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Abstract: We address the following question: Are turning points of daily air temperature function
a piece of relevant climatological information worth recording and analyzing? Diurnal Extrema
Timing (DET) are daily occurrence times of air temperature minimum and maximum. Although
unrecognized and unrecorded as a meteorological variable, the exact timing of daily temperature
extrema plays a crucial role in the characterization of air temperature variability. In this study,
we introduce the DET concept and assess the plausibility of this potential parameter in detecting
temperature extrema timing changes. Conceptualization of the DET parameter has, for a primary
goal, the supplementation of vital spatial information to the daily measurements of air temperature
extrema. The elementary analysis of annual trends of daily DET examines the significance of this
parameter in describing changes in the time domain of air temperature variability. The introduction
of the new Climate Parameter Sensitivity Index (CPSI) for evaluating the susceptibility of climate
parameters to climate change directs attention to the importance of the systematic acquisition of the
timing of daily extrema in climate observations. The results of this study reveal the timing of daily
air temperature maximum as the most vulnerable to climate change among temperature and timing
extrema indices.

Keywords: air temperature; climate change; climate indices; daily temperature extrema; extrema
timing; mid-latitude; temperature variability; trend analysis

1. Introduction

The importance of accurate identification of daily extrema for climatological analysis
and various scientific operations cannot be overstated. Due to the common absence of
long-term high-frequency air temperature observations, daily extrema are often the only
available choice for climate analysis. Consequently, the authenticity of air temperature
trend analysis and daily mean calculation is often entirely dependent on the accuracy of
daily extrema [1–4].

A proper definition of daily temperature extrema is the key to understanding and
correctly recreating diurnal temperature variability. Discrete identification of daily air
temperature extrema is, by rule, the selection of the highest and lowest temperatures of the
day involving a common search interval for maxima and minima. However, the discrete
air temperature extrema search is strongly conditioned by the selection of length and the
starting point of the extrema search window. Consequently, the vagueness of the daily
extrema definition presents a root cause of systematic biases in temperature observations.
The frequent mischaracterization of daily minima is found to be induced by the rigidity of
the climatological observing window and the lack of consideration for the geographical
location of the observational site. An improved climatological day, however, needs to
take into account the season and latitude of the site to accommodate the identification of
extrema within continuous nighttime and daytime intervals. Daily extrema identified in
such a way represent the mathematical extrema or the turning points of the oscillatory air
temperature function [5].
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Identification of daily temperature extrema is further aggravated by various factors,
inducing observational and physical inhomogeneities to the extrema time series. On
one hand, the effects of changes in instrumental sampling rates and average processing
algorithms, that are based on instantaneous values of meteorological variables, are a large
cause of uncertainty and bias in daily extrema reporting [6,7]. On the other hand, a
disregard for the physical heterogeneity of temperature time series is a concealed cause
of improper extrema definition [8]. The physical nature of daily temperature extrema,
distinguishable based on the timing span between minima and maxima, is systematically
disregarded due to the absence of the timing observation of daily extrema. Furthermore,
the interpretation and reconstruction of air temperature variability, based solely on daily
extrema, rest on the knowledge of daily extrema timing. As a result, diurnal extrema
timing plays a crucial role in the calculation of areas under the temperature curve for the
estimation of air temperature-related quantities using degree-day formulae [9].

Numerous scientific efforts to generate diurnal temperature wave, based exclusively
on daily extrema, witness the lack of important temporal information necessary for the
recreation of daily temperature variability. Various algorithms for the generation of hourly
temperature values using daily minimum, maximum, and mean of daily extrema extend
beyond the domain of climatological use [10–12]. The information when the derivative
of the daily temperature curve changes its sign is critically important for a wide range of
scientific applications. Diurnal extrema timing is necessary for the improvement of air,
soil, and water temperature modeling, civil engineering building simulation programs,
calculating chilling units and chill hours for agricultural applications, and other degree-day
estimations [13–21].

Hourly temperature data are usually modeled by fitting an algorithm through daily
extrema located at assumed or estimated times of their daily occurrence. One study applied
a method of temperature approximation assigning the calculated sunrise time to a daily
minimum and a fixed local standard time for a maximum [22]. Other examples describe
a simple cosine fit of a three-term cosine Fourier series to parts of the diurnal curve at
assumed local standard times. A different study applies a hyperbolic tangent function with
the temperature transformed to a linear function of the hour and a cosine fit with variable
sunrise to obtain the diurnal temperature distribution [23].

Regardless of the intended use of artificial temperature data, the best fit is achieved
when approximating function connects consecutive extrema of known temperature-time
coordinates. Synthetic temperature data based on correctly identified extrema and their
timing are a platform for modification of a standard degree-day approach [24]. The improve-
ment in the calculation of daily temperature-related quantities based on diurnal extrema
timing goes beyond the estimation of snowmelt and meltwater refreezing volumes [9,24].
The knowledge of the diurnal extrema timing represents a basis for the extension of the
temperature-index approach in general.

However, despite the obvious or implied need for knowledge on the position of daily
temperature extrema, the timing of daily temperature extrema has not yet acquired the
status of an observed variable.

In this work, we analyze hourly air temperature data from twenty-four Canadian
stations to identify the turning points of the temperature-time function and examine their
timing as information of potential climatological significance. To achieve that, we apply
an alternative climatological observing window to determine mathematical extrema and
avoid the identification biases in air temperature minima [25]. The extrema timing obtained
in such a way reveals the exact points in which daily air temperature function changes its
sign. The use of mathematical extrema in this assessment bypasses inherent temperature
and timing biases. Further, we examine the credibility of the information carried by this
prospective parameter by studying its trends and time shifts in historical air temperature
time series. Finally, we explore the sensitivity of the diurnal extrema timing parameter to
climate change in contrast to its temperature extrema counterparts.
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1.1. Definition of Air Temperature Extrema

The diurnal extremum point of a continuous temperature-time function is defined
as a set of air temperature–time coordinates (t, T) with Diurnal Extrema Timing (DET) as
the x-coordinate, and air temperature value of the extremum point being the y-coordinate.
Obtaining daily temperature extrema for various climatological applications is considered
a common task. However, routine extrema search does not necessarily yield the intended
information, i.e., a diurnal pair of mathematical extrema. Mathematical air temperature
extrema are the points on a temperature-time curve in which the daily temperature trend
changes its sign, and the derivative of temperature function equals zero. Due to the lack of
means for determining Diurnal Mathematical Extrema (DME) in practice, one naturally
resorts to discrete methods for identifying the smallest and the largest value of temperature
over a 24-h search period. The discrete extrema search applied on a calendar-based scale
often omits the true temperature extrema and instead identifies the endpoints of the
search period. Diurnal Endpoint Extrema (DEE) are the highest and the lowest identified
temperature points found at the start or at the end of a time discretization interval for
extrema search.

1.2. Diurnal Extrema Timing

Contrary to the concept of time playing the role of an independent variable in air
temperature-time functional dependence, with the temperature being a periodic function
of time, the timing of diurnal extrema plays a role of a variable that positions extrema
within the temperature-time plane. We define DET as the occurrence time (t) of a daily air
temperature minimum (tn) and maximum (tx). The DET parameter presents two distinct
points on the continuous air temperature curve that identify daily extrema with respect
to temperature and time axes. Variations in temperature magnitude on the vertical axis
define the amplitude and vertical shift of the temperature function. The horizontal shift
on the x-axis, reflecting the phase and frequency of daily air temperature variation, results
from the change in the timing of extrema occurrence. Figure 1 presents a set of typical
seasonal curves of averaged daily variability on the example of Toronto, Ontario, Canada
(43◦40′38” N, 79◦37′50” W), and the seasonal dependence of the DET parameter. The
temperature-time pair (t, T) consisting of temperature extreme values for maximum (Tx)
and minimum (Tn) is supplemented here with the DET of maximum (tx) and minimum (tn).
Subsequently, we refer to a daily minimum as the (tn, Tn) and maximum as the (tx, Tx) pair.
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is denoted as tn, while Diurnal Extrema Timing maximum is denoted as tx. Abbreviations: Win rep-
resents Winter, Spr represents Spring, Sum represents Summer, and Fal represents Fall. 

Figure 1. Averaged daily variability of a temperature-time function during four seasons on the
example of Toronto, Ontario, Canada (43◦40′38” N, 79◦37′50” W). Diurnal Extrema Timing minimum
is denoted as tn, while Diurnal Extrema Timing maximum is denoted as tx. Abbreviations: Win
represents Winter, Spr represents Spring, Sum represents Summer, and Fal represents Fall.
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Three different types of oscillatory behavior are observable on this graph: a periodic
diurnal minimum to maximum air temperature oscillation, a vertical seasonal variation
of diurnal curves due to seasonal temperature changes, and, lastly, a horizontal variation
due to seasonal changes in time of occurrence of daily temperature extrema. The vertical
oscillation of all four curves represents the annual variation between diurnal temperature
averages. Horizontal oscillation in opposite directions, for each, the timing of minima and
maxima, represents a seasonal shift in the timing of extrema.

