re f − EH2

(2)

where LCOH and LCOHre f are the levelised cost of hydrogen (USD kgH2
−1) in the plant with

and without CO2 capture, respectively. EH2 and EH2,re f are the specific emissions per unit
production of H2 (kgCO2 kgH2

−1) of the plant with and without CO2 capture, respectively.
The total emissions include not only CO2 emissions in the flue gases, but also those

associated with imports and exports of electricity and steam. The specific emissions (kgCO2

kgH2
−1) were calculated as in Equation (3):

EH2 =

.
mCO2 +

(
.

Q
+

th −
.

Q
−
th

)
Eth +

( .
P
+

el −
.
P
+

el

)
Eel

.
mH2

(3)

where
.

mCO2 is flue gas CO2 mass flow rate and
.

mH2 is the H2 mass flow rate. Eth and Eel are

the thermal and electrical emissions factors, respectively.
.

Qth and
.
Pel are the thermal energy

and electrical power, with + and − subscripts to signify imports and exports, respectively.
Emission factors are taken from European Union data [34], where Eel is 0.391 kg kWh−1

and Eth is 0.224 kg kWh−1, assuming 90% natural gas boiler efficiency. Any emissions of
biogenic origin have been accounted as carbon-neutral.

Bare module costs were taken from Turton et al. [35] as much as possible, and the size
factor was accounted for using Equation (4):

log10Co
P = K1 + K2log10(A) + K3[log10(A)]2 (4)

where Co
P is the purchased cost of equipment at base case conditions (ambient operat-

ing pressure and carbon steel construction) and A is the size parameter. Aspen Plus–
derived size parameters were used to calculate equipment cost under base conditions.
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The purchased cost (Co
P) was then multiplied by a series of factors that account for de-

viations from the base conditions, including specific equipment type, system pressure,
and materials of construction, as outlined by Turton et al. [35,36] and described in the
Supplementary Materials (S2). Due to the corrosiveness of bio-oil, exposed process parts
were assumed as stainless steel. Remaining parts were assumed as carbon steel.

For systems and processing units where data was unavailable from Turton et al. [35], bare
module costs (Cmod) were acquired from the literature and scale-adjusted using Equation (5):

Cmod = Cmod,0

(
S
S0

) f
× I (5)

where f is the scaling exponent, Smod, and Cmod,0 and Smod,0 are the cost and size of the
reference case, respectively. The value I is the installation factor (where given). Table 3
details the process units costed using this method with associated data for Equation (5).

Table 3. Single point cost data for bare module cost.

Unit Base Size Base Cost (mUSD) f Installation Factor Year Ref.

WGS 15.6 Mmol h−1 CO + H2 36.9 0.85 1 2001 [37]
PSA 9600 kmol h−1 throughput 28 0.7 1.69 2001 [37]

CO2 capture (MDEA) 62.59 kg s−1 CO2 captured 104.2 0.8 - 2017 [37]
CO2 compression and drying 13 MW compressor power 17.9 0.67 - 2017 [18]

High temperature three-way valve 2 m3 s−1 0.1695 0.6 - 2014 [18]
HDS plant 30,000 BPD 16 0.65 - 1991 [31]

The refractory-lined reactor vessels in the SE-CLSR study were designed in more detail,
based on the methods of Peters et al. [38] and Hamers et al. [39]. This was performed due to
the identification of their influence on overall plant cost. Reactor volumes were estimated
via catalyst weight hourly space velocity (WHSV) and sorbent quantity. On the basis of
this reactor volume, the masses of steel and refractory material were calculated, providing
cost. Full details of calculations are available in the Supplementary Materials (S3).

To account for inflation, all costs were aligned to the year 2018 using the Chemical
Engineering Plant Cost Index (CEPCI):

CBM,2018 = CBM,base

(
CEPCI2018

CEPCIbase

)
(6)

where CEPCI2018 is the index value from 2018 (603.1) and CEPCIbase is the index value
from the year of the source cost. CBM,base is the cost in the base year and CBM,2018 is the
2018 adjusted cost.

Total capital investment (TCI) was calculated taking into account a number of addi-
tional factors. Firstly, fees were assumed at 3% of bare module costs CBM [35], a contingency
of 30% of CBM, as recommended by NETL for a concept with bench-scale data [40]. Con-
sideration for auxiliary facilities, such as site development and buildings, was accounted
as 50% of CBM. These generated a figure for total fixed capital investment (FCI). Working
capital was assumed at 15% of FCI, which when applied, created the TCI.

