
����������
�������

Citation: Narouei-Khandan, H.A.;

Worner, S.P.; Viljanen, S.L.H.; van

Bruggen, A.H.C.; Balestra, G.M.;

Jones, E. The Potential Global Climate

Suitability of Kiwifruit Bacterial

Canker Disease (Pseudomonas syringae

pv. actinidiae (Psa)) Using Three

Modelling Approaches: CLIMEX,

Maxent and Multimodel Framework.

Climate 2022, 10, 14. https://doi.org/

10.3390/cli10020014

Academic Editor: Forrest M.

Hoffman

Received: 31 December 2021

Accepted: 24 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

climate

Article

The Potential Global Climate Suitability of Kiwifruit Bacterial
Canker Disease (Pseudomonas syringae pv. actinidiae (Psa))
Using Three Modelling Approaches: CLIMEX, Maxent and
Multimodel Framework
Hossein A. Narouei-Khandan 1,* , Susan P. Worner 1, Suvi L. H. Viljanen 2 , Ariena H. C. van Bruggen 3,4,
Giorgio M. Balestra 5 and Eirian Jones 6

1 Bio-Protection Research Centre, Lincoln University, Lincoln 7674, New Zealand; susan.worner@lincoln.ac.nz
2 The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704,

Christchurch 8140, New Zealand; suvi.viljanen@plantandfood.co.nz
3 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; ahcvanbruggen@ufl.edu
4 Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
5 Departments of Agriculture and Forestry Science (DAFNE), University of Tuscia, 01100 Viterbo, Italy;

balestra@unitus.it
6 Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences,

Lincoln University, Lincoln 7674, New Zealand; eirian.jones@lincoln.ac.nz
* Correspondence: hossein.khandan@mpi.govt.nz

Abstract: In recent years, outbreaks of kiwifruit bacterial canker (Pseudomonas syringae pv. actinidiae,
Psa) have caused huge economic losses to two major global kiwifruit producers, Italy and New
Zealand. To evaluate the potential global risk areas of Psa, three modelling methods (MaxEnt,
CLIMEX and a Multi-Model Framework, including Support Vector Machine or SVM) were used.
Current global occurrence data for Psa were collected from different sources. The long-term climate
data were sourced from WorldClim and CliMond websites. The model results were combined into
a consensus model to identify the hotspots. The consensus model highlighted the areas where
two or three models agreed on climate suitability for Psa. All three models agreed with respect
to the climate suitability of areas where Psa is currently present and identified novel areas where
Psa has not established yet. The SVM model predicted large areas in Central Asia, Australia, and
Europe as more highly suitable compared to MaxEnt and CLIMEX. Annual mean temperature and
annual precipitation contributed most to the MaxEnt prediction. Both MaxEnt and CLIMEX showed
the probability of Psa establishment increased above 5 ◦C and decreased above 20 ◦C. The annual
precipitation response curve showed that excessive rain (>1200 mm/y) constrains Psa establishment.
Our modelling results will provide useful information for Psa management by highlighting the
climatically susceptible areas where Psa has not established, such as the USA, Iran, Denmark, Belgium
and especially South Africa, where kiwifruit has been planted commercially in recent years.

Keywords: kiwifruit bacterial canker; Psa; climate suitability; CLIMEX; MaxEnt; Multi-Model
Framework (MMF)

1. Introduction

The causal agent of bacterial canker of kiwifruit, Pseudomonas syringae pv. actinidiae
(Psa) is a Gram-negative, obligate aerobic bacterium. Symptoms of the disease mainly
appear at the beginning of spring when leaf spots become visible, appearing brown sur-
rounded by a bright chlorotic halo [1]. Floral buds may turn brown and exude gum without
opening. Translucent exudate on otherwise healthy tissues, such as canes, is also considered
to be one of the main symptoms of Psa on kiwifruit (Figure 1a–d) [1–3].
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Figure 1. Pseudomonas syringae pv. actinidiae (Psa) symptoms on kiwifruit (a) buds and flowers
(b) leaf (c) trunk (exudate) (d) new shoot. Photos’ credit: G.M. Balestra.

Psa was first isolated from kiwifruit in Japan in 1984 and described as a new pathovar
in 1989 [4]. In the late 1980s, Psa was reported from Korea [5] and from China in 1990 [6].

