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Abstract: Despite the concern about climate change and the associated negative impacts, fossil
fuels continue to prevail in the global energy consumption. This paper aimed to propose the first
model that relates CO2 emissions of Sao Paulo, the main urban center emitter in Brazil, with gross
national product and energy consumption. Thus, we investigated the accuracy of three different
methods: multivariate linear regression, elastic-net regression, and multilayer perceptron artificial
neural networks. Comparing the results, we clearly demonstrated the superiority of artificial neural
networks when compared with the other models. They presented better results of mean absolute
percentage error (MAPE = 0.76%) and the highest possible coefficient of determination (R2 = 1.00).
This investigation provides an innovative integrated climate-economic approach for the accurate
prediction of carbon emissions. Therefore, it can be considered as a potential valuable decision-
support tool for policymakers to design and implement effective environmental policies.

Keywords: climate change; carbon dioxide emissions; economic growth; energy consumption;
artificial neural networks; artificial intelligence

1. Introduction
1.1. Global Carbon Emissions and Economic Indicators

Despite the increasing concern about climate change and the need of equity for sharing
associated economic impacts and the urgency of developing low-carbon economy, fossil
fuels continue to prevail in the global energy consumption [1,2].

In this regard, economic advancement and urbanization are the major processes that
contribute to the high levels of consumption of fossil fuels. Consequently, the release of CO2
and other pollutants to the atmosphere also increases. Energy is considered a fundamental
input for the production process, influencing the economic result. Additionally, it is a
determinant of economic growth [3–6]. As a consequence, there has been an increased
interest in modeling approaches to explore the relation among carbon emissions (CO2)—the
main greenhouse gas (GHG) emitted worldwide [7]—and economic indicators, such as
gross national product (GDP) and energy consumption (EN).

China is globally recognized as the largest CO2 emitter [8,9], counting approximately
9.5 billion tons in 2018, according to the International Energy Agency [7]. Thus, it is
the most studied country on this field [10–19]. India and European Union, the third
and fourth emitters [7], respectively, are also important objects of investigation [9,20–25].
However, to the best of our knowledge, studies that disentangle the relation among carbon
emissions, GDP, and energy consumption are scarce for Brazilian data, mainly for Sao
Paulo state, which is an important CO2 emitter in the country, responsible for emitting
almost 92 million tons in 2019 [26]. This denotes an important knowledge gap, since Brazil
was the 13th worldwide emitter in 2019, according to the Statista database [27].
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In 2016, Brazil established ambitious goals for mitigation and adaptation to climate
change by 2030, such as reducing greenhouse gas (GHG) emissions by 43%; restoration and
reforestation of million hectares of forests, achieving Amazon zero-deforestation targets;
and increasing the share of renewable energies in the energy matrix to around 45% [28–30].
However, in the wrong path of these goals, the current government has acted to dismantle
environmental policy, resulting in negative impacts, such as the increased fires in the
Amazon and Pantanal regions [31,32], which corresponded to 77,396 km2 and 40,606 km2

deforested burning areas in 2020, respectively, according to the National Institute for Space
Research [33].

Given the continental dimensions of Brazil, in addition to preventing burning and
deforestation, increasing efforts to mitigate GHG emissions in regions that host large urban
centers could contribute to the achievement of the national targets. For instance, in the
state of Sao Paulo, the energy sector is the most intensive for carbon emissions [34]. In
2019, 84% of all CO2 emitted in the state was generated by this sector, mostly from fossil
fuels burning by transportation, industries, and fuel production. Furthermore, Sao Paulo
is the third largest greenhouse gas emitter in the country; excluding the land-use change
and forestry sector, mainly represented by deforestation and associated fires, Sao Paulo is
the major Brazilian emitter of GHG [26]. Therefore, efficient modeling techniques to relate
carbon emissions with economic indicators for this state could be of great importance at a
global level.

1.2. Literature Review

Several studies investigated this relationship using different mathematical methods,
such as Granger causality [12,35–38], autoregressive distributed lags (ARDL) [9,39,40],
and stochastic impacts by regression on population, affluence, and technology (STIRPAT
model) [41–44].

Using the ARDL model, Leal et al. (2018) found a trade-off between economic growth
and CO2 intensity (measure of CO2 produced per USD of GDP) by analyzing annual
Australian data from 1965 to 2015. The authors reported that the increased GDP raised
investments in renewable energy, but without impact on reducing of CO2 intensity [40].
On the other hand, Ghazali and Ali (2019) investigated different drivers of CO2 for ten
newly industrialized countries, using the STIRPAT model. They found that there was a
relationship between urbanization, GDP per capita, and CO2 intensity on the increasing
CO2 emissions [45]. Polloni-Silva et al. (2021) also applied the STIRPAT model to investigate
the Brazilian growth CO2 nexus. The authors found that both population size and GDP per
capita were the main driving factors of CO2 emissions, since a 1% increase in the population
size was associated with an increase of 2.4–2.7% in CO2 emissions, and 1% increase in GDP
per capita was related to an increase of about 1.2% in CO2 emissions [44].