1.3. Canadian Temperature Extrema Bias

Canadian air temperature recording history has been associated with difficulties in
defining the starting point of the observational window. On 1 July 1961, the nationwide
observing time for air temperature recording was redefined to correct the mischaracteriza-
tion of diurnal minima caused by the preceding observing window. The starting point of
the Canadian temperature observing window was changed from 0:00 UTC to 6:00 UTC
to alleviate the observational bias in minima [26]. Nonetheless, the change to the new
observing window introduced the cold bias to the observations by increasing the potential
for recording minimal temperatures on two consecutive days, affecting 15% to 38% days
annually [27]. Changes to the time limits of the day have been known in general to affect
the records of a daily air temperature minimum [28,29].

1.4. Calendar Day vs. Climatological Day for Extrema Observations

A climatological day is the extent of the observational day used to identify extrema
that are reflective of air temperature variation. Yet, the climatological day presently in use
frequently reaches out of the bounds of a 24-h period in attempts to capture the true extrema.
For meteorological sites in Canada reporting two daily observations of temperature extrema,
the operational definition of a daily air temperature minimum and maximum differs from
the calendar day definition that applies only to sites reporting extrema once per day. The
reason for the development of the climatological day in place of a calendar day was to
improve the capturing of true “peaks and lows” of periodic temperature variation [30].

1.5. Climatological Observing Window

A climatological observing window (COW) is a time frame over which continuous or
extreme air temperature measurements are collected. A fixed 0–24 h observing window,
(COW0–24), potentially leads to misidentification of minima due to fragmentation of the
nighttime into two subsequent segments caused by the time discretization interval [5]. As
a result, some identified diurnal minima do not conform with the definition of the DME.
Systematic fragmentation of the nighttime period, caused by the rigidity of the COW0–24
search window’s position, is further magnified by the inconsistency of applying a COW
indifferent to latitude and season of temperature observing location. However, correct
identification of diurnal temperature extrema is achievable using a COW that identifies
a minimum over a nighttime period and a maximum over a daytime period, per sunrise
and sunset times. The Climatological Observing Window Night and Day (COWN–D) aims
to identify the true turning points of the air temperature-time function. A randomly
selected measured air temperature interval presented in Figure 2 contrasts the performance
of COW0–24 and COWN–D extrema identification methods in air temperature tracking.
Linear temperature tracking refers to the approximation of hourly temperatures between
daily extrema points for the validation of extrema identification methods. This subject is
explored later in this paper. The temperature approximating curve based on COWN–D
diurnal extrema pairs (blue curve) visibly conforms better with the observed temperatures
(gray line) in comparison with the approximating curve based on daily extrema obtained
by the COW0–24 method (red curve).
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Figure 2. Comparison of COW0–24 and COWN–D observing windows. Linear temperature tracking
highlights the effect of the choice of a diurnal observing window on the accuracy of temperature
extrema identification. Gray solid lines represent measured hourly temperature, while red and blue
lines correspond to linearly interpolated temperatures based on COW0–24 and COWN–D extrema.
Hatched areas represent the duration of nighttime, while vertical yellow lines indicate sunrise. The
COW0–24 days extend between consecutive midnights (vertical black dotted lines), while COWN–D

days extend between consecutive sunrises (vertical solid yellow lines).

Examples of incorrect characterization of minima by the COW0–24 extrema identifi-
cation method are evident on the third, the fourth, fifth, and sixth day of the temperature
sample in Figure 2, mostly due to the association of the COW0–24 minima with the second
nighttime segment.

If the temperature in the second night segment is lower than the temperature in the
first night segment, such as on the third, fifth, and the sixth day, the COW0–24 extrema
identification method omits the warmer minimum occurring in the first night segment
and instead identifies a DEE or the endpoint as a minimum in the second night segment.
On the fourth day, the COW0–24 method skips the legitimate warmer minimum due to
double-counting of the same temperature dip with the previous day. On the fifth day,
the COW0–24 extrema identification method wrongfully identifies a DEE, specifically an
endpoint minimum, and continues to the sixth day by omitting one more time the warmer
first segment minimum. On all other days, except for the second day, minima and maxima
detected by the COWN–D method better coincide with the true extrema. The COWN–D
skips the second-day and the sixth-day minimum that occurs just after dawn due to the
fact that the method searches exclusively for the nighttime minima.

2. Materials and Methods
2.1. Air Temperature Data and Analysis

Hourly air temperature data from twenty-four international or regional airports
(Table 1, Figure 3) were obtained from the digital archive of Environment and Climate
Change, Government of Canada [31]. The majority of weather station records encompass
66 years of data, apart from the 64 year-long air temperature record from Cold Lake (Al-
berta), and a 60 year-long record from St. John’s (Newfoundland and Labrador). Although
air temperature measurements at Baker Lake (Nunavut) extend over the entire study range,
the interval from 1953 to 1963 is excluded from the timing analysis due to the data sparsity
problem. All hourly temperatures used in this study were recorded in Local Standard
Time (LST). The percent of missing data varies between 0.03 (Vancouver, Toronto, Montreal,
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Moncton) to 1.49 percent (Trenton) of missing hourly measurements over the length of the
acquired data range.

Table 1. List of weather stations used in the study. All temperature data examined in this study
represent hourly measurements obtained from Canadian international or regional airports using
consistent observation standards. Hourly temperature data range from the year 1953 to 2018 for
most stations.

Provinces & Territories Location Latitude (◦N) Longitude (◦W) Data Range Missing Data (%)

Alberta Calgary 51.1139 114.0203 1953–2018 0.04
Cold Lake 54.4167 110.2833 1955–2018 0.10
Fort McMurray 56.6500 111.2167 1953–2018 0.35

British Columbia Vancouver 49.1950 123.1819 1953–2018 0.03
Victoria 48.6472 123.4258 1953–2018 0.07

Manitoba Churchill 58.7392 94.0664 1953–2018 0.17
Winnipeg 49.9167 97.2333 1953–2018 0.06

New Brunswick Fredericton 45.8776 66.5279 1953–2018 0.13
Moncton 46.1053 64.6838 1953–2018 0.03

Newfoundland & Labrador Goose 53.7083 57.0350 1953–2018 0.06
St. John’s 47.6222 52.7428 1959–2018 0.05

Nova Scotia Greenwood 44.9833 64.9167 1953–2018 0.05
Yarmouth 43.8308 66.0886 1953–2018 0.16

Ontario Ottawa 45.3225 75.6692 1953–2018 0.05
Toronto 43.6772 79.6306 1953–2018 0.03
Trenton 44.1167 77.5333 1953–2018 1.49

Prince Edward Island Charlottetown 46.1719 63.0743 1953–2018 0.13
Quebec Bagotville 48.3333 71.0000 1953–2018 0.04

Montreal 45.2814 73.4427 1953–2018 0.03
Saskatchewan Estevan 49.2167 102.9667 1953–2018 0.07

Saskatoon 52.1667 106.7167 1953–2018 0.06
Northwest Territories Yellowknife 62.2746 114.2625 1953–2018 0.05
Nunavut Baker Lake 64.2989 96.0778 1963–2018 0.69
Yukon Whitehorse 60.7094 135.0686 1953–2018 0.04
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Figure 3. The map of twenty-four locations of weather stations used in this study presented on the
map of Canadian climate regions (source: Environment Canada, Atmospheric Environment Service,
Climate Research Branch, 1998, Climate Trends and Variation Bulletin for Canada, Ottawa).

Data analysis was conducted in the R programming language [32] using the following steps:
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1. Daily minimum and maximum and their timing are identified using COW0–24 and
COWN–D methods to obtain a series of daily extrema. A common point between the
methods is that both use MIN/MAX functions to find the lowest/largest number on a
preselected time interval. The key difference between the methods is the specification
of the search interval. While the COW0–24 extrema identification method identifies the
lowest and largest value within the 24-h interval starting at midnight, the COWN–D
method divides 24 h into a daytime and nighttime interval starting at sunrise and
sunset, respectively. The COWN–D approach uses the advantage of prior knowledge
or expectation that true mathematical extrema occur during separate nighttime and
daytime periods. The extrema further serve as connection points for artificial temper-
ature generation used in the testing of conformity of air temperature tracking with
hourly temperature observations.

2. Air temperature tracking connects consecutive extrema into a continuous approxima-
tion of temperature variability used for the calculation of hourly differences between
measured and calculated temperatures. The accuracy of each hourly point generated
by COW0–24 and COWN–D methods is verified against the measured temperature for
comparing the performance of COW methods in the identification of mathematical
extrema. The error distributions in air temperature tracking are then contrasted for
benchmarking and identification of systematic biases. Due to the higher accuracy of
the COWN–D search method in temperature tracking, the COWN–D chronologically or-
dered sequence of daily temperature extrema is used further as a close representation
of true temperature variability.

3. The daily mean of extrema, i.e., the Min-Max Average (MMA), and the difference
between daily maximum and minimum, i.e., Diurnal Temperature Range (DTR) are
determined for calculation of discrepancies between the COW0–24 and COWN–D
extrema identification methods.