Psa was first detected outside Asia in 1994, in Italy, the world’s major producer of
kiwifruit. It remained sporadic and with low incidence there until 2008, when a seri-
ous outbreak occurred [7–10]. During the following years, Psa continued to spread into
Portugal [9,11], Spain [12], New Zealand [13], Chile [14], Slovenia [15], Switzerland [16],
Turkey [17], France [18], Germany [19] and Greece in 2014 [20].

Six biovars of Psa have been described worldwide, based on genomic fingerprinting
and toxin production (biovars 1–6), though some studies have revealed genetic variability
within Psa populations of up to 14 groups [21–23]. However, biovar 4 (Psa-Lv) was later
transferred to a new pathovar, Pseudomonas syringae pv. actinidifoliorum (Pfm) [24]. While
biovars 1 and 2 are reported to cause moderate damage, biovar 3 is the most virulent form,
and has inflicted significant damage in Italy and New Zealand [25]. For example, while the
early reports in 2013 stated that 77% of New Zealand’s kiwifruit orchards were infected
with Psa [26], the most recent report indicates that this has increased up to 92% [27].

Psa can infect Actinidia chinensis var. deliciosa (green kiwifruit) and Actinidia chinensis
var. chinensis (gold kiwifruit), kiwiberry (Actinidia arguta) and wild Actinidia kolomikta [28].
However, its survival on nonhost plants such as Alternanthera philoxeroides (Caryophyllales:
Amaranthaceae), Setaria viridis (Cyperales: Poaceae) and Paulownia fortunei (Scrophulariales:
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Scrophulariaceae) has also been documented [29,30]. In addition, Vanneste et al. (18)
reported that Psa can survive on Cryptomeria japonica (Japanese cedar). However, this
was achieved by artificial inoculation and no evidence of multiplication was found (Psa
populations on C. japonica decreased with time). Until the devastating Italian outbreak of
2008, in which Psa losses were estimated to be €2 million by 2009, it was assumed that
the disease’s economic importance was relatively low [31,32]. In New Zealand a 2012
publication estimated that the cost of Psa (as Psa-V) would be NZ$310–$410 million in
the next five years, and NZ$740–$885 million over the next 15 years [33]. However, by
2014, only two years after these estimates, the cost of export losses alone mounted up to
NZ$930 million [34]. Although, estimation of the economic impacts of Psa, or any other
plant disease is beneficial, the evaluation of socio-economic and environmental impacts
which can be devastating are often rare or ignored. For instance, in New Zealand an early
estimation in 2012 claimed that Psa could result in up to 470 full-time job losses per year for
the following four years. Such impacts can lead to anxiety and stress which need proper
evaluations [33].

Environmental factors such as strong wind and rain are major vectors for introduction
into new regions [9,35]. In addition to human-mediated spread though grafting materials,
nursery materials and pollen, Psa has been shown to be carried by wind and it has also
been shown that frequent spring hailstorms cause wounds that contribute to disease spread
over large areas [1,25]. Moreover, the role of some sucking insects such as Metcalfa pruinosa
(Hemiptera: Flatidae) as vectors of Psa in laboratory conditions has been investigated and
confirmed [36].

Information about the epidemiology of the pathogen is limited. It has been reported
that at temperatures between 10 ◦C and 20 ◦C, the pathogen is very active [37]. In other
studies, the optimum temperature range for growth on new canes is estimated at 12 ◦C
to 20 ◦C and 15 ◦C for leaf infection [6,38,39]. While studies in Japan and Korea reported
very little symptom development at temperatures >20 ◦C during a 10-day period, high-
temperature tolerance is generally estimated at 25 ◦C in France, Italy, and Portugal [6,25,40].
In previous studies, rain has been implicated as the most important factor in establishment
and distribution of Psa but no detailed quantitative data are available as yet [41,42].