Ben Jebli et al. (2020), using the Granger causality approach, investigated the relation-
ship among renewable energy consumption, industrial added value, value-added service,
economic growth, and carbon emissions of 102 countries [36]. Bayar et al. (2021), through
the bootstrap panel Granger causality test, explored the mutual causality among renewable
energy, globalization, economic indicators, and CO2 emissions. The authors found that
the renewable energy use has influenced the decrease in CO2 emissions of Eastern Europe
from 1995 to 2015 [37]. The observed causal relationships usually varied considerably in
terms of the causality direction among the variables, mainly according to the development
degree of the analyzed country/region. However, renewable energy resources have been
considered as a crucial option for economic decarbonization [36,37,40,45].

Based on previously published articles, some divergences are easily perceived among
the results, since they involve analysis about different countries, addressing regional or
global perspective, through the application of different mathematical methods, variable
types, and periods. These differences give ground for the use of more sophisticated and
accurate methods, such as machine learning approaches. In this context, artificial neural
networks (ANNs) models have also gained a remarkable popularity in the field. This
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approach is suited better for the cases in which there are nonlinear relationships between
the target and the independent variables [46–48]. Additionally, they are able to provide
prediction metrics with higher accuracy, compared with other methods, such as multivariate
linear regression and even other machine learning tools [1,49,50].

Recently, many authors have clearly shown this feature. Guo et al. (2018) used the
back-propagation neural network to forecast Chinese CO2 emissions in 2030 under different
scenarios, and found a strong similarity between fitted and observed data, with a R-Squared
level higher than 0.99 [48]. Ahmadi et al. (2019) used the group method data handling
neural network approach to analyze the CO2 emissions of five Middle East countries
between 2000 and 2017. The authors found a precision of 0.99 (R-Squared) in predicting
CO2 emissions [46]. Acheampong and Boateng (2019) also used the back-propagation
neural network and found a high level of accuracy when predicting CO2 emissions in
Brazil, China, and India, reporting reduced mean squared error values between 0.00042
and 0.00420 [47]. Mardani et al. (2020), considering the period between 1962 and 2016, and
based on economic growth and energy consumption as input parameters, found a mean
absolute error (MAE) equal to 0.104, when predicting CO2 emissions for the G20 countries
using adaptive neuro-fuzzy inference system and artificial neural networks [1]. Bamisile
et al. (2021) applied different architectures of feed-forward backpropagation ANNs to
predict carbon emissions of several African countries and also obtained very accurate
models, with R-Squared higher than 0.98 [51].

Modeling applications using Artificial Intelligence has been an emerging area, mainly
regarding carbon emissions and socioeconomic indicators for relationship investigations.
However, this type of analysis remains little-explored for Brazilian data, as demonstrated
in a recently published systematic review [52]. Concerning the ANN modeling for the state
of Sao Paulo, the few available studies are limited to epidemiological studies of the health
effects due to outdoor air pollution, also showing outstanding results in terms of prediction
accuracy [53–55].

1.3. Purpose of the Study

Our work aims to fill this gap and to contribute to the state of the art, by developing,
for the first time, a model of CO2 emissions in the state of Sao Paulo, based on GDP and
energy consumption. Additionally, we aimed to compare the accuracy of three different
methods: multivariate linear regression, elastic-net regression, and multilayer perceptron
artificial neural networks. Figure 1 provides the study design.
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The remaining part of this paper is structured as follows: Section 2 describes in detail
the obtained data, models, metrics and software used. Section 3 discusses the obtained
results. Section 4 presents the conclusion remarks and policy implications, as well as the
study’s limitations.

2. Materials and Methods

In this work, the annual CO2 emission data were considered as the outcome variable,
measured in tons. All data were collected from the System for Estimating Greenhouse Gas
Emissions (SEEG) database [26]. The choice to focus this investigation on CO2 emissions is
justified, since it is the main greenhouse gas emitted in the state of Sao Paulo [26,34]. The
predictors were the annual energy consumption (EN) and gross domestic product (GDP).
The EN data were collected from the Energy Balance database of Sao Paulo. This is related
to the annual final energy consumption data, represented by ton of oil equivalent (toe), and
refers to 34% of petroleum by-products, 24% of sugarcane bagasse, 19% of electricity, 10%
of ethanol, 7% of natural gas, and 6% of others sources [56].

The annual GDP was obtained from the Data Analysis System of the state of Sao
Paulo [57] and converted to US dollars, considering the exchange average rate of each year
available from the Institute for Applied Economic Research [58].

The period considered in this work ranged from 2000 to 2018. We investigated the
relation among CO2, GDP, and EN by using three different approaches: multivariate linear
regression, penalized regression and multilayer perceptron artificial neural network.

Considering that the dataset of this study is on annual basis, and it consists of a
reduced time series (n = 19), for all tested models, we used the current time (t) for all the
variables. In addition, our analyses have an exploratory aspect, since they investigate the
relationship between CO2, EN, and GDP, and are not intended to predict carbon emissions
by using, for example, ARDL and Granger causality, or to forecast future emissions sce-
narios. Therefore, the lag of the variables was not considered, as performed by previously
published works [1,59–61].