4. Nighttime and daytime populations of minima and maxima temperature-time pairs
are further divided into “before” and “after” subpopulations for the examination of
counts and their “migration” across midnight and noon delineations. The migration
of DET counts refers to a displacement of “before” timing members to the “after”
subpopulations effectively causing shifts in minima and maxima timing.

5. The timing subpopulations are subjected to analysis of time trends and shifts in
historical temperature-time series. Time trends of timing subpopulations are analyzed
using the Mann–Kendal (MK) trend test in the R code.

6. The sensitivity of diurnal temperature and timing parameters to climate change is
evaluated afterward with the newly introduced Climate Parameter Sensitivity Index
that examines the change of temperature and timing indices relative to their range
of variability.

2.2. Identification of Diurnal Temperature-Time Extrema Pairs

The application of the COW0–24 search method to hourly air temperature data series
creates a temperature-time extrema population from a common search interval. The
COWN–D method, on the contrary, separates search periods into nighttime and daytime
segments to identify one temperature-time extremum per interval (Figure 4).
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Figure 4. Approach for diurnal air temperature analysis and comparison of COW0–24 and
COWN–D methods.

Populations of COW0–24 and COWN–D temperature-time pairs are then utilized for
air temperature tracking and averaging assessment. Due to the different starting points
and lengths of the search interval, two discrete search methods will generate a temperature
discrepancy based on a number of disparate extrema. Diurnal air temperature-time (t, T)
pairs obtained using 0–24 h time discretization scale are referred to as “0–24 Minima and
Maxima Extrema Pairs.” In contrast, the (t, T) pairs obtained using the Night and Day
discretization scale are denoted as “Nighttime Minima and Daytime Maxima Extrema
Pairs.” The COWN–D extrema identification method produces a chronologically ordered
extrema sequence consisting of consecutive Nighttime Minima (Ntn, NTn) and Daytime
maxima (Dtx, DTx) temperature-time pairs.

Differences in diurnal extrema between the COW0–24 and COWN–D methods are most
evident in the identification of minima. A misidentified extremum produces an incorrect
connection point for the air temperature approximating function. Consequently, the long-
term accumulation of such extrema presents a cause of systematic biases in air temperature
tracking, averaging, and climate analysis and application.

2.3. Linear Temperature Tracking

Linear temperature tracking is a procedure for the evaluation of the COW method’s
accuracy in the identification of daily mathematical extrema (Figure 2). The linear tracking
procedure consists of the following steps:

a. Consecutive daily extrema are linearly connected and air temperatures for hours in
between the extrema are calculated. This step yields two artificial or recreated sets of
hourly temperatures based on COW0–24 and COWN–D extrema.

b. The calculated hourly temperatures are compared to the corresponding measured
hourly temperatures to form two sets of hourly differences or errors associated with
COW0–24 and COWN–D extrema identification methods.

c. Two sets of error distributions in linear tracking are then statistically assessed and
compared against each other for accuracy benchmarking. The benchmarking criteria
are symmetry, mean, and standard deviation of the distribution.

2.4. Annual averaging of COW0–24 and COWN–D Air Temperature Extrema

Annual averages of COW0–24 and COWN–D daily minima (Tn), maxima (Tx), Min-
Max averages (MMA), and diurnal temperature ranges (DTR) are calculated for demon-
stration of COW effects on the selection of daily extrema and comparison of annual
temperature discrepancies.
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2.5. Analysis of Diurnal Extrema Timing

Figure 5 presents steps for the analysis of nighttime and daytime DET populations,
and their subpopulations obtained using the COWN–D extrema search method.
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Nighttime minima and daytime maxima periods of the COWN–D extrema search
method extend between sunrise and sunset. It is generally expected that minima occur close
to sunrise, while maxima are expected after the meridional noon, on days when temperature
changes are predominantly driven by solar radiation. However, on days when air mass
movements dominate air temperature changes, daily extrema can occur at various times.
Hence, we divide nighttime minima and daytime maxima timing populations into smaller
diurnal timeframes using midnight and noon delineation points to improve the accuracy
of long-term DET averaging, greatly affected by the 0–24-h day partitioning. Since we
correlate DET with hourly integers that correspond to reported hourly temperatures, high
integer values associated with the “before midnight” DET occurrences complicate diurnal
averaging of this parameter and justify the separation of the nighttime DET population.
The separation of the daytime and nighttime DET populations around midnight and noon
delineation points is also based on physical differences between the “regular” and the DET
populations that achieve the temperature extremum outside of their expected, radiatively-
driven timing range. Accordingly, the midnight delineation further divides the nighttime
minima timing population into the Before Midnight Minima (BMMtn) and After Midnight
Minima (AMMtn) subpopulations, while the noon divides daytime maxima into the Before
Noon Maxima (BNMtx) and After Noon Maxima (ANMtx) timing subpopulations. The
AMMtn and ANMtx subpopulations are further subjected to the time evolution analysis for
identification of extrema migration, and the subsequent averaging and trend analysis of the
accrued changes to the annual DET. Trends analysis of AMMtn and ANMtx subpopulations
is employed using the Mann–Kendal (MK) trend test in the R code. The MK test is a
commonly used nonparametric test for assessing the significance of monotonic time trends
in variables with no assumption on the data to be normally distributed.

2.6. Climate Parameter Sensitivity Index (CPSI)

In this work, we introduce the Climate Parameter Sensitivity Index (CPSI) for the
evaluation of the susceptibility of temperature and timing indices to external changes in
climate relative to the parameter’s range of variability. Equations (1)–(3) relate to estimation
of the CPSI value of the nighttime temperature minima of a location, while Equations (4)–(6)
relate to estimation of the CPSI of the associated AMM timing subpopulation.

In simple terms, CPSI is defined as the ratio of two types of variability, the one that
is ascribable to climate change and the other that represents the overall variability of the
parameter (Equations (1) and (4)). Climate change variability is quantified as the slope of a
linear trend of parameter’s annual averages calculated for the length of the study range and
multiplied by the time range (Equations (2) and (5)). The overall variability of a parameter
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can be specified as a standard deviation of detrended data or the difference between the
largest and the lowest parameter’s observed value (Equations (3) and (6)).

The estimation of the CPSI for the Nighttime Temperature Minima (NTn) parame-
ter (Equation (1)) contrasts the change in the nighttime minima attributable to climate
change (Equation (2)) with the change in the overall variability range of the nighttime
minima (Equation (3)):

CPSI(NTn) =
∆NTn

δNTn
(1)

where:
CPSI(NTn) = Climate sensitivity index of the nighttime temperature minima.
∆NTn = Variability of the nighttime temperature minima due to climate change.
δNTn = Overall variability range of the nighttime temperature minima.

∆NTn = mlin(NTn)· (time range) (2)

mlin(NTn) = Slope of the linear trend of the nighttime minima.
time range = Length of the study range.

δNTn = max(NTn)−min(NTn) (3)

max (NTn) = Largest recorded nighttime minimum.
min (NTn) = Smallest recorded nighttime minimum.
While these definitions of parameter’s variability ranges are open to modification, we

emphasize that the main purpose of CPSI evaluation is to: (i) quantify the parameter’s
sensitivity to climate change and (ii) allow for quantitative intercomparison of different
parameters and the ranking of their sensitivity to climate change.

The estimation of the CPSI for the After Midnight Minima timing (AMMtn) parameter
(Equation (4)) contrasts the change in the timing of the nighttime minima attributable to
climate change (Equation (5)) with the change in the overall variability range of the timing
of the nighttime minima (Equation (6)):

CPSI(AMMtn) =
∆AMMtn

δAMMtn
(4)

where:
CPSI(AMMtn) = Climate sensitivity index of the AMMtn parameter.
∆AMMtn = Variability of the AMMtn parameter due to climate change.
δAMMtn = Overall variability range of the AMMtn parameter.

∆AMMtn = mlin(AMMtn)· (time range) (5)

mlin(AMMtn) = Slope of the linear trend of the AMMtn parameter.
time range = Length of the study range.

δAMMtn = max(AMMtn)−min(AMMtn) (6)

max(AMMtn) = Largest recorded AMMtn parameter.
min(AMMtn) = Smallest recorded AMMtn parameter.
The climate sensitivity of the Daytime Temperature Maxima (DTx) and After Noon

Maxima timing (ANMtx) are calculated using the same principles from Equations (1)–(6).

3. Results

The results of air temperature analysis, extrema timing analysis, and ranking of air
temperature and timing parameters are presented in the following sections according to
locations of individual weather stations within Canadian climate regions (Figure 3).
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The conformity of linearly tracked with measured hourly temperatures is evaluated
first for obtaining a qualitative criterion used for the rating of success of discrete search
methods in the identification of extrema. The following parts of this section compare the
annual averages of COW0–24 and COWN–D daily extrema indices before presenting the
DET and the CPSI elements of analysis.