Despite the huge economic losses attributed to Psa in recent years, there are limited
studies that evaluate the risk of its establishment in areas where kiwifruit is commercially
grown and Psa has not been reported yet. Therefore, studies that could project the habi-
tat suitability of Psa in noninfected areas can be very valuable. Reynaud et al. (2011,
cited in [40]) used CLIMEX software package (version 3.0, CSIRO Publishing, Melbourne,
Australia) to evaluate habitat suitability based on cold and dry stress parameters. In a pre-
liminary study with limited data, two models (MaxEnt and CLIMEX) were used to evaluate
the potential distribution of Psa, which both showed differences in projections in areas of in-
terest [43]. In a study by Wang et al. [44], MaxEnt was used to model the current and future
distribution of Psa in China based on different emission scenarios. They identified that envi-
ronmental variables such as maximum April temperature, mean temperature of the coldest
quarter, precipitation in May and minimum temperature in October contributed the most
to the model projection. In a recent study focused on China, [45], an ensemble approach
using three correlative models including generalized boosting models (GBM), random
forests (RF) and classification tree analysis (CTA) was employed to predict the potential
distribution of Psa in China under four general circulation models (GCMs). In all three
models, precipitation in March contributed the most to model projection (28.2%) followed
by the mean temperature of the warmest quarter (17.7%). Do et al. [46] developed a model
to evaluate the accumulated potential damage of Psa on kiwifruit during the growing and
overwintering seasons which can be set to run using hourly or daily mean air temperature.
While their study was only focused on the green kiwifruit cultivar Hayward (A. chinensis
var. deliciosa), they noticed that necrotic lesion length increased with temperature, with the
longest observed at 35 ◦C. Beresford et al. [39] developed a weather-based mechanistic risk
model to predict Psa development based on a multiplication and dispersal concept. Their
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model calculated the bacterial multiplication (M index) from a temperature function and
the daily risk factor (R index), which is the three-day accumulation of the M index on days
with total rainfall > 1 mm/day. They found that the optimum temperature for leaf infection
was 21 ◦C and 15 ◦C in vitro and in planta, respectively. Kim and Koh [47] adapted the
same risk model to predict Psa epidemics in Korea. Due to significant differences between
the New Zealand and Korean climates, the temperature and rainfall functions of the model
were modified. They found that the model was highly sensitive to rainfall, and disease
incidence was high when rainfall was recorded in consecutive days. By testing different
ranges of average temperatures, 24 ◦C was identified as the optimal threshold, with no
change in disease incidence when daily maximum temperatures exceeded 27–30 ◦C. Kim
and Koh [48] also developed an integrated modelling approach to investigate the potential
for epidemics of Psa under climate change. The integrated modelling approach used three
models. First, a climate suitability model was developed which predicted the suitable areas
for growing kiwifruit. Then a chill-day model simulated the periods of kiwifruit flowering
limited to the suitable areas predicted by the climate suitability model mentioned earlier.
Finally, these flowering dates were fed into Pss-KBB model [49] to simulate the potential
risk of the epidemic.

Most studies predicting the distribution of Psa rely on a single model, or use the same
type of models (e.g., only correlative models or only mechanistic models). Their predictions
for some areas are sometimes different or contradictory which can add to the prediction
uncertainty. It is therefore important to develop a consensus model which relies on the
agreement of different modelling approaches to investigate the risk of Psa globally. In
this way, effective readiness and response measures can be employed to minimize the
potentially devastating impacts of Psa at locations of interest.

The objectives of the current study are to: (i) model the potential global distribution of
kiwifruit bacterial canker (Psa) using ensemble models and model agreement, (ii) inves-
tigate agreement among these models’ projections to identify the hotspots and estimate
how they contribute to a better knowledge of Psa spread and risk; and (iii) characterize the
potential environmental variables important in the distribution of Psa.

Three different types of species distribution models (SDMs) were used to address
the objectives: The current distribution records of Psa and long-term climate data were
used to project the potential distribution using a semimechanistic model (CLIMEX), a
presence-background model (MaxEnt) and multimodel framework (MMF). These models
have frequently been used in different studies to project the habitat suitability of different
invasive species into new areas [50–52].