First, to check the intercorrelation of GDP and EN, the variance inflation factor (VIF)
analysis was performed. As a general rule, the proposed cutoff for a multicollinearity
problem is that the VIF value of each predictor should not exceed the value of 10 [62–65].

Then, by using the R-software package car, which contains the main functions for
applied regression [66], we tested different combinations of multivariate linear regression
(MLR) models, including quadratic forms, since this strategy was previously established in
some studies [59,67,68], totalizing 5 tested models. This first step can be summarized by
the following generic equation:

y ∼ β0 + β1x1 + β2x2
1 + β3x2 + β4x2

2 + · · ·βnxn (1)

where y represents the outcome variable, x are the predictors, β are the regression coeffi-
cients, and n are the number of observations of the dataset.

The adjusted coefficient of determination (adjusted-R2), calculated from R2, according
to Equations (2) and (3), and mean absolute percentage error (MAPE), Equation (4), were
used as the performance functions, as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi −

−
y
)2 (2)

adjusted R2 = 1−

(
1− R2

)
(n− 1)

n− 1
(3)

MAPE = 100
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (4)
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where y represents the real values, ŷ are the predicted values, and ȳ refers to the aver-
age values.

By using the tidy models of R-software, a collection of packages for modeling and
machine learning [69], we also evaluated models based on elastic-net regression, which is a
mix of two regression methods: ridge and lasso. The ridge regression reduces the model’s
complexity by a coefficient shrinkage and improves the least-squares error by applying a
degree of bias to the regression estimates. The lasso regression (Least Absolute Shrinkage
and Selection Operator) works similarly, since it also adds a penalty for non-zero coefficients,
but differently from the ridge regression, which penalizes the sum of the squared coefficients
(L2 penalty, represented by the first set inside the parenthesis—Equation (5)), lasso penalizes
the sum of their absolute values (L1 penalty, represented by the second set inside the
parenthesis—Equation (5)) [70–72]. Thus, elastic-net regression combines both lasso and
ridge methods by learning from their shortcomings to improve the regularization of these
statistical approaches. Aside from solving the multicollinearity among predictor variables,
this method overcomes the limitations of the lasso regression [73,74]. This approach aims
to minimize the following loss function:

L(β̂) =
∑n

i=1

(
yi − xj

iβ̂
)2

2n
+ λ


L2 {

1− α

2

m

∑
j=1

β̂
2
j + α

m

∑
j=1
|β̂j|}

L1

 (5)

where y represents the outcome variable, x are the predictors, β are the coefficients, α sets
the degree of mixing between ridge regression and lasso, λ is the shrinkage parameter, n is
the number of observations of the dataset, and m the number of variables. When λ = 0, no
shrinkage is performed, and as λ increases, the coefficients are shrunk.

The training set was defined as 80% of the sample size (n = 15) and the remaining
20% was used as a test set (n = 4). In addition, for higher accuracy estimation and to
minimize the mean-squared prediction error, we tuned the parameters α and λ through
5-fold cross-validation. [75,76]. Data division was random and performed automatically
by the software. R2, MAPE, and the Root of the Mean Square Error (RMSE), Equation (6),
were used as the performance functions.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (6)

Finally, we evaluated several multilayer perceptron (MLP) neural networks using
MATLAB programming language. Artificial Neural Networks (ANNs) are computational
methods inspired by the biological neurons’ structure, which are composed of dendrites, cell
body and axon. Electrical signals from other neurons (inputs) arrive through the dendrites,
the cell body processes this information, and the axon transmits the nervous signal from
cell body to its ends and generates the output signals to the other neurons [77–80].

An ANN simulates this process, since it is composed by artificial neurons distributed
into layers (three or more) that link the inputs to the desired output(s) (Figure 2). In this
work, the variables GDP and EN were considered as inputs and CO2 emissions were the
output, all at the current time (t).

Also named feed-forward neural network, Multilayer Perceptrons (MLPs), feeds
information from the front to the end, working as follows: each neuron is attributed
with synaptic weights and bias parameters. The synaptic weight represents the relative
influence of the different inputs to the neuron. Once it enters the neuron, the information



Climate 2022, 10, 9 6 of 20

is transformed into an activation coefficient, which is the bias plus the summation of the
received information, multiplied by the corresponding synaptic weight, as follows:

αj =
z

∑
i=1

wijxi + bj (7)

where z is the number of inputs and αj, bj, xi, and wij is the activation value, bias, input
variable, and weight of the neuron j, respectively. To generate the output, an activation
function is usually applied over the activation coefficient [80–82].
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The MLP usually uses a supervised learning technique to determine the weights and
bias of each neuron, aiming to obtain an output value closer to the expected one. For this,
an optimization algorithm is used to minimize a statistical metric between the real and the
fitted values, also called objective function (OF) [80–82].