3.1. Conformity of Linear Air Temperature Tracking with Hourly Temperature Measurements

Diurnal temperature-time extrema pairs, identified with the COW0–24 and COWN–D
methods, are used to provide the connection points for air temperature interpolation.
The key element for accurate reconstruction of the diurnal temperature-time T(t) curve,
based on minimal data inputs, is the DET parameter that provides a spatial element
to each measured air temperature value within the temperature-time space. The most
plausible temperature reconstruction is achieved with piecewise functions that connect
in extrema. Figure 6 displays distributions of differences between hourly measured and
interpolated temperatures at four different stations based on daily extrema identified
with COW0–24 and COWN–D search methods. The COW0–24 (red) distributions present
errors in linear temperature tracking based on COW0–24 extrema. Likewise, the COWN–D
(blue) distributions present errors in temperature tracking using COWN–D extrema as
connection points.
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The criteria for comparison of linear air temperature tracking between COW0–24 and
COWN–D extrema search methods against true temperature measurements are shape, mean,
and standard deviation of compared error distributions.

The COWN–D (blue) distributions of four locations from the Great Lakes/St. Lawrence
Lowlands region systematically display more symmetric and narrower histograms in com-
parison with COW0–24 (red) distributions obtained from the errors associated with the
linear tracking based on COW0–24 extrema. Consistent negative left-hand side bias, observ-
able in all COW0–24 error distributions of all studied stations (presented in Appendix A),
appears to be related to minima mischaracterization caused by the omission of warmer
diurnal minima, therefore resulting in a larger number of negative differences between the
measured and calculated temperature extrema.

The COWN–D method’s narrower distribution around zero is further confirmed by the
summary statistics for the twenty-four temperature time series presented in Table 2.

Table 2. The mean and standard deviation of COW0–24 and COWN–D error distributions presented
in Figure 6 and Appendix A.

Provinces & Territories Location COW0–24 COWN–D

Mean (◦C) Std Dev (◦C) Mean (◦C) Std Dev (◦C)

Alberta Calgary −0.49 2.68 −0.18 1.98
Cold Lake −0.30 2.14 −0.11 1.56
Fort McMurray −0.33 2.45 −0.12 1.77

British Columbia Vancouver −0.54 1.99 −0.15 1.42
Victoria −0.32 1.44 −0.09 1.04

Manitoba Churchill −0.31 1.83 −0.14 1.50
Winnipeg −0.36 2.41 −0.09 1.67

New Brunswick Fredericton −0.48 2.20 −0.30 1.62
Moncton −0.53 2.09 −0.27 1.50

Newfoundland & Labrador Goose −0.44 1.93 −0.21 1.45
St. John’s −0.70 1.82 −0.35 1.35

Nova Scotia Greenwood −0.54 2.14 −0.23 1.55
Yarmouth −0.52 1.75 −0.23 1.30

Ontario Ottawa −0.37 1.91 −0.18 1.41
Toronto −0.44 2.05 −0.18 1.45
Trenton −0.36 2.09 −0.07 1.53

Prince Edward Island Charlottetown −0.49 1.77 −0.24 1.31
Quebec Bagotville −0.50 2.17 −0.26 1.64

Montreal −0.28 1.83 −0.06 1.36
Saskatchewan Estevan −0.52 2.65 −0.30 1.89

Saskatoon −0.36 2.48 −0.17 1.77
Northwest Territories Yellowknife −0.13 1.70 −0.05 1.40
Nunavut Baker Lake −0.08 1.59 −0.05 1.42
Yukon Whitehorse −0.12 1.97 −0.04 1.58
Canadian Averages −0.40 2.07 −0.17 1.53

Overall, the error distribution associated with the COWN–D method displays a smaller
mean and standard deviation than the COW0–24 method, thus confirming a closer agree-
ment between measured and linearly interpolated temperature curves. Therefore, based on
a qualitative inspection of symmetry and quantitative measure of mean and standard devi-
ation, it can be concluded that the COWN–D air temperature tracking visibly outperforms
the COW0–24 method in all instances in a remarkably similar fashion.

3.2. Comparison of Annual Averages of COW0–24 and COWN–D Daily Temperature Extrema

The effects of COW selection on annual temperature averaging are illustrated on
examples of the Great Lakes/St. Lawrence Lowlands climate region stations in Figure 7.
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Figure 7. Effect of the observing window on long-term air temperature averaging for the Great
Lakes/St. Lawrence Lowlands climate region at Toronto (a), Trenton (b), Ottawa (c), and Montreal
(d) stations. Annually averaged diurnal air temperature minima, maxima, and Min-Max averages
obtained with COW0–24 and COWN–D air temperature approximating methods.

On each graph, the blue lines represent annual averages of minima, the dark blue
corresponding to COW0–24, and light blue to COWN–D minima. The red lines represent
annual averages of maxima, the dark red corresponding to COW0–24, and light red to
COWN–D maxima. Brown and black lines represent diurnal averages of extrema, or Min-
Max averages, based on COW0–24 and COWN–D extrema, respectively.

Annual averages of the COW0–24 and COWN–D methods yield consistently very
similar slopes for all six temperature indices at Toronto (ON), Trenton (ON), Ottawa (ON),
and Montreal (QC) locations of the Great Lakes/St. Lawrence Lowlands climate region.
Similar observations can be made for all other examined Canadian temperature-time series
(presented in Appendix B).

Table 3 summarizes temperature discrepancies between annual averages of COW0–24
and COWN–D diurnal temperature indices.

The most considerable differences between the two COW discrete search methods
are observable in annually averaged air temperature minima. The COWN–D minima are
systematically warmer and positively shifted by ~0.73 ◦C, on average, compared to the
COW0–24 minima, thus revealing the cold bias in minima associated with the COW0–24
method. On the other hand, the COWN–D based maxima are systematically lower by 0.41
◦C, revealing a warm bias in maxima associated with the COW0–24 method. The COWN–D
Min-Max Averages (MMA) are warmer, on average, by ~0.17 ◦C than the COW0–24 MMA.
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Table 3. Discrepancies between COW0–24 and COWN–D annual averages of diurnal temperature
indices. All temperature data examined in this study represent hourly measurements obtained from
Canadian international or regional airports using consistent observation standards. Large differences
in temperature trends and discrepancies between individual data sets are the result of regional climate
differences. ∆Tmin represents differences between COW0–24 and COWN–D minima, while ∆Tmax

represents differences between COW0–24 and COWN–D maxima. MMA stands for Min-Max Averages,
while DTR stands for the Diurnal Temperature Range.

Provinces & Territories Location ∆Tmin ∆Tmax ∆MMA ∆DTR

(◦C) (◦C) (◦C) (◦C)

Alberta Calgary −0.74 0.35 −0.19 1.01
Cold Lake −0.70 0.32 −0.19 1.02
Fort McMurray −0.89 0.37 −0.25 1.25

British Columbia Vancouver −0.27 0.08 −0.10 0.35
Victoria −0.36 0.08 −0.14 0.44

Manitoba Churchill −0.87 0.75 −0.05 1.62
Winnipeg −0.96 0.44 −0.26 1.40

New Brunswick Fredericton −0.82 0.33 −0.25 1.15
Moncton −0.82 0.39 −0.22 1.21

Newfoundland & Labrador Goose −0.79 0.48 −0.16 1.26
St. John’s −0.72 0.50 −0.11 1.22

Nova Scotia Greenwood −0.82 0.42 −0.20 1.25
Yarmouth −0.59 0.43 −0.08 1.02

Ontario Ottawa −0.69 0.39 −0.15 1.09
Toronto −0.77 0.31 −0.23 1.08
Trenton −0.77 0.32 −0.22 1.09

Prince Edward Island Charlottetown −0.78 0.48 −0.15 1.26
Quebec Bagotville −0.95 0.52 −0.21 1.45

Montreal −0.70 0.44 −0.13 1.14
Saskatchewan Estevan −0.27 0.40 −0.27 1.27

Saskatoon −0.89 0.38 −0.25 1.27
Northwest Territories Yellowknife −0.80 0.60 −0.10 1.40
Nunavut Baker Lake −0.73 0.75 0.005 1.48
Yukon Whitehorse −0.75 0.42 −0.16 1.17
Canadian Averages −0.73 0.41 −0.17 1.16

However, the average discrepancy between the Diurnal Temperature Range (DTR) of
the two COW methods is significant (~1.16 ◦C) due to large COW0–24 DTRs, resulting from
antagonistic minima and maxima biases as opposed to small COWN–D DTRs.

3.3. Analysis of Diurnal Extrema Timing Subpopulation Counts

The time evolution analysis of nighttime and daytime timing subpopulations was
approached through the evaluation of four-year averages of “before” and “after” member
counts at the beginning and ending of data ranges presented in Figures 8 and 9. The “before”
DET members are the Before Midnight Minima (BMMtn) and Before Noon Maxima (BNMtx).
Correspondingly, the “after” DET members are the After Midnight Minima (AMMtn) and
After Noon Maxima (AMMtX).