Operating costs were determined using the method from Turton et al. [35]. When
each operating factor is accounted for, the total cost of manufacture without depreciation
(COMd) is as shown in Equation (7):

COMd = 0.18FCI + 2.73COL + 1.23(CUT + CWT + CRM) (7)

where COL is operating labour costs, CUT is utility costs, CWT is waste treatment costs, and
CRM is costs of raw materials. Table 4 details further assumptions made for the calculation
of COMd.
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Table 4. Operating cost calculation assumptions.

Materials

Bio-oil price 0.2 USD kg−1 [41–43]
Methanol price 0.37 USD kg−1 [44]

Reforming catalyst/oxygen carrier price 20 USD kg−1 [45,46]
WGS catalyst price 60 USD kg−1 [47]

CaO sorbent 1.1 USD kg−1 [48]
WHSV for steam reforming 1 h−1 [49]

GHSV for WGS 3000 h−1 [45,50]
WHSV for reforming stage of SE-CLSR 0.8 h−1 [51]

Reforming catalyst lifetime (C-SR) 1 year Assumed
Oxygen carrier lifetime (SE-CLSR) 2 years Assumed

WGS catalyst lifetime 5 years [52]
CaO sorbent lifetime 2 years Assumed

MDEA solvent a 0.04 mUSD/year per kgCO2 /s [18]

Waste treatment

Waste water disposal 0.538 USD t−1 [53]
Catalyst recovery −0.11 USD/kg [54]

Utilities

Process water 2 USD m−3 [55]
Electricity (purchase) 100 USD MWh−1 [14]

Electricity (export) 50 USD MWh−1 [14]
Steam (purchase/export) 20.9 USD MWh−1 Calculated b

Natural gas 25 USD MWh−1 [14]
Cooling water 0.4 USD m−3 [55]

Other assumptions

Plant availability 360 days per year -
Conversion GBP to USD 1.29 [56]
Conversion EUR to USD 1.13 [56]

Labour cost for workers in UK industry GBP 40,000 per year [57]
Shifts worked per worker per week 5 -

Shifts per day 3 -
Weeks worked per year 47 -

a MDEA solvent cost estimated from [18] prorated to process size. b Based on natural gas boiler with 90%
efficiency [18].

2.4. Process Modelling Methodology

As previous studies on bio-oil steam reforming have achieved bio-oil conversion
and hydrogen yields close to 100% [49], an equilibrium-based approach has been used
throughout the Aspen Plus model. Peng–Robinson property method was selected as
suggested for hydrogen-rich applications [58] and used for similar applications in the
literature [51,59,60].

For all models, RGibbs reactors were used to simulate each reforming reactor. For
C-SR an isothermal reforming reactor is connected to an isothermal burner by an energy
stream, representing external firing on reformer tubes. For SE-CLSR, adiabatic RGibbs
blocks were utilised, where the outlet temperature is determined by Aspen Plus on a
chemical equilibrium basis. The WGS reactor was an adiabatic REquil reactor in which the
WGS reaction is specified, instead of an RGibbs block, to represent a reaction supported by
a catalyst selective to CO2 rather than CH4 production.

SE-CLSR reactors are difficult to simulate due to their packed bed design, in which
different stages (time intervals with different feed streams) are initiated by switching gas
inputs. Figure 1a illustrates how this is implemented in a packed bed, showing each
SE-CLSR stage with the catalyst redox changes. Figure 1b demonstrates the autothermal
cycle formed by each stage with a temperature–pressure diagram.
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To model this gas switching process in Aspen Plus, each stage is represented by a
different reactor block in the process flowsheet, despite them being of a singular vessel
design in reality. Conceptual separator blocks isolate solids from the outlet of the reactors
and are copied by transfer blocks as inputs to the next stage, rather than representing the
physical movement of material between reactors. This approach instead simulates the
retention of solids in the same reactor like a type of semi-batch process. Meanwhile, the
C-SR is modelled as a continuous, steady-state process.
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Separator blocks were used to simulate the PSA with a 90% H2 recovery and the
absorption-based capture process with 95% CO2 recovery. Energy demand for capture and
compression was taken from the work of Meerman et al. [62], who modelled an activated
MDEA process in syngas at similar conditions. Pressure drops in heat exchangers were
used as in the work of Seider et al. [63], and efficiencies of turbomachines were used as in
the work of Spallina et al. [47]. Other assumptions were as follows:

• Where gas volumes are given in Nm3, normal conditions are 20 ◦C and 1.01325 bar;
• Air is composed of 79% N2 and 21% O2;
• To ensure storage in liquid form, the bio-oil/methanol mixture is stored above its

vapour pressure (around 3 bar);
• All other fluid inputs enter the system at 25 ◦C and 1.01325 bar;
• Reactor pressure drop is 5% of inlet pressure;
• Heat exchanger minimum approach of 10 ◦C.

Flue gases from the furnace and gas turbine are cooled to 180 ◦C before emission to the
atmosphere [64]. Low-pressure (LP) steam at 6 bar and 160 ◦C is produced using process
excess heat and sold as a by-product [47]. The only system heat imports are fuel gas for
the net demands of C-SR and C-SR-CCS. The process flow diagrams for the Aspen Plus
models for C-SR without CO2 capture, C-SR with CO2 capture, and the SE-CLSR process
can be found in Figures 2–4, respectively. Reactions involved in each process are as in the
work of Spragg et al. [15].
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3. Results
3.1. Process Design Basis Selection

The process simulation performed on Aspen Plus provided sensitivity analysis for the
impact of parameters such as temperature, pressure, steam:carbon (S/C) feed molar ratio,
and steam export on the yield, thermal efficiency, and carbon emission potentials of each
process. These results were utilised for the selection of a design basis for further economic
analysis and comparison. The key conditions selected from the sensitivity analysis are
provided in Table 5, with rationale provided in the following two sections.
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Table 5. Design basis for economic comparisons.

C-SR C-SR-CCS SE-CLSR

Reformer pressure (bar) 30 30 20
Reformer temperature (◦C) 900 900 850

S/C ratio 5 5 2
NiO/C ratio - - 0.7

3.1.1. C-SR and C-SR-CCS

For the C-SR and C-SR-CCS processes, a reforming temperature of 900 ◦C was chosen,
which provided close to maximum yields and thermal efficiencies. A pressure of 30 bar
was also selected, which improved thermal efficiencies compared to lower pressures due to
the benefits in operations such as hydrogen compression demand, despite providing lower
reformer yields.

Under the C-SR scenario, increasing the S/C ratios between 3 and 7 boosted yields but
decreased thermal efficiencies. The additional H2 product was outweighed by the energy
demand for supporting increased steam use. However, if LP steam is exported from the
system, then increasing S/C between 3 and 5 provides marginally higher efficiencies as the
exported steam counters the initial energy input for raising the steam. Exporting steam
tends to increase thermal efficiencies by around 10%. However, not all plants will be able
to export their steam, so this should be scrutinised on a case-by-case basis.

Due to the complex impact of S/C on operation, the effect of varying S/C on LCOH
at varying scales has been analysed and is presented in Figure 5. It shows that there is
only a marginal difference in LCOH between S/C 3 and 5 scenarios. This arises because
the increased costs to raise the additional steam are offset by increased H2 yields and
furthered by steam export potential (Figure 5b). However, at S/C 7, the steam generation
costs are considerably greater, causing the increase in LCOH illustrated in Figure 5. These
results suggest an S/C of 5 may be optimal, especially when considering the added benefits
in catalyst carbon deposition, which is not considered in the analysis. An S/C of 5 has,
therefore, been selected for further economic evaluation.
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Figure 5 also shows the positive impact steam export has on the LCOH, reducing the
value by around 10%. This further reinforces the worth of external heat integration. For
C-SR-CCS, the process analysis showed the value of utilising the excess reforming heat
within the CO2 capture process and therefore holds inherent value.
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3.1.2. SE-CLSR

Sensitivity analysis with the SE-CLSR process showed that increasing the temperature
(T1 as in Figure 1b) above 850 ◦C decreases the overall yield, as does increasing the S/C
ratio. Therefore, 850 ◦C was selected for the base scenario and further analysis. The higher
NiO/C ratio required with high S/C ratios to sustain the autothermal temperature cycle
increases bed heat capacity, oxidation air requirement, and off-gas used for reduction.
Therefore, both yield and thermal efficiency are reduced with the higher solids inventory
associated with greater NiO/C ratios. For this reason, a low S/C ratio of 2 and NiO/C ratio
of 0.7 were selected for further techno-economic analysis.