For higher accuracy estimation, we tested different numbers of neurons on the hidden
layer, algorithms, and combination of activation functions, totalizing 156 trained architec-
tures, as can be seen in Table 1. The training set was defined at 70% of the sample size
(n = 13), leaving 15% for validation (n = 3) and the remaining 15% for the test (n = 3). Data
division was random and performed automatically by the software. In addition, we used
the 5-fold cross-validation approach to select the best performing model. R2, MAPE, and
mean squared error (MSE—Equation (8)) were used as performance functions. Equation (8)
was also used as OF. Before training the ANNs, all input and output variables were normal-
ized in the range of [−1;1]. The statistical metrics of each step were analyzed by one-way
ANOVA followed by the Bonferroni post-test. The p-values ≤ 0.05 were considered to
be significant.

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (8)

Among the analyzed different approaches, the optimal model was defined by the
statistical analysis of the MAPE metric, using the Mann–Whitney test. The p-values ≤ 0.05
were considered to be significant.
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Table 1. Summary of the different trained architectures.

Performed Tests

Structures The number of neurons of hidden layer varied from 1 to 20

Algorithms Levenberg–Marquardt (trainlm) and Scaled Conjugate Gradient (trainscg)

Activation functions linear (purelin), hyperbolic tangent sigmoid (tansig) and logarithmic sigmoid (logsig)

Total trained architectures 156

3. Results and Discussion
3.1. Descriptive Analysis and Multivariate Linear Regression Models

Sao Paulo is the most populous state of Brazil and the largest in terms of economic
and industrial aspects. It has high rates of atmospheric pollutant concentrations and
greenhouse gases emissions [83,84]. As shown in Figure 3A, between the years 2000 and
2018, the GDP of Sao Paulo state showed evident growth until 2011, remaining above USD
780 billion until 2014, and since then has suffered annual retractions due to the advance of
the Brazilian economic crisis [85], reaching the value of USD 603 billion in 2018. The CO2
emissions registered was above 75 million tons, with peaks among the years 2011 and 2014
and a strong reduction from 2015 on, presenting a similar pattern to the GDP time series.
Therefore, CO2 emissions behavior follows the economic performance. On its turn, the
annual energy consumption presented a growth until 2015 and since then it has stabilized
in the range of 69 million of tons of oil equivalent (toe).
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These results are in agreement with Leite et al. (2020), which showed that the energy
sector, with emphasis on the transport economic activity, was the most intensive CO2
emitter in Sao Paulo state, between 2000 and 2018, with high average diesel consumption,
playing a fundamental role not only in the economy, but also in the increase in negative
impacts on human health associated with air pollution [34].

The results of the correlation analysis are shown in Figure 3B. We also observed a
strong positive and significant correlation between CO2 and GDP (R = 0.832), CO2 and
EN (R = 0.742), and GDP and EN (R = 0.945), with all p-values < 0.001. This result is in
agreement with the studies carried out in China and Tunisia, which also analyzed these
variables [86,87].

On the other hand, these findings are the oppose to those found on a study performed
in another Brazilian region (Mato Grosso do Sul state), which reported an inverse relation
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among economic development and CO2 emissions [59]. This divergence shows that the
different regions of a country, which presents continental dimensions, cannot be treated
equally. Thus, it is suggested that predictive models should be developed for each different
region. This is an important observation, since each region of Brazil differs in terms of
socioeconomic indicators, sources of GHG emissions, and efforts to mitigation strategies,
such as clean energy production [26,88,89].

Regarding MLR models, we observed that all of the tested models presented one beta
coefficient with a negative value most related to the EN variable. In addition, with the
exception of ID3, the models also resulted in at least one non-significant beta coefficient
(Table 2).

Table 2. MLR model analysis.

ID Predictors β0 β1 β2 β3 β4 Adjusted-R2 MAPE (%)

1 GDP + EN 9.28 × 107 ** 5.75 × 10−5 ** - −5.32 × 10−1 - 0.68 5.50

2 GDP2 + EN2 7.87 × 107 *** - 4.58 × 10−17 ** - −1.16 × 10−9 0.75 4.79

3 GDP + EN + EN2 4.84 × 108 *** 4.59 × 10−5 *** - −1.36 × 10 *** 1.08 × 10−7 *** 0.91 2.68

4 GDP + GDP2 + EN 4.83 × 107 * −1.36 × 10−4 * 1.41 × 10−16 ** 1.02 - 0.81 4.01

5 GDP + GDP2 + EN + EN2 4.43 × 108 *** 1.81 × 10−5 2.10× 10−17 −1.22 × 10 ** 9.85 × 10−8 ** 0.90 2.66

CO2 as the outcome variable. Significance level: * p < 0.05, ** p < 0.01 and *** p < 0.001.

These results contradict the Pearson’s correlation analysis, since we reported a positive
significant correlation among these variables, implying the presence of multicollinearity
effects, even with VIF < 10. VIF is a widely used cutoff [62–65]. However, for some types
of model, values above 2.5 could already lead to the development of these effects [63],
which could explain the low performance of our analyses. We found that VIF = 9.4 for both
variables of GDP and EN.