In Figures 8 and 9, the initial DET subpopulations, corresponding to 1953–1956-year
counts, are presented with the red bins, while the green bins represent the final timing
configuration of 2015–2018-year counts. The left-hand side histograms present the time
evolution of diurnal minima timing, with the middle blue line indicating the midnight
delineation over which we monitor nighttime migration of the “before” to “after” subpopu-
lation of extrema over time. The right-hand side histograms show the time evolution of
diurnal maxima timing, with the middle blue line indicating the noon delineation point.
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Figure 8. Time evolution of diurnal extrema timing histograms for the Great Lakes/St. Lawrence
Lowlands climate region, at Toronto (a,b), and Trenton (c,d) stations. Migration of Before Midnight
Minima (BMMtn) to After Midnight Minima (AMMtn) and Migration of Before Noon Maxima
(BNMtx) to After Noon Maxima (ANMtx) between four-year averages at the beginning (1953–1956)
and ending (2015–2018) of data ranges. The blue dotted line represents midnight delineation (left)
and noon delineation (right).
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The left-hand side minima histograms in Figure 8 show the contrast in DET migration
of the BMMtn to the AMMtn counts of Toronto and Trenton subpopulations over the 66-year
study period with a more intense migration of minima observed at the Toronto (72 counts
versus 30 counts at Trenton).

The intensity of minima migration of BMMtn to AMMtn counts between Ottawa
and Montreal subpopulations in Figure 9 (left) is within a similar range (58 BMMtn and
61 BMMtn, respectively), while still less intense than at Toronto (72 BMMtn). The migra-
tion of the DET maxima counts from the BNMtx to ANMtx in Figure 8 (right) is more
intense at Toronto than Trenton (79 BNMtx at Toronto and 69 BNMtx at Trenton). The
migration of Ottawa BNMtx to ANMtx counts is the least intense (47 BNMtx) among the
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Great Lakes/St. Lawrence Lowlands stations (Figure 9). The histograms of other studied
sites, presented in Appendix C, display similar migration patterns with a consistent de-
crease in the BMMtn and BNMtx counts due to the persistent migration of “before” to
“after” subpopulations.

Although the direction of migration of both BMMtn and BNMtx subpopulations is
unequivocally towards the later time of extrema occurrence, the intensity of migration and
the proportion of the overall migrated population counts varies through Canada.

Table 4 summarizes the BMMtn and BNMtx migration counts of all studied loca-
tions. Total counts of BMMtn and BNMtx subpopulations are presented in columns 3
and 6. The number of migrated BMMtn and BNMtx are presented in columns 4 and 7.
Percentages of migrated extrema, relative to their initial 4-year average count, are given in
columns 5 and 8.

Table 4. Migration counts of the Before Midnight Minima (BMMtn) to After Midnight Minima
(AMMtn) and of the Before Noon Maxima (BNMtx) to After Noon Maxima (ANMtx) between the
examined 4-year averages at the beginning (1953–1956) and ending of the data range (2015–2018).
Migration is expressed as counts, as well as percentages, of total populations.

Provinces & Territories Location Total BMMtn Migrated BMMtn Total BNMtx Migrated BNMtx

(n) (n) (%) (n) (n) (%)

Alberta Calgary 270 −120 44.4 146 −42 28.8
Cold Lake 174 −7 9.5 141 −34 24.1
Fort McMurray 219 −40 18.3 123 −26 21.1

British Columbia Vancouver 311 −111 35.7 220 −93 42.3
Victoria 390 −149 38.2 242 −123 50.8

Manitoba Churchill 453 −140 30.9 431 −106 24.6
Winnipeg 224 −45 20.1 159 −18 11.3

New Brunswick Fredericton 232 −13 5.6 162 −46 28.4
Moncton 298 −55 18.5 236 −70 29.7

Newfoundland & Labrador Goose 281 −71 25.3 196 −28 14.3
St. John’s 589 −120 20.4 508 −97 19.1

Nova Scotia Greenwood 337 −102 30.3 280 −100 35.1
Yarmouth 498 −130 26.1 465 −176 37.8

Ontario Ottawa 261 −58 22.2 174 −47 27.0
Toronto 284 −72 25.4 235 −79 31.9
Trenton 271 −30 11.1 250 −69 27.6

Prince Edward Island Charlottetown 460 −108 23.5 382 −124 32.5
Quebec Bagotville 333 −77 23.1 283 −120 42.4

Montreal 246 −61 24.8 212 −66 31.1
Saskatchewan Estevan 228 −79 34.6 149 −56 37.6

Saskatoon 214 −37 17.3 159 −68 42.8
Northwest Territories Yellowknife 339 −47 13.9 214 −47 22.0
Nunavut Baker Lake 560 −176 31.4 406 −113 27.8
Yukon Whitehorse 279 −80 28.7 181 −104 57.5
Canadian Averages 323 −80 24.1 248 −77 31.2

The most intense migration of BMMtn counts, among all climatic regions, is observed
at the Arctic Tundra location of Baker Lake (176 BMMtn), followed by the Pacific Coast,
North British Columbia Mountains/Yukon Territory, Atlantic Canada, and Hudson Bay
stations. While the Northwestern Forest, the Mackenzie District, and the Prairies display
the lowest BNMtx migration counts among Canadian climate regions, Northeastern Forest
and other Canadian eastern continental locations exhibit large BNMtx migration counts.
The most intense migration of the BNMtx counts is observed at Atlantic Canada locations
of Yarmouth (176 BNMtx) and Charlottetown (123 BNMtx). The largest overall migrations
are observed at Calgary (44.4% BMMtn) and Saskatoon (42.8% BNMtx).
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3.4. Analysis of Diurnal Extrema Timing Subpopulation Trends and Time Shifts

This section presents linear trends and calculated delays of annually averaged AMMtn
and ANMtx subpopulations. The MK test for detecting trends in annual timing subpopu-
lation data was employed using the “Kendal” package in R code to answer the question
of whether or not the DET is systematically changing through time. Time shifts of annual
AMMtn and ANMtx subpopulations were calculated as a product of linear slope and the
period of slope increase. Subsequently, locally estimated scatterplot smoothing (LOESS)
was used in regression analysis to demonstrate the digression from linearity in the DET pa-
rameter over the study range. LOESS curves fitted to AMMtn and ANMtx subpopulations
are presented in Figures 10 and 11 to emphasize the complexities of the overall change in
the DET parameter.
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Table 5 presents Canadian AMMtn and ANMtx subpopulations trends and estimates
of their time shifts expressed as time increments accrued to the minima and maxima DET
parameters over the 66-year study range. Delays in AMMtn and ANMtx extrema timing
subpopulations, calculated as the product of the linear slope of annually averaged timing
and the time span of the study range, are denoted as linearly projected DETtn and DETtx
time shifts in hours (columns 4 and 6 of Table 5).

Table 5. Annually averaged timing trends of the After Midnight Minima (AMMtn) and After Noon
Maxima (ANMtx) subpopulations and linearly projected time shifts (DETtn and DETtx) calculated as
the product of the linear slope and the time span of the study range.

Provinces & Territories Location AMMtn Slopes DETtn ANMtX Slopes DETtx

(h/y) (h) (h/y) (h)

Alberta Calgary 6.6×10-3 0.44 5.5×10-3 0.36
Cold Lake 9.5×10-3 0.61 9.3×10-3 0.60
Fort McMurray 6.3×10-3 0.42 6.7×10-3 0.44

British Columbia Vancouver 8.1×10-3 0.53 7.2×10-3 0.48
Victoria 7.1×10-3 0.47 9.3×10-3 0.61

Manitoba Churchill 8.0×10-3 0.53 2.8×10-3 0.18
Winnipeg 3.6×10-3 0.24 5.3×10-3 0.35

New Brunswick Fredericton 6.8×10-3 0.38 6.3×10-3 0.42
Moncton 8.5×10-3 0.56 6.7×10-3 0.38

Newfoundland & Labrador Goose 8.4×10-3 0.55 9.5×10-3 0.63
St. John’s 6.1×10-3 0.40 2.3×10-3 0.14

Nova Scotia Greenwood 9.3×10-3 0.61 9.2×10-3 0.61
Yarmouth 9.3×10-3 0.61 7.6×10-3 0.50

Ontario Ottawa 6.3×10-3 0.42 6.0×10-3 0.40
Toronto 7.5×10-3 0.50 6.9×10-3 0.46
Trenton 6.1×10-3 0.38 6.7×10-3 0.42

Prince Edward Island Charlottetown 8.9×10-3 0.59 5.7×10-3 0.38
Quebec Bagotville 7.0×10-3 0.46 9.6×10-3 0.63

Montreal 6.4×10-3 0.42 9.1×10-3 0.60
Saskatchewan Estevan 5.3×10-3 0.35 5.1×10-3 0.34

Saskatoon 6.7×10-3 0.44 2.1×10-2 1.39
Northwest Territories Yellowknife 5.5×10-3 0.36 8.5×10-3 0.56
Nunavut Baker Lake 8.0×10-3 0.44 1.3×10-3 0.09
Yukon Whitehorse 1.0×10-3 0.69 2.2×10-2 1.44
Canadian Averages 0.48 0.52

The average delay of all AMMtn subpopulations of the Great Lakes/St. Lawrence
Lowlands region is estimated to be ~0.43 h and ~0.47 h for ANMtx subpopulations over
the 66-year study range. The most considerable ANMtx delay observed at Whitehorse
(1.44 h) data stands in contrast with the smallest delay observed at Churchill (0.18 h).
The overall timing of the AMMtn subpopulations has shifted ~29 min later in the day,
while the timing of the ANMtx subpopulations has been delayed by ~31 min, on average,
throughout Canada. All slopes of AMMtn and ANMtx subpopulations are statistically
significant according to low Mann–Kendall p-values that are less than 0.01, and many are
much smaller (10−6).