2. Materials and Methods
2.1. Psa Presence Data

At first, 324 presence points of Psa were collected from available studies and online
sources [10,11,13,31,35,44]. In cases where coordinates were not available and only the
name of localities of Psa presence were mentioned in literature, ArcGIS Pro v 2.7.3 and
Google Earth Pro v. 7.3.4 were used to find the coordinates. Duplicate points were removed
based on the resolution of the data (10 arc minute) to minimize the environmental bias and
to avoid possible spatially autocorrelated presence points (Figure 2 and Table S1). Finally,
201 points were used in the modelling process. Because there is no reliable information
about the environmental needs for infection of kiwifruit vines by different strains or biovars,
these strains were not differentiated among the presence records in this study. The records
of biovar 4 were not included in this study as they are now proven to belong to a different
pathovar [24].
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2.2. Bioclimatic Variables

Climate data files (Met manager version 1.2) from CliMond website were downloaded
for direct use in CLIMEX software (www.climond.org, accessed on 1 December 2021) [53].
Bioclimatic variables [54] that have been frequently used in species distribution models
were sourced from the Worldclim website (Bioclim version 2.1) (www.worldclim.org,
accessed on 1 December 2021). This dataset includes 19 variables that were derived from
long-term temperature and rainfall data. For correlative models, a pairwise Pearson’s
correlation test was used to eliminate variables that were highly correlated. This led to
selection of 10 variables with a correlation less than 0.75 to be used in the model training
process. The variables used in MaxEnt and MMF included annual precipitation, annual
mean temperature, minimum temperature of the coldest month, mean diurnal range,
maximum temperature of the warmest month, temperature seasonality, precipitation of the
coldest quarter, precipitation of the wettest quarter, and precipitation of the wettest month.
In addition, variables were screened for ecological relevance [55]. To ensure uniformity
among models, gridded climate data with 10′ resolution were used for all modelling
approaches.

2.3. Species Distribution Modelling
2.3.1. CLIMEX

CLIMEX as a semimechanistic model has been frequently used in plant disease dis-
tribution modelling efforts [56–58] and is considered a mechanistic model that enables
the user to estimate the potential geographical distribution and seasonal abundance of
a species in relation to climate [59–61]. Unlike statistical models, CLIMEX matches the
patterns of climate and species’ distribution by calibration rather than by a statistical fitting
process. The parameter values used in [40] were initially used as starting points to calibrate
the model. After adjusting the parameter values iteratively, the model was run repeatedly
to achieve the highest ecoclimatic index (EI) values close to the known distribution of Psa
and lowest EI values outside the range of Psa reported distribution. These criteria were
used to obtain the closest match of suitable habitats projected by CLIMEX and the reported
distribution patterns of Psa. The final parameter values used to develop the model are
shown in Table 1. Finally, the model was assessed visually based on the match of known
presence points and suitable habitat projected by the model.

www.climond.org
www.worldclim.org
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Table 1. Parameter values used in developing CLIMEX model for Psa in the current study. The table
also shows the parameter values used by the CLIMEX model in the EPPO report [40].

Index Parameters Current Study EPPO Unit

SM0 Lower soil moisture threshold 0.75 0.2 -
SM1 Lower optimum soil moisture 0.9 0.5 -
SM2 Upper optimum soil moisture 2.2 1.5 -
SM3 Upper soil moisture threshold 3 2.5 -
DV0 Lower temperature threshold 5 10 ◦C
DV1 Lower optimum temperature 12 20 ◦C
DV2 Upper optimum temperature 20 25 ◦C
DV3 Upper temperature threshold 28 30 ◦C
TTCS Cold stress temperature threshold 5 2 ◦C
THCS Cold stress temperature rate −0.00005 −0.01 Week−1

DTCS Cold stress degree-day threshold 15 - ◦C
DHCS Cold stress degree-day rate −0.0001 - Week−1

TTHS Heat Stress Temperature threshold 30 - ◦C
THHS Heat Stress Temperature rate 0.0005 - Week−1

SDMS Dry Stress Threshold 0.2 0.15 Week−1

HDS Dry Stress Rate −0.005 −0.02 Week−1

SMWS Wet stress threshold (1–10) 2 - -
HWS Wet stress rate 0.001 - Week−1

2.3.2. MaxEnt

MaxEnt is a presence-only or presence-background model which has been claimed to
outperform most of existing modelling approaches [62]. A good explanation of MaxEnt,
both with respect to its conceptual basis, its application and advantages can be found
in Elith et al. [63]. In this study, suggestions by Merow et al. [64] and Syfert et al. [65]
regarding feature selection and sampling bias were taken into account. Because enough
presence data were available for Psa to allow model complexity, all available feature types
i.e., linear, quadratic, product, threshold, and hinge were used as per the default settings of
the MaxEnt model. In addition, to measure the variable importance a Jackknife test was
performed. The response curves of the predictor variables were produced using available
options in MaxEnt to investigate the dependency of predicted suitability on the selected
variables. To validate the model output, MaxEnt was set to randomly use 75 percent of the
presence data for training and 25 percent for testing the output.