Despite the identified multicollinearity effects, the MLR models demonstrated adjusted-
R2 values higher than 0.68. The model without the quadratic variables (ID1) presented the
worst performance (adjusted-R2 = 0.68 and MAPE = 5.5%), and the best result, in terms of
R2 and significance levels of beta coefficients, was observed in ID3 (adjusted-R2 = 0.91 and
MAPE = 2.68%).

Other studies have also shown results with low accuracy when using MLR models to
investigate CO2 emissions. This could be explained by the presence of multicollinearity
effects [59,60,90].

Ratanavaraha and Jomnonkwao (2015) analyzed CO2 from the transportation sector
in Thailand by applying different approaches. The log-linear regression models showed
positive and significant beta coefficients, and R2 ranging between 0.76 and 0.89 (values
close to those shown in Table 2) [60]. However, the path analysis showed a non-significant
coefficient for GDP, and the cubic and quadratic curve fit models presented negative values
for the coefficients. Zaidi et al. (2017), by comparing different MLR models, found a strong
relationship between CO2, GDP, and energy in a multi-country analysis, with R2 ranging
between 0.77 and 0.84 [90] (values close to those shown in Table 2). However, the models
also presented negative values of the beta coefficient for the GDP. Considering the Brazilian
data, Kunimoto et al. (2018) analyzed CO2 from GDP and its quadratic form for different
economic sectors, and the regression models presented non-significant coefficients for
energy and industry sectors, similarly to what we observed in our MLR models [59].

Although these studies have obtained efficient models, in terms of R2, the authors did
not discuss the potential presence of multicollinearity between the independent variables,
by using approaches, such as VIF analysis or the application of penalized methods, which
may reflect on the instability of these models and inaccurate results [91–93].

3.2. Elastic-Net Regression Method

To minimize the observed multicollinearity effects and to find the best approach in
terms of CO2 emission prediction, we applied the elastic-net regression method. This
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choice is justified, since this technique can solve the effects of multicollinearity, from the
regularization that works to keep all the model features, but reducing the magnitude of
the coefficients [69]. In the cross validation and training phases, we tuned the optimal
hyperparameter pair (α = 0.103 and λ = 0.00000642) that returned the most appropriate
RMSE (4.44 ± 0.78) and R2 (0.913 ± 0.07) mean values (Table 3). Based on these results, the
testing phase presented an acceptable performance (RMSE = 4.65 and R2 = 0.868).

Table 3. Metrics of the elastic-net regression model.

Cross Validation (Train) Test Predictions

RMSE R2 RMSE R2 RMSE MAPE R2

4.44 (±0.78) 0.913 (±0.07) 4.65 0.868 2.95 2.67% 0.923
RMSE expressed as millions of tons of CO2.

The application of the elastic-net regression approach resulted in a penalization that
kept all variables, resulting in a similar structure to the ID5 MLR model (Table 2). In
addition, it solved the problem of sign inversions of the coefficients. As it can be seen in
Figure 4, the significant variables of the final model presented values greater than zero. The
elastic-net regression’s coefficients of the model can be found at the Appendix A (Table A2).
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The model’s accuracy was: R2 = 0.923 and MAPE = 2.67% (Table 3). Therefore, it
presented a higher performance than the multivariate linear regression models previously
tested and shown at Table 2.

Penalized methods are still poorly explored for analyzing CO2 emissions. However,
some authors have found similar results to those presented here in terms of precision
quality. Elastic-net model has shown acceptable MSE (0.83) for estimating the building
energy use intensity in New York City. Additionally, a study carried out using data from
Africa, using this same approach, showed a reduced RMSE (0.30), evaluating CO2 emissions
from different types of fuels [94,95].

3.3. Multilayer Perceptron Neural Network

Aiming to find the best approach to predict the carbon emissions, we also trained
156 different architectures of MLPs. Since this method does not require any assumption
regarding the relationship of each independent variables, and can manage interactions
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among them [80,96,97], (also the predictors presented VIF < 10), we chose to analyze GDP
and EN without any kind of transformation, such as the quadratic form.

Among all the tested structures, three models generated the best values of R2 and
MAPE, and their results are shown in Table 4. Concerning the R2 values of test and
validation steps, the models showed very similar performance with R2 > 0.99. On the other
hand, the ID47 (with 6 neurons in the hidden layer) model stands out and presents the
lowest values of MAPE and OF in these two datasets. In fact, it is important to highlight
that, in this work, the objective functions presented high values because of the magnitude
of the analyzed variables.

Table 4. Metrics of the three best MLP neural network models.