If steam export is not included in the SE-CLSR process, increasing pressure between
20 and 40 bar leads to an approximately 5% drop in thermal efficiency. However, if steam
export is considered, thermal efficiency is not significantly affected by changes in pressure,
as the ability to export spare heat compensates for the drop in hydrogen yield. A pressure
of 20 bar was selected for further analysis, as the condition fits both scenarios.

3.2. Process Cost Comparison

The three processes applied with conditions selected in the design basis were com-
pared for economic performance. Fixed capital, cost of manufacture, and LCOH results
against capacity are presented in Figure 6. Here, the benefit of economies of scale is clear.
For example, in the case of SE-CLSR, LCOH is reduced by 19%, from USD 4.63 to USD
3.76 per kg H2 with an increase in process size from 10,000 to 100,000 Nm3 h−1.
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The LCOH for both SE-CLSR and C-SR-CCS is, as expected, greater than that of C-SR
without CCS, reflecting the costs of CO2 capture capabilities. SE-CLSR has comparable
fixed capital requirements to C-SR, but that is countered by the high costs of manufacture
forecasted for SE-CLSR. Nonetheless, the comparatively lower fixed capital range for SE-
CLSR is reflected in a marginally lower LCOH than for C-SR-CCS. However, accounting
for a level of uncertainty, the significance of this difference may be questioned.

Although the LCOH for each process option may be higher than that of other hy-
drogen production methods [65], these process options may still be competitive. Their
low-carbon/carbon-negative status provides additional value. Additionally, the Hydrogen
Council projects that H2 costs at the pump of USD 6 per kg would still be cost-competitive
for 15% of transport energy demand by 2030 [66].

The bare module and manufacturing costs have been broken down further for inter-
pretation as displayed in Figure 7 for C-SR-CCS and SE-CLSR. For both processes, the PSA
is the most costly module at 28% and 41% of totals for C-SR-CCS and SE-CLSR, respectively.
The CO2 capture unit for C-SR-CCS is a further 25%. This brings the total cost of gas
separation in C-SR-CCS (PSA and CO2 capture) to 53% of the total, whereas an equivalent
CO2 capture unit is not required for gas separation in SE-CLSR. The three-way valves
incorporated in SE-CLSR also contribute significantly at 13% of the total cost.
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process for (a) C-SR-CCS and (b) SE-CLSR.

Under both scenarios, bio-oil purchasing presents the most substantial manufacturing
cost at 42% and 61% of the total for C-SR-CCS and SE-CLSR, respectively. The greater
influence of bio-oil on SE-CLSR manufacturing cost is the case, in part, because of the
heat supplied from the bio-oil/methanol feeds rather than a cheaper fossil-fuel alternative,
such as natural gas. Nonetheless, the emission reduction potential is highly attractive
and should be factored into assessments. The electricity demand is also a noteworthy
contributor to SE-CLSR operating costs, highlighting potential benefits from optimising
towards greater self-sufficiency.
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3.3. Carbon Emission Comparison

Table 6 details the emission balance for each process. The net CO2 emissions are the
biogenic CO2 captured minus the fossil CO2 emissions, whereas the avoided CO2 is the
biogenic CO2 captured plus the difference in fossil emissions from the C-SR reference case.
SE-CLSR has a superior emission outlook to C-SR-CCS because only 10% of the system
CO2 emissions are derived from electricity import and methanol use. The rest of the CO2
is of biogenic origin, and all of the heat demand is met by the feedstock. For C-SR-CCS,
around 15% of process emissions are fossil-derived, in part from the methane (natural gas)
demand to top up the furnace requirements.

Table 6. Comparison of emissions from processes (kgCO2 kgH2
−1).