2.3.3. Multimodel Framework

The multimodel framework was used to model species presence/absence data by
seven different species distribution models: logistic regression (LOG), naive Bayes (NB),
classification and regression trees (CART), conditional trees (CTREE), K-nearest neighbor-
hood (KNN), support vector machines (SVM), and artificial neural networks (NNET). These
models have been well-used in ecological studies and detailed descriptions about them can
be found in the general literature on species distribution models [54]. All seven models
were trained (or fitted) and tested using selected variables. The multimodel framework uses
one-class support vector machines (OCSVMs) to select appropriate absence points out of
large datasets. Instead of selecting a single best performing OCSVM model that can result
in over-fitting, a set (an ensemble) of 100 models which had the lowest prediction errors
were chosen to profile the background data. Pseudoabsence points were then selected
from sites that were assigned 0 (probability of occurrence) on the profiled background
data. As there were still many possible absence locations after this analysis, the generated
pseudoabsence points were reduced by clustering locations that had similar environmental
variables by a defined number of clusters to balance the number of presence locations [66].

Following the selection of the pseudoabsence data by the model, ten selected biocli-
matic variables mentioned earlier were used in all seven models. Model validation was
carried out to test the ability of the models to predict new data. This was done by bootstrap-
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ping (resampling data) and cross-validation (10-fold) to generate independent validation
data. Model predictions were plotted globally. The predicted maps were exported in ASCII
format for visualization ArcGIS Pro.

2.4. Model Consensus (Agreement)

The locations where all three models agreed on suitability of Psa establishment were
identified by converting the three predicted maps into binary maps. To create the binary
maps, the occurrence threshold of 0.5, the threshold of 10 percentile presence in the training
data, and an Ecoclimatic Index (EI) threshold of >1 were used for, MMF, MaxEnt and
CLIMEX, respectively [50,66,67]. These binary maps were then overlaid using “equal to
Frequency” tool in ArcgGIs Pro to visualize the hotspots.

3. Results
3.1. Model Performance

According to the current distribution of Psa, the CLIMEX model represented a good
fit to the presence data. Table 1 shows the final parameter values used in the current study
and those used in an earlier study [40]. The parameter values in [40] and [43] were used as
starting points and the current values were obtained through iterative calibration until the
map projection fitted the current distribution of Psa. The resultant parameter values were
also checked for biological feasibility.

For MaxEnt, the area under the curve (AUC) was used to measure model performance.
The AUC of both training and test data for the Psa model was 0.98, which indicates MaxEnt
was able to discriminate the data very well (Figure S1).

Multimodel, as an ensemble framework, produces a table of ten different performance
criteria, which are separately ranked, and an overall score is calculated from these rankings
to find the best-performing model. These performance criteria include accuracy, precision,
sensitivity (recall), F.Score, Kappa index, specificity, true statistic skill (TSS) uncertainty, CV.
error and AUC. A detailed description of these criteria can be found in [66]. Table S2 shows
the variability of the model’s performance according to ten performance criteria calculated
by cross-validation and bootstrapping. Although variability among modelling methods is
expected, there was a low overall variation in the performance among all nine models in
MMF. For Psa, the model which had the highest rank in both validation methods was SVM,
the results of which are interpreted and used for further analysis here.

3.2. Predictor (Environmental) Variables

According to CLIMEX model, the lower temperature threshold (DV0) was 5 ◦C, which
is lower than the 8–10 ◦C that has been reported in similar studies [37,40]. In addition, the
upper temperature threshold obtained was 28 ◦C which was higher than reported values in
previous studies (25 ◦C) and those achieved by MaxEnt in this study [6]. These differences
are expected as reported temperature thresholds are based on experiments conducted in
controlled conditions [37].