Local polynomial regression trends of the annually averaged “after” subpopulations
of diurnal minima (AMMtn) and maxima (ANMtx) timing subpopulations of the Great
Lakes/St. Lawrence Lowlands climate region are presented in Figures 10 and 11.

Figures of minima (DET AMMtn) and maxima (DET ANMtx) time shifts of other
study locations are presented in Appendix D. The time evolution of AMMtn subpopulation
trends at Toronto, Trenton, and Montreal are similar and in contrast with the trend changes
observed in Ottawa data that exhibit a faster and more considerable shift in the DET AMMtn
parameter. The time evolution of the DET ANMtx subpopulation trends in the Great
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Lakes/St Lawrence Lowlands climate region shows a latitudinal spread at the beginning
of the data range. A similar pattern of abrupt trend increases, observed in Ottawa DET
AMMtn, also emerges in DET ANMtx, achieving its maximum value in the mid-1990s and
a sudden decrease afterward. A simultaneous mid-1990s maximum observed in all Great
Lakes/St. Lawrence Lowlands DET AMMtn and DET ANMtx subpopulations suggests
an intensification of large-scale climatic influences affecting the entire region. A sudden
DET positive shift, starting in the early 1970s and continuing through 1978, is observed in
all examined data sets. The most prominent DET shift is registered in the DET AMMtn
at Saskatoon, Whitehorse, and Cold Lake stations, as well as at Vancouver and St. John’s.
One possible explanation of this Canada-wide timing shift is the amplification of Canada’s
climate trends under the influence of large-scale teleconnections on air temperature. Most
of the stations that exhibit intense temperature and timing changes are located within the
range of overlapping teleconnection influences [33]. While the interannual variability in
the DET parameter seems to be reflective of minor climate variation the departure of the
DET trends from the linearity after a phase of intensification in Figures 10 and 11 suggests
a strong correlation with the periodicity of the teleconnection phases.

3.5. Climate Parameter Sensitivity Index (CPSI) Ranking

The values of the CPSI for temperature minima (NTn), temperature maxima (DTx),
After Midnight Minima timing (DET AMMtn), and After Noon Maxima timing (DET
ANMtx) are calculated using Equations (1)–(6) in Section 2.6. and presented in Table 6 for
a comparison of the sensitivity of the parameters to climate change (see Appendix E for
sample calculations).

Table 6. Climate parameter sensitivity indices for diurnal temperature and timing parameters.

Provinces & Territories Location NTn AMMtn DTx ANMtx

(%) (%) (%) (%)

Alberta Calgary 3.06 5.48 2.44 5.14
Cold Lake 2.99 7.62 2.42 8.49
Fort McMurray 3.55 4.60 3.11 7.34

British Columbia Vancouver 3.36 6.68 2.05 11.81
Victoria 2.93 5.89 2.57 15.27

Manitoba Churchill 2.87 5.83 2.94 2.67
Winnipeg 1.64 2.99 1.93 5.88

New Brunswick Fredericton 1.77 4.70 1.51 13.69
Moncton 2.02 7.02 1.91 6.00

Newfoundland & Labrador Goose 0.76 7.01 1.26 8.91
St. John’s 2.10 4.57 2.61 1.95

Nova Scotia Greenwood 2.36 7.64 2.09 8.63
Yarmouth 2.43 8.02 2.54 10.00

Ontario Ottawa 2.07 5.22 2.08 5.68
Toronto 5.00 6.19 2.24 7.54
Trenton 1.26 4.78 1.52 7.04

Prince Edward Island Charlottetown 1.80 7.39 2.12 5.34
Quebec Bagotville 2.62 4.62 1.79 7.96

Montreal 2.83 5.25 1.97 8.59
Saskatchewan Estevan −1.08 4.37 0.51 6.70

Saskatoon 1.78 5.56 1.84 27.75
Northwest Territories Yellowknife 3.63 3.65 3.34 6.23
Nunavut Baker Lake 3.34 4.45 3.28 4.71
Yukon Whitehorse 3.27 7.66 2.43 20.63
Canadian Averages 2.43 5.72 2.19 8.91

The CPSI values of air temperature minima (AMM NTn) and maxima (AMM DTx)
are presented on the map of Canada with coinciding climatic patterns for identification of
specific teleconnection influences on individual temperature time series (Figure 12).
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of study locations within the range of influence of large-scale teleconnections affecting the climate
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corresponding to the colors of shading selected for identifying Canadian climate regions from
Figure 3. The map of Canada with regions impacted by large climatic patterns (Adapted from
Large-Scale Climate Oscillations Influencing Canada, 1900–2008 by Bonsal and Shabbar, 2011. Copyright
2011 by Her Majesty the Queen in Right of Canada).

The CPSI indices are expressed in percentages and presented on color-coded fields
that correspond to the colors of shading selected for identifying Canadian climate regions
from Figure 3.

The western and northwestern regions of Canada are found within the range of
influence of the El Nino/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO),
and Pacific North American (PNA) oscillations, while the North Atlantic (NAO) Oscillation
influences the northeastern Canada. The El Nino/Southern Oscillation (ENSO) is known to
exert a large influence over climatic conditions in Canada. Furthermore, the PNA climate
variability frequently coincides with ENSO and PDO phases [33].

The highest value of the CPSI for air temperature minima (NTn = 5%) is observed in
Toronto temperature records, indicating the strong effects of the urban heat island altering
the air temperature minimum. The NTn CPSI values of the other locations within the Great
Lakes and St. Lawrence Lowlands climate region range between 1.26% at Trenton and
2.83% at Montreal. High values of NTn CPSI are identified at Canadian northwestern-
northern locations of Yellowknife (3.63%), Vancouver (3.36%), Baker Lake (3.34%), and
Calgary (3.06%). The findings of high NTn CPSI at these locations are consistent with the
most considerable change in annual averages of diurnal air temperature extrema across
Canada found within the overlapping influence of major teleconnections. The lowest NTn
CPSI is observed at Goose (0.76%), pointing to the moderating effect of cold waters of the
Labrador Current on the coastal lands in its path. Lower NTn CPSI values are characteristic
of Prairies, while a midrange NTn CPSI is typical for Atlantic Canada and Northeastern
Forest climate regions. A negative NTn CPSI is identified at Estevan (−1.08%), indicating a
locally strong cooling temperature trend over the 66-year study range.

The highest value of the CPSI for daytime temperature maxima (DTx = 3.34%) is
found at Yellowknife. Higher values of DTx CPSI are identified at Canadian northwestern-
northern locations of Fort McMurray (3.11%) and Churchill (2.94%). Lower DTx CPSI is
observed in Prairies, while higher midrange values of maxima CPSI are characteristic for
the Atlantic Canada climate region. The DTx CPSI for the Great Lakes and St. Lawrence
Lowlands climate region ranges from 1.97% at Montreal to 2.24% at Toronto. The lowest
DTx CPSI value is observed at Estevan (0.51%).
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Figure 13 displays the CPSI timing indices of the AMMtn and ANMtx DET subpopulations.
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The timing CPSI is expressed as the ratio of external changes relative to the DET’s
range of variability. A broad range of CPSI values, identifying the susceptibility of the
DET of the After Midnight Minima (DET AMMtn), and the After Noon Maxima (DET
ANMtx) subpopulations, is presented on color-coded fields corresponding to different
climate regions from Figure 3.

The timing element of diurnal temperature extrema appears overall more susceptible
to climate change than temperature extrema alone.

Ranges of the CPSI values for the DET of maxima (ANMtx) are much larger than the
ranges of the CPSI values for the DET minima (DET AMMtn). The largest AMMtn CPSI is
observed at Yarmouth (8.02%). In addition to a large AMMtn CPSI at Whitehorse (7.66%),
all other large AMMtn CPSI values can be associated with Pacific or Atlantic maritime
locations. Anomalously large ANMtx CPSI values are observed at Saskatoon (27.75%) and
Whitehorse (20.63%). Substantially large ANMtx CPSI values are identified at Pacific and
Atlantic maritime locations, such as Victoria (15.27%), Fredericton (13.69%), Vancouver
(11.81%), and Yarmouth (10.0%).

Anomalously low ANMtx CPSI indices were observed at fog-prone locations of Saint
John’s (1.95%) and Churchill (2.67%), pointing to a low value of a numerator in the CPSI
estimation equation usually suggesting extensive external changes to the system, or a
greater denominator often caused by a larger time span of parameter’s own variability
(Equation (4)). Anomalously low ANMtx CPSI at the St. John’s location seems to result
from a small linear trend of change in the ANMtx, while a small CPSI value at Churchill
station indicates a larger span of ANMtx variability.

According to the CPSI analysis of Canadian temperature and timing indices, when
external changes in climate and parameters’ variability are considered, the DET ANMtx
parameter is the most susceptible to climate change.