Models’ characteristics Train Validation Test

#ID Algorithm Structure AF R2 MAPE
(%) OF R2 MAPE

(%) OF R2 MAPE
(%) OF

47 trainscg 2-6-1 tansig;
purelin 0.988 1.05 3.09 × 1012 1.000 0.23 6.98 × 1010 1.000 0.04 1.76 × 109

65 trainscg 2-8-1 tansig;
purelin 0.987 1.18 3.21 × 1012 0.997 0.48 2.06 × 1011 0.998 0.74 5.00 × 1011

98 trainlm 2-15-1 logsig;
purelin 0.960 1.97 8.56 × 1012 0.999 2.46 7.32 × 1012 0.999 0.37 1.10 × 1011

AF: activation function; OF: objective function; Structure: number of neurons in the input layer—number of
neurons in the hidden layer—number of neurons in the output layer.

Given these findings, we performed a 5-fold cross-validation to suitably select the
highest performing model. Figure 5A shows the R2 values obtained in the training and
validation steps. A significant difference was found between models 47 and 98 and between
65 and 98, only in the train phase. There were no differences between models 47 and 65.
Regarding the MAPE values, we found a significant difference between models 47 and 98
and between models 65 and 98, for both phases. Moreover, no differences were observed
between models 47 and 65 (Figure 5B), indicating that the data used in this analysis did not
negatively influence the performance of the ANN.
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Climate 2022, 10, 9 11 of 20

Models 47 and 65 were revealed to be equally efficient. However, model 47 was
chosen as the optimal one, since it has a smaller number of neurons in the hidden layer
and has also returned the lowest OF value for test and validation data (Table 4), which
are important parameters that must be considered to avoid overfitting and achieve better
optimization [82,98].

3.4. Comparative Analysis

For comparison purposes, Figure 6 shows the predictions using the ID3 MLR model,
elastic-net regression, and ID47 MLP neural network, since these models returned the
highest R2 values: 0.91, 0.92, and 1.00, respectively.
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Figure 6. CO2 predictions using elastic-net regression (dotted blue line), ID3 MLR (dotted green line)
and ID47 MLP neural network (dotted red line) models. The black line represents the original dataset
of CO2 emissions.

Our findings demonstrate that the ANN-based model provides the best prediction
accuracy. We can observe that for ID47 model, the predicted values were very close to the
real ones, and showed significant deviations only in the period of 2007–2009. Although
the metrics of the elastic-net model can be considered acceptable, the same accuracy could
not be observed since its forecast showed significant deviations in several periods, around
the years 2002–2003, 2007–2009, and 2014–2018. The ID3 MLR model presented similar
accuracy to the elastic-net regression, with deviations in the same periods of the time series.

To analyze each models’ performance in more detail, we plotted the absolute percent-
age error (APE) frequency, according to Equation (9), as shown in Figure 7.

APE = 100
∣∣∣∣yi − ŷi

yi

∣∣∣∣ (9)

The ID47 MLP model presented the majority of the APE values close to zero, ranging
between 0.01 and 0.57, and did not present any error greater than 5.48. The other models
presented similar distribution results, with the most APE values around 0.79 and 4.90 and
also values above 9. Despite the similarity of the results between elastic-net regression and
the ID3 MLR model, it is important to highlight that the ID3 MLR model maintained the
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effects of multicollinearity among the independent variables and was considered unsuitable
to estimate CO2 emissions, since it may represent inaccurate results [91–93].
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Table 5 summarizes the metrics of the analyzed models. We observed that the ID47
MLP neural network showed the lowest maximum APE and the lowest value of the APE
median. Additionally, it presented a significantly lower MAPE when compared with the
other models, analyzed by Mann–Whitney test (p < 0.001), and the highest possible R2 value,
confirming its good performance in predicting CO2 emissions. The elastic-net regression
and ID3 MLR model showed similar results for all presented metrics.

Table 5. Metrics of CO2 predictions of the analyzed models.

R2 APE (Max) APE (Median) MAPE (%)

ID47 MLP ANN 1.00 5.48 0.13 0.76 ***

Elastic-net Regression 0.92 9.34 1.74 2.67

ID3 MLR model 0.91 9.63 1.34 2.68
MAPE values were analyzed by Mann–Whitney test. Significance level: *** p < 0.001.

Our findings clearly demonstrate that the best result was obtained by the model ID47,
a MLP neural network with a structure of 2-6-1 trained with the Scaled Conjugate Gradient
(trainscg) algorithm. This structure has one hidden layer, and can be written according to
the following equation [80]:

y = g

 6

∑
k=1

wj,kf

(
2

∑
i=1

wi,jxi + bj

)
j

+ bk


k

(10)

where y is the output k, and f and g are the hyperbolic tangent sigmoid and linear acti-
vation functions, respectively. The weights and the bias for each neuron can be found in
Appendix A (Tables A3 and A4, and Figure A1).