By removing highly correlated variables through the Pearson correlation test (>75%),
ten variables mentioned in the Methods section were used in MaxEnt ad MMF. The variable
contribution analysis by MaxEnt showed that annual precipitation and annual mean tem-
perature contributed the most to the model prediction followed by minimum temperature
of the coldest month (Table 2).
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Table 2. Average contribution (out of 5000 iterations) of environmental variables to the prediction of
the global distribution of Psa using MaxEnt.

Variable Percent Contribution Permutation Importance

Annual_Precipitation 26.7 5.6

An_Mean_Tem 19 79.1

Min_Tem_Coldest_Month 15.9 3.4

Mean_Tem_Coldest_Quarter 15.8 0.3

Mean_Diurnal_Range 10.5 6.4

Max_Tem_Warmest_Month 8.6 1.9

Temperature_Seasonality 2.2 1

Precipitation_Coldest_Quarter 1.1 1.6

Precipitation_Wettest_Quarter 0.1 0.5

Precipitation_Wettest_Month 0 0.1

The Jackknife test implied that certain variables such as mean annual temperature
(An_Mean_Temp), mean temperature of the coldest month (Mean_Temp_Coldest_Month),
minimum temperature of the coldest month and annual precipitation were the most im-
portant variables and provided a reasonably good fit to the training data (Figure S2).
Furthermore, Figure S2 showed that no variable contained significantly useful information
that was not previously included within the other variables. Compared to other variables,
the gain in training data experienced a slight decrease when mean diurnal range was
removed from the process of training data.

The response curves of some important variables such as mean annual temperature
and annual precipitation showed the dependence of predicted suitability on both selected
variables. For example, Figure 3A indicates a mean annual temperature of around 17 ◦C
resulted in the highest probability of Psa presence which was in accordance with the
CLIMEX results for the lower optimum temperature range (DV1-DV2) and that reported
in the literature [37]. There was also a gradual drop in probability of Psa presence at
temperatures above 17 ◦C and around 24 ◦C the probability of Psa presence became zero,
which is in accordance with the report that Psa growth decreases at temperatures higher
than 25 ◦C [37]. The response curve of annual precipitation (cbio12) indicated that excessive
rain (>1200 mm/year) can decrease the probability of Psa presence (Figure 3B).
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Figure 3. The probability of kiwifruit bacterial canker disease (Psa) establishment in response to
annual mean temperature (A) and annual precipitation (B) according to the model developed by
MaxEnt.

3.3. Potential Distribton

Large areas in China, United States, Europe and South America were predicted as
suitable by all three models (Figure 4a–c). Nevertheless, there were noticeable discrepancies
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among the models’ projections in some areas such as southeastern parts of the USA, Eastern
Europe, Central Asia, and South America. In North America, while both MaxEnt and
CLIMEX projected large areas in southeastern states of the United States as highly suitable,
MMF did not project these areas as suitable and instead northern parts of United States were
predicted as highly suitable. California was projected as highly suitable by all three models,
in particular in the kiwifruit orchards centered in the Sacramento Valley. In South America,
the most extensive areas that were projected as highly suitable for Psa were located around
Buenos Aires and Mar del Planta in Argentina. In addition, MMF prediction for Argentina
extended further south (around Comodoro Rivadavia) while these areas were not predicted
as highly suitable by MaxEnt and CLIMEX. In addition to Argentina, the whole of Uruguay
and southern Brazil were also projected as highly suitable. In Chile (where kiwifruit is
grown), from Puerto Montt to Santiago were predicted highly suitable by all models.

Central Asia was not predicted as suitable by MaxEnt and CLIMEX and Eastern
Europe was predicted marginally suitable, while MMF projected Central Asia and larger
areas in Europe (extending toward Eastern Europe) as highly suitable. All models projected
Japan and most parts of South Korea as suitable which agrees with current reports of
the disease from these regions. All three models projected that northern parts of Iran
where kiwifruit is grown commercially were highly suitable. Kiwifruit is also grown in a
few orchards in some countries such as Laos, Philippines, Cambodia, Vietnam, India and
Bangladesh. Among those countries only Laos was predicted suitable by all three models.