Process Fossil-Based
CO2 Emitted

Biogenic CO2
Captured

Net CO2
Emissions CO2 Avoided

C-SR 3.2 0 3.2 -
C-SR-CCS 0.46 8.7 −8.2 11.4
SE-CLSR 1.1 10.6 −9.5 12.7

The difference in the emissions is reflected in the cost of carbon, as presented in
Figure 8 where the CCA for SE-CLSR is lower than that for C-SR-CCS at all scales. For the
scale selection shown in Figure 8, the CCA of SE-CLSR ranges from 44 to 55 USD/teCO2,
whereas C-SR-CCS ranges from 52 to 72 USD/teCO2.
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Figure 8. Cost of carbon avoided in C-SR-CCS and SE-CLSR, compared to bio-oil C-SR base case.

The avoided emissions and associated CCA analysis above is based on the use of bio-oil
steam reforming as the reference case. If a conventional SMR process is used as a reference,
the CCA for the same capacity range is between 94 and 144 USD/teCO2 for SE-CLSR and
between 103 and 163 USD/teCO2 for C-SR-CCS. This is useful for comparison against other
bioenergy with carbon capture and storage (BECCS) processes presented by Consoli [67].
The CCA of bio-oil C-SR-CCS and SE-CLSR is competitive against combustion and ethanol
BECCS but 2–4 times greater than that of pulp/paper mills and biomass gasification.

3.4. Sensitivity

Figure 9 provides insight into the effect of key economic factors on the LCOH and
CCA through sensitivity analysis. As expected, due to the weight of bio-oil purchasing
on manufacturing costs (Figure 7), altering its price (+/−)20% has the largest impact on
LCOH compared to other costs. For example, a 20% decrease in bio-oil price results in
a 6.4% reduction in the LCOH for C-SR-CCS, whereas the same percentage reduction in
natural gas price results in a 2.5% reduction in LCOH for C-SR-CCS. An alteration in PSA
price has the greatest impact on LCOH of any of the bare module costs. This shows that
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future reductions or increases in the purchasing prices of these factors will significantly
impact the financial outlook of process implementation.
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Variations in MDEA and valve cost are of interest because price variations have a
limited impact on LCOH for C-SR-CCS and SE-CLSR but significantly influence CCA. For
example, a 20% increase in MDEA equipment cost would increase the CCA of C-SR-CCS by
almost 12%. Similarly, a 20% increase in the cost of three-way valves would boost the CCA
by 5.74% for SE-CLSR. Therefore, if there are strong future incentives for BECCS/negative
emissions, then plant operators need to be aware of factors such as this affecting the
processing costs.

3.5. Desulphurisation Impacts

As mentioned, desulphurisation is often unaccounted for in bio-oil reforming studies
due to the presumption of sufficiently low sulphur levels. Accordingly, a summary has
been generated of the technical and economic impacts of HDS implementation based on a
naphtha HDS system, reducing sulphur levels from 0.2 wt% to 1 ppmwt [31]. This is likely
to far exceed the needs of a bio-oil plant and provides a conservative outlook for feasibility
assessment. The analysis shows that despite the minimal impact on thermal efficiency and
yields, the 11% addition bare module costs at a 10,000 Nm3

H2 h−1 scale would increase the
LCOH by 5% from 3.93 to 4.13 USD kgH2

−1.
This analysis does not incorporate the positive impact desulphurisation may have on

catalyst lifetime and, therefore, plant economics. As such, Figure 10 shows the effect of
reforming catalyst lifetime on LCOH for C-SR at 10,000 Nm3 h−1. It shows that beyond
a two-year catalyst lifetime there is not much difference in LCOH. However, below this
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and between 0 and 1 years particularly, there are definite benefits of prolonging the catalyst
lifetime. In practice, the benefit of an improved lifetime would be superior to that shown
in Figure 10 as fewer catalyst replacements would facilitate lower maintenance costs,
downtime, and safety impacts. An improved understanding of catalyst lifetime in bio-oil
reforming is required to further analyse and quantify the effects of improvement strategies.
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syngas [68] or Matheson’s Nanochem GuardBed used for bio-ethanol, bio-diesel, and biogas
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used as the reference to calculate CCA, the CCA increased to USD 90 to USD 160 per te
CO2 because methane is a considerably less expensive feedstock. However, for larger-scale
plants (100,000 Nm3 h−1), the CCA of USD 95 to USD 105 per te CO2 was within the range
of BECCS in other industries.

Significant contributors to process cost were the PSA system, CO2 capture (in the
case of C-SR-CCS), and three-way valves (in the case of SE-CLSR). The high capital cost of
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