The reduced number of observations (19 years’ time series dataset) is an important
limitation of this study to stand out. For this purpose, the 5-fold cross-validation was
applied in both elastic-net regression and multilayer perceptron artificial neural networks
models as an important strategy to reduce bias and variance. In this step, every data
point was used once for validation. Since R2, RMSE, and MAPE are averaged over five
subsets, the model is less sensitive to the splitting of the analyzed variables, in this way,
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significantly reducing both the bias and variance. In studies of this research field, it is quite
common to use reduced time series and apply k-fold cross-validation as an analysis step.
Ahmadi et al. (2019) used the ANN method and considered n = 25; Rezaei et al. (2018) also
used ANN and considered n = 26; Ardakani and Seyedaliakbarb (2019) used multivariate
regression and considered n = 20; and Kunimoto et al. (2018) also used multivariate
regression and considered n = 14. Ahmadi et al. (2019) and Rezaei et al. (2018) did not
report the application of k-fold cross-validation. However, it may have been a step of the
analysis which was programmed automatically by the software [46,59,61,99].

Still regarding this limitation, the applied method and the obtained results were
revealed to be promising for analyzing data for a developing country such as Brazil, which
faces difficulties in the availability of public data and which can provide guidelines for
public policies at a special moment for both the global and regional scale concerning climate
change effects, stressing the role of a challenging area of research.

Our results are consistent with other studies that showed the superiority of the pre-
diction of ANN-based methods [1,46,48,49,99,100]. This technique has been shown to be
powerful for modeling several problems at a level of high complexity, with higher precision
when compared with the conventional approaches, such as multivariate linear regression.
This is mainly due to its capability of capturing possible nonlinear relationships among the
input and output variables [1,49,100].

Similarly, other authors have demonstrated the high efficiency of ANN-based models
in estimating carbon emissions. Xu et al. (2019) evaluated China’s CO2 emissions and
have demonstrated a higher prediction efficiency of dynamic nonlinear artificial neural net-
work, with a better mean absolute error (MAE = 3.51), compared with the linear regression
(MAE = 6.15) [100]. Mardani et al. (2020) have also shown a highly accurate estimation of
neuro-fuzzy inference system and artificial neural network techniques combined method
(MAE = 0.065) compared with multiple linear regression (MAE = 0.522) to estimate CO2
emission based on the energy consumption and economic growth indicators of G20 coun-
tries [1]. According to Hosseini et al. (2019), conventional methods have shown poor
quality in predicting carbon emissions, since they have generated results with divergent
trends [49]. Consequently, innovative and sophisticated approaches, such as ANN-based
techniques, are increasingly needed to produce effective, efficient, and accurate analyses.

Another interesting finding is that the better performance of our ANN model, when
compared with elastic-net regression, a machine learning method, in terms of R2, APE,
and MAPE analyses, is in agreement with the findings of Bakay and Ağbulut (2021).
In their study, the authors obtained a higher R2 to model Turkish CO2 and N2O emis-
sions from ANN-based models, than using the support vector machine [50]. Moreover,
Magazzino et al. (2021b), who applied the D2C algorithm to investigate causal relationship
among green energy production, economic indicators, and CO2 emissions in different coun-
tries, obtained a R2 equal to 0.9, a value very close to our elastic-net regression model [101].

Regarding the R2 metric, our results are close to those obtained by the authors
that reached almost the maximum possible value in estimating CO2 emissions, such
as: Ahmadi et al. (2019), Guo et al. (2018) and Rezaei et al. (2018), which reached R2

of 0.99 [46,48,99].
Concerning the models that were used for evaluating atmospheric pollution, a strictly

related area of carbon emissions, our results are also in accordance with recent studies.
Araujo et al. (2020) obtained better results, in terms of MSE and MAE metrics, by combining
GLM, a traditional time series model, with artificial neural networks, to estimate daily
hospital admissions due to air pollution of two different cities of Sao Paulo state. Similarly,
Magazzino et al. (2021a) and Tadano et al. (2020) were successful in estimating the
relationships between air quality and COVID-19 outcomes for New York and Sao Paulo
cities, respectively, by using ANN-based techniques [53,54,102].

In light of this, the current global health crisis due to COVID-19 pandemic, has
forced us to reflect on the urgency of changing the “business as usual” way of life. This
is an unprecedented opportunity to move toward a more sustainable global actions, in
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terms of speeding up the transition of making cities more inclusive, developing urban
resilience, and implementing green strategies for economics, especially for food, transport
and energy systems, since they are crucial drive factors to carbon emissions [103–105].
Therefore, concerning that climate change is a key global challenge, the application of
accurate models, such as ANN-based techniques, for modeling and predicting carbon
emissions, can be highly promising in acting as an effective tool to improve current and
future mitigation strategies.

4. Conclusions and Policy Implications

The present study was designed to obtain an equation to relate CO2 emissions with
GDP and energy consumption of Sao Paulo state, Brazil. For this purpose, three different
approaches were proposed: multivariate linear regression, elastic-net regression, and a
multilayer perceptron artificial neural network.

This investigation is of great relevance because, for the first time, an application of
neural network models for predicting CO2 emissions in Sao Paulo state, Brazil, was pro-
posed. Our findings have shown that the MLP neural network model provided results with
higher accuracy compared with multivariate linear regression and elastic-net regression,
according to performance metrics: R2 (1.000) and MAPE (0.76%). This innovative inte-
grated climate-economic approach provides a pioneer path for analyzing environmental
and economic indicators.