A decadal-scale change in atmosphere-ocean conditions over western North America
has caused a large shift in the mid-1970s, inducing longer and more intense ENSO episodes,
as well as affecting the PDO [33]. The most intense ENSO episodes in the 1970s and 1980s
that coincided with positive PDO and PNA phases are the probable cause of extensive time
shifts in the DET parameter.
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4. Discussion

The potential for use of diurnal extrema timing as a climate parameter was examined.
This study analyzed 66 year-long hourly data sets from twenty-four Canadian stations to
determine the impact of the observing window on the daily identification of mathematical
extrema and evaluate annual shifts in daily extrema timing. A new index for assessing the
strength of the climate change signal exhibited by a parameter has been introduced.

Since discrete search methods for extrema identification require a specified base time
interval that involves inherent biases, we quantitatively evaluated differences between
two observing windows using linear temperature tracking. The success in linear tracking
of Climatological Observing Window Night and Day indicated the lack of the extrema
timing parameter for the correct identification of the turning points of air temperature
function. Diurnal errors in linear temperature tracking and their propagation to annual
averaging were evaluated. Results indicate that attention to the extrema timing parameter
improves the characterization of diurnal air temperature minima and amends the cold
bias associated with the traditional observing window [5]. Attention to the extrema timing
parameter furthermore facilitates the determination of air temperature patterns utilized in
the identification of thermal drivers behind diurnal air temperature variability [8].

The applicability of Diurnal Extrema Timing as a possible parameter of relevance to
climatological analysis was evaluated by examining the time evolution of nighttime and
daytime extrema timing and annual averaging of diurnal extrema timing subpopulations.
Application of Climatological Observing Window Night and Day for the identification of
diurnal extrema generated populations of nighttime minima and daytime maxima for the
analysis of air temperature and extrema timing trends. The nighttime timing population
was subdivided into Before Midnight Minima and After Midnight Minima, while the
daytime maxima timing population was further divided into Before Noon Maxima and
After Noon Maxima for the evaluation of the timing shifts. Mann–Kendall analysis revealed
statistically significant positive trends in annual averages of the After Midnight Minima
and After Noon Maxima subpopulations, further supported by the migration of the Before
Midnight Minima and Before Noon Maxima subpopulations across midnight and noon
delineation points.

This study revealed that an improved characterization of diurnal air temperature
minima and identification of extrema timing is essential for gaining insight into the timing
shifts of nighttime and daytime extrema populations. Our findings suggest that shifts
in annually averaged extrema timing, consistent with temperature shifts, reveal changes
to the climate system when daily extrema are identified using Climatological Observing
Window Night and Day.

Climate Parameter Sensitivity Index used to assess the susceptibility of temperature
and timing parameters, identified the timing parameter as more prone to climate change
than the temperature itself.

Apart from positive trends in the timing parameter referring to temperature increase,
the abrupt changes in this parameter point to the intensification of large-scale oscillation
phases influencing temperature and timing trends.

An in-depth evaluation of seasonal trends, time shifts, and sensitivity of the diurnal
extrema timing parameter is recommended. Additional research is necessary to expand on
the correlation of interannual variation of the timing parameter with low-frequency modes
of atmospheric-oceanic variability influencing the Canadian climate [33,34]. A study of
the variability of diurnal extrema timing parameter with fog frequency is also suggested.
In view of the fact that a variation in observing window significantly affects temperature
minima, further study of diurnal temperature asymmetries [35] and changes in air mass
frequency [36] would be beneficial.

Given the necessity of extrema timing for the analysis of air temperature patterns, the
systematic recording of this parameter is highly encouraged [8].
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5. Conclusions

In this work, we turn the attention to a potentially new climate parameter that is, at
present, systematically overlooked in routine air temperature observations and analysis.

Systematic bias in air temperature extrema, associated with the traditional observing
window, is identified across all examined temperature extrema series. Further, substantial
positive time shifts in annual averages of Diurnal Extrema Timing parameter are observed
at all stations. Lastly, the Climate Parameter Sensitivity Index analysis ranks the annual
After Noon Maxima timing as the most vulnerable to climate change among temperature
and timing indices.

The results of this study indicate that turning points of daily air temperature function
carry vital climatological information. Therefore, we propose a change in the observing
window for the identification of daily mathematical extrema with temperature and time
coordinates. The information on daily minima and maxima timing are fundamental for
the analysis of extrema time series and the development of algorithmic tools in climate
analysis. We stress that the lack in reporting of daily extrema timing leaves crucial spatial
information to speculation. To this end, we emphasize the importance of the systematic
recording of the timing of daily air temperature extrema, alongside the actual temperatures.
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temperature averaging at Cold Lake (a) and Fort McMurray (b) stations. Annually averaged diurnal
air temperature minima, maxima, and Min-Max averages obtained with COW0–24 and COWN–D air
temperature approximating methods.
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diurnal air temperature minima, maxima, and Min-Max averages obtained with COW0–24 and
COWN–D air temperature approximating methods.
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Figure A10. Northeastern Forest climate region. Effect of the observing window on long-term
air temperature averaging at Bagotville (a) and Goose (b) stations. Annually averaged diurnal air
temperature minima, maxima, and Min-Max averages obtained with COW0–24 and COWN–D air
temperature approximating methods.
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and Yarmouth (f) stations. Annually averaged diurnal air temperature minima, maxima, and Min-
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Figure A12. Northern Canada climate region. Effect of the observing window on long-term air tem-
perature averaging at Whitehorse (a), Yellowknife (b), Baker Lake (c), and Churchill (d) stations. 
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Figure A11. Atlantic Canada climate region. Effect of the observing window on long-term air
temperature averaging at St John’s (a), Charlottetown (b), Fredericton (c), Moncton (d), Greenwood
(e), and Yarmouth (f) stations. Annually averaged diurnal air temperature minima, maxima, and
Min-Max averages obtained with COW0–24 and COWN–D air temperature approximating methods.
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Figure A12. Northern Canada climate region. Effect of the observing window on long-term air
temperature averaging at Whitehorse (a), Yellowknife (b), Baker Lake (c), and Churchill (d) stations.
Annually averaged diurnal air temperature minima, maxima, and Min-Max averages obtained with
COW0–24 and COWN–D air temperature approximating methods.
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Figure A13. Pacific Coast climate region: Vancouver (BC) and Victoria (BC). Time evolution of the 
Diurnal Extrema Timing (DET) histograms at Vancouver (a,b), and Victoria (c,d) stations. Migration 
of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the 
Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the be-
ginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents mid-
night delineation (left) and noon delineation (right). 
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Figure A13. Pacific Coast climate region: Vancouver (BC) and Victoria (BC). Time evolution of the
Diurnal Extrema Timing (DET) histograms at Vancouver (a,b), and Victoria (c,d) stations. Migration
of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the
Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the
beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents
midnight delineation (left) and noon delineation (right).
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Figure A14. Northwestern Forest climate region: Cold Lake (AB) and Fort McMurray (AB). Time 
evolution of the Diurnal Extrema Timing (DET) histograms at Cold Lake (a,b), and Fort McMurray 
(c,d) stations. Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) 
and migration of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year 
averages at the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line 
represents midnight delineation (left) and noon delineation (right). 
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Figure A15. Prairies climate region: Calgary (AB) and Saskatoon (SK). Time evolution of the Diurnal 
Extrema Timing (DET) histograms at Calgary (a,b), and Saskatoon (c,d) stations. Migration of the 

Figure A14. Northwestern Forest climate region: Cold Lake (AB) and Fort McMurray (AB). Time
evolution of the Diurnal Extrema Timing (DET) histograms at Cold Lake (a,b), and Fort McMurray
(c,d) stations. Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM)
and migration of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year
averages at the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line
represents midnight delineation (left) and noon delineation (right).
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Figure A15. Prairies climate region: Calgary (AB) and Saskatoon (SK). Time evolution of the Diurnal
Extrema Timing (DET) histograms at Calgary (a,b), and Saskatoon (c,d) stations. Migration of the
Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the Before Noon
Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the beginning (1953–
1956) and ending (2015–2018) of data ranges. The blue dotted line represents midnight delineation
(left) and noon delineation (right).
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Figure A16. Prairies climate region: Estevan (SK) and Winnipeg (MB). Time evolution of the Diurnal 
Extrema Timing (DET) histograms at Estevan (a,b), and Winnipeg (c,d) stations. Migration of the 
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Figure A16. Prairies climate region: Estevan (SK) and Winnipeg (MB). Time evolution of the Diurnal
Extrema Timing (DET) histograms at Estevan (a,b), and Winnipeg (c,d) stations. Migration of the
Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the Before Noon
Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the beginning (1953–
1956) and ending (2015–2018) of data ranges. The blue dotted line represents midnight delineation
(left) and noon delineation (right).
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Figure A17. Northeastern Forest climate region: Bagotville (QC) and Goose (NL). Time evolution of 
the Diurnal Extrema Timing (DET) histograms at Bagotville (a,b), and Goose (c,d) stations. Migra-
tion of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the 
Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the be-
ginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents mid-
night delineation (left) and noon delineation (right). 