ANN-based methods have been increasingly recognized as a powerful approach to
estimate several parameters of interest in the field of environmental economics (e.g., carbon
emissions and economic indicators). It presents the capability of capturing the possible
nonlinear relationships among the selected variables as a main advantage. It can effectively
estimate complex problems, and have error tolerance, high adaptability and learning
capabilities. Therefore, it can be considered as an effective tool for decision-making and
policy implementation, especially, in terms of promoting environmentally friendly solutions
for economic growth, toward net-zero emissions targets, since efficient mitigation policies
can attract huge financial incentives to explore energy structure transition and low-carbon
economic development.

Our study limitations concerned mostly the dataset series, which is available in an
annual periodicity and for a limited time series period (19 years). This happened because
Brazilian records are scarce and date back only a few years. Moreover, the analysis through-
out the different Brazilian states could provide a comparison analysis, as well as a predictive
future emission patterns on a smaller time scale, e.g., monthly basis, which could provide
governments to implement public policies focusing to diminish the adverse impacts.

Finally, our work provides the following insights for future research in this field: to
employ modeling approaches to analyze Brazilian emissions as a whole, as well as its
different regions; to investigate health indicators; and to assess mitigation practices, in
terms of cost–benefit and emission reduction, since they are little–discussed aspects and
will bring fundamental contributions.
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Appendix A

Table A1. Number of non-zero coefficients and R2 of elastic-net final model.

Number of Non-Zero Coefficients R2 Number of Non-Zero Coefficients R2

4 0.9234 4 0.9157

4 0.9233 4 0.9144

4 0.9233 4 0.9129

4 0.9233 4 0.911

4 0.9233 4 0.9089

4 0.9233 4 0.9063

4 0.9233 4 0.9033

4 0.9233 4 0.8997

4 0.9232 4 0.8954

4 0.9232 4 0.8903

4 0.9232 4 0.8843

4 0.9231 4 0.8772

4 0.9231 4 0.8688

4 0.9231 4 0.8588

4 0.923 4 0.8471

4 0.9229 4 0.8333

4 0.9229 4 0.817

4 0.9228 4 0.798

4 0.9227 4 0.7757

4 0.9226 4 0.7496

4 0.9224 4 0.7193

4 0.9223 3 0.6868

4 0.9221 3 0.6504

4 0.9219 3 0.6087

4 0.9217 3 0.5612

4 0.9214 3 0.5071

4 0.9211 3 0.4457

4 0.9207 3 0.3765

4 0.9203 2 0.3064

4 0.9198 2 0.2516

4 0.9192 1 0.1916

4 0.9185 1 0.1322

4 0.9177 1 0.0682

4 0.9168 0 0
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Table A2. Elastic-net final model. Coefficients values related to the largest R2.

Coefficients

Intercept 88,219,707

GDP 36,946,643

GDP2 4,234,893

EN 508,937.2

EN2 19,410,830

Climate 2022, 10, 9 16 of 21 
 

 

4 0.9233 4 0.9089 
4 0.9233 4 0.9063 
4 0.9233 4 0.9033 
4 0.9233 4 0.8997 
4 0.9232 4 0.8954 
4 0.9232 4 0.8903 
4 0.9232 4 0.8843 
4 0.9231 4 0.8772 
4 0.9231 4 0.8688 
4 0.9231 4 0.8588 
4 0.923 4 0.8471 
4 0.9229 4 0.8333 
4 0.9229 4 0.817 
4 0.9228 4 0.798 
4 0.9227 4 0.7757 
4 0.9226 4 0.7496 
4 0.9224 4 0.7193 
4 0.9223 3 0.6868 
4 0.9221 3 0.6504 
4 0.9219 3 0.6087 
4 0.9217 3 0.5612 
4 0.9214 3 0.5071 
4 0.9211 3 0.4457 
4 0.9207 3 0.3765 
4 0.9203 2 0.3064 
4 0.9198 2 0.2516 
4 0.9192 1 0.1916 
4 0.9185 1 0.1322 
4 0.9177 1 0.0682 
4 0.9168 0 0 

Table A2. Elastic-net final model. Coefficients values related to the largest R2. 

 Coefficients 
Intercept 88219707 

GDP 36946643 
GDP2 4234893 

EN 508937.2 
EN2 19410830 

 
Figure A1. ANN design of ID47 model. 

  

Figure A1. ANN design of ID47 model.

Table A3. Bias and weights of hidden layer of ID47 model.

Bias 1 Weights

−2.8754 4.7578 1.2974

2.2133 −1.5901 3.3818

−1.3108 0.111 −3.3552

0.6798 4.5322 −3.643

−3.2999 −3.8249 −0.9763

2.5992 3.9668 −1.2442

Table A4. Bias and weights of output layer of ID47 model.

Bias 2 Weights 2

0.3126 1.3675 −1.2193 −0.2508 −1.1435 1.1634 2.2346
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