  
(a) (b) 

Figure A17. Northeastern Forest climate region: Bagotville (QC) and Goose (NL). Time evolution of
the Diurnal Extrema Timing (DET) histograms at Bagotville (a,b), and Goose (c,d) stations. Migration
of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the
Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the
beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents
midnight delineation (left) and noon delineation (right).
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the Diurnal Extrema Timing (DET) histograms at Bagotville (a,b), and Goose (c,d) stations. Migra-
tion of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration of the 
Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the be-
ginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents mid-
night delineation (left) and noon delineation (right). 
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Figure A18. Atlantic Canada climate region: Charlottetown (PE) and St. John’s (NL). Time evolution 
of the Diurnal Extrema Timing (DET) histograms at Charlottetown (a,b), and St John’s (c,d) stations. 
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration 
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at 
the beginning (1953–1956) and ending (2015–2018) of data ranges at Charlottetown (PE) and be-
tween (1959–1962) and (2015–2018) of data ranges at St. John’s (NL) station. The blue dotted line 
represents midnight delineation (left) and noon delineation (right). 
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Figure A18. Atlantic Canada climate region: Charlottetown (PE) and St. John’s (NL). Time evolution
of the Diurnal Extrema Timing (DET) histograms at Charlottetown (a,b), and St John’s (c,d) stations.
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at the
beginning (1953–1956) and ending (2015–2018) of data ranges at Charlottetown (PE) and between
(1959–1962) and (2015–2018) of data ranges at St. John’s (NL) station. The blue dotted line represents
midnight delineation (left) and noon delineation (right).
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Figure A19. Atlantic Canada climate region: Greenwood (NS) and Yarmouth (NS). Time evolution
of the Diurnal Extrema Timing (DET) histograms at Greenwood (a,b), and Yarmouth (c,d) stations.
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at
the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents
midnight delineation (left) and noon delineation (right).



Climate 2022, 10, 5 37 of 44

Climate 2022, 9, x FOR PEER REVIEW 37 of 44 
 

Figure A19. Atlantic Canada climate region: Greenwood (NS) and Yarmouth (NS). Time evolution 
of the Diurnal Extrema Timing (DET) histograms at Greenwood (a,b), and Yarmouth (c,d) stations. 
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration 
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at 
the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents 
midnight delineation (left) and noon delineation (right). 

  
(a) (b) 

  
(c) (d) 

Figure A20. Atlantic Canada climate region: Fredericton (NB) and Moncton (NB). Time evolution 
of the Diurnal Extrema Timing (DET) histograms at Fredericton (a,b), and Moncton (c,d) stations. 
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration 
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at 
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Figure A20. Atlantic Canada climate region: Fredericton (NB) and Moncton (NB). Time evolution
of the Diurnal Extrema Timing (DET) histograms at Fredericton (a,b), and Moncton (c,d) stations.
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at
the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents
midnight delineation (left) and noon delineation (right).
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Figure A21. Northern Canada climate region: Whitehorse (YU) and Yellowknife (NT). Time evolu-
tion of the Diurnal Extrema Timing (DET) histograms at Whitehorse (a,b), and Yellowknife (c,d) 
stations. Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and 
migration of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year 
averages at the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line 
represents midnight delineation (left) and noon delineation (right). 
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Figure A21. Northern Canada climate region: Whitehorse (YU) and Yellowknife (NT). Time evolution
of the Diurnal Extrema Timing (DET) histograms at Whitehorse (a,b), and Yellowknife (c,d) stations.
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at
the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents
midnight delineation (left) and noon delineation (right).
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Figure A22. Northern Canada climate region: Baker Lake (NU) and Churchill (MB). Time evolution 
of the Diurnal Extrema Timing (DET) histograms at Baker Lake (a,b), and Churchill (c,d) stations. 
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration 
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at 
the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents 
midnight delineation (left) and noon delineation (right). 
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Figure A23. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts 
(b) and LOESS fit curves for Vancouver (BC) and Victoria (BC) temperature time series, Pacific Coast 
climate region. 

Figure A22. Northern Canada climate region: Baker Lake (NU) and Churchill (MB). Time evolution
of the Diurnal Extrema Timing (DET) histograms at Baker Lake (a,b), and Churchill (c,d) stations.
Migration of the Before Midnight Minima (BMM) to After Midnight Minima (AMM) and migration
of the Before Noon Maxima (BNM) to After Noon Maxima (ANM) between four-year averages at
the beginning (1953–1956) and ending (2015–2018) of data ranges. The blue dotted line represents
midnight delineation (left) and noon delineation (right).
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Figure A24. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts (b)
and LOESS fit curves for Cold Lake (AB) and Ft McMurray (BC) temperature time series, Northwest-
ern Forest climate region.
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Figure A25. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts 
(b) and LOESS fit curves for Calgary (AB), Saskatoon (SK), Estevan (SK), and Winnipeg (MB) tem-
perature time series, Prairies climate region. 

Figure A25. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts (b)
and LOESS fit curves for Calgary (AB), Saskatoon (SK), Estevan (SK), and Winnipeg (MB) temperature
time series, Prairies climate region.
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Figure A26. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts 
(b) and LOESS fit curves for Bagotville (QC) and Goose (NL) temperature time series, Northeastern 
Forest climate region. 
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Figure A27. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts 
(b) and LOESS fit curves for St. John’s (NL), Charlottetown (PE), Moncton (NB), Greenwood (NS), 
and Yarmouth (NS) temperature time series, Atlantic Canada climate region. 
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(b) and LOESS fit curves for Bagotville (QC) and Goose (NL) temperature time series, Northeastern
Forest climate region.
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Figure A27. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts 
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Figure A27. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts (b)
and LOESS fit curves for St. John’s (NL), Charlottetown (PE), Moncton (NB), Greenwood (NS), and
Yarmouth (NS) temperature time series, Atlantic Canada climate region.
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Figure A28. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts 
(b) and LOESS fit curves for Yellowknife (NT), Whitehorse (YT), Baker Lake (NU), and Churchill 
(MB) temperature time series, from Northern Canada, including North British Columbia Moun-
tains/Yukon, Mackenzie District, Arctic Tundra, and part of Northeastern Forest climate region. 
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Figure A28. Annually averaged After Midnight Minima (a) and After Noon Maxima timing shifts (b)
and LOESS fit curves for Yellowknife (NT), Whitehorse (YT), Baker Lake (NU), and Churchill (MB)
temperature time series, from Northern Canada, including North British Columbia Mountains/Yukon,
Mackenzie District, Arctic Tundra, and part of Northeastern Forest climate region.

Appendix E. Example Calculations of Temperature and Timing Sensitivity Indices

Example calculations of Toronto Nighttime Temperature Minima (NTn) and After Mid-
night Minima timing (AMMtn) are presented here using Equations (1)–(6) from Section 2.6.

Climate Parameter Sensitivity Index for the nighttime temperature minima, CPSI
(NTn) is the ratio of the nighttime minima variability due to climate change (∆NTn) and the
overall variability of the nighttime minima (δNTn) within the selected temperature data set.

The CPSI for the nighttime temperature minima of the Toronto 1953–2018 data set is
estimated to be 5.0% (Equation (A1)).

CPSI(NTn) =
∆NTn

δNTn
·100 % =

2.9 ◦C
58 ◦C

·100 % = 5.0 %. (A1)

The variability of the Toronto nighttime temperature minima due to climate change is
estimated to be 2.9 ◦C obtained by multiplying the slope of the linear trend of the NTn with
the length of the study range (Equation (A2)):

∆NTn = mlin(NTn)· (time range) = 0.044
◦C
y
∗ 66 y = 2.9 ◦C. (A2)

The overall variability of the nighttime minima within the Toronto data set is estimated
to be 58 ◦C based on the temperature span between the largest and the smallest recorded
nighttime minimum (Equation (A3)):

δNTn = max(NTn)−min(NTn) = 26.9 ◦C− (−31.1 ◦C) = 58 ◦C. (A3)

Climate Parameter Sensitivity Index for the timing of the AMM subpopulation,
CPSI(AMMtn), is the ratio of the variability in the AMM timing due to climate change
(∆AMMtn) and the overall variability in the AMM timing (δAMMtn) within the selected
data set.
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The CPSI for the After Midnight Minima timing of the Toronto 1953–2018 data set is
estimated to be 6.2% (Equation (A4)).

CPSI(AMMtn) =
∆AMMtn

σAMMtn
·100 % =

0.49 h
8 h

= 6.2%. (A4)

The variability of the Toronto AMM timing parameter due to climate change is esti-
mated to be 0.49 h obtained by multiplying the slope of the linear trend of the AMMtn with
the length of the study range (Equation (A5)):

∆AMMtn = mlin(AMMtn)· (time range) = 0.0075 h/y ∗ 66 y = 0.49 h. (A5)

The overall variability of the AMM timing parameter within the Toronto data set is
estimated to be 8 h based on the timing span between the largest and the smallest recorded
AMM timing (Equation (A6)):

δAMMtn = max(AMMtn)−min(AMMtn) = 8 h− 0 h = 8 h. (A6)
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