In Africa, some coastal areas in Morocco and Algeria were projected as highly suitable
by all three models, but kiwifruit is not currently grown in these areas. Kiwifruit have been
cultivated in South Africa only recently and all models project areas around Cape Town
and Durban as highly suitable for long-term establishment of Psa.

In Australia, all three models predicted the southeast coastal areas such as Victoria
are highly suitable, although so far only Psa-LV (biovar 4) has been reported from these
areas [68]. Perth in Western Australia, where kiwifruit is grown on a small scale, was also
projected as highly suitable for Psa by all models.

In New Zealand, the North Island was predicted highly suitable for Psa establishment
by all three models with all areas having EI values greater than 25 according to the CLIMEX
model. While SVM and CLIMEX projected large areas in both North Island and South
Island of New Zealand as highly suitable, MaxEnt projection for the South Island was
limited to northern parts around Nelson. The prediction agrees with the current distribution
of Psa in New Zealand. The weekly growth index chart produced by CLIMEX (Figure 5)
shows that on most days of the year, Psa can establish in the Bay of Plenty, an important
kiwifruit growing area, although the most suitable periods seem to be March-April and
October-December. This higher growth index in winter was in accordance with peaks of
Psa reported in New Zealand (www.kvh.org.nz, accessed 1 December 2021). In summary,
all kiwifruit growing areas in New Zealand lie within the suitable category of CLIMEX
confirming that New Zealand is highly suitable for long-term establishment of Psa.

3.4. Model Consensus

The consensus model highlighted the areas (hotspots) that all models agreed on
suitability of Psa establishment (Figure 6). From 201 presence points, 199 points were
located in areas where all three models agreed on suitability. The remaining two points
(in Sichuan (China) and Gijon (Spain)) were located in areas predicted suitable by two
models. Areas that were predicted as suitable by all three models included New Zealand,
Australia, large areas of southern and southeast China, Japan, South Korea, large areas of
Europe, Turkey, coastal areas of South Africa, California, Chile, Southern Brazil, Uruguay,
and Buenos Aires in Argentina.

www.kvh.org.nz
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Figure 6. Model consensus (agreement) showing the hotspots, the areas which are predicted as
suitable by two or three models for establishment of kiwifruit bacterial canker disease (Psa). The blue
dots show the presence data.

4. Discussion

Only four studies have been developed to model Psa distribution using SDMs [40,43–45].
All these models focus on the potential distribution of Psa at a local scale and mostly rely
on single models or the same type of models such as correlative models [43–45]. While
some studies benefit from an ensemble approach [45], it is recommended that where
possible, contributions to an ensemble model should be from different types of models
and they should add information for building a better model [69]. The current study is
the first to address the potential global distribution of an important plant pathogen using
three different modelling approaches, a semi-mechanistic model (CLIMEX), a presence-
background correlative model (MaxEnt) and an ensemble of presence-pseudo absence
models (MMF). To deal with uncertainty and benefit from different models and algorithm
predictions, the models’ outputs were combined into a consensus model which focuses on
prediction agreements.

Each individual model showed a good fit to the current global distribution of Psa.
While there was a high level of agreement among the three models on highly suitable areas
in China, Australia, New Zealand, Europe, the USA and some parts of South America,
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compared to CLIMEX and MaxEnt, SVM projected larger areas in China, Central Asia and
Europe as highly suitable.

The parameter values in the CLIMEX model were slightly different from the model
developed in a preliminary study by [43]. Current CLIMEX model parameter values
are more in agreement with the ranges mentioned in earlier studies [6,38]. The CLIMEX
model indicated that the minimum temperature threshold (DV0) is 5 ◦C, which means
the pathogen can stay active at this temperature. This is close to the finding by [44]
where temperatures between 3.6–17.1 ◦C in October were found to be conducive to Psa
establishment in China. However, in the CLIMEX model presented in the EPPO report [40]
and [37], a minimum temperature threshold of 10 ◦C (DV0) was reported, which differs
from the current findings and the information available on temperature needs of the
pathogen. In the CLIMEX model presented in the EPPO report, the optimum temperature
range is 20 ◦C to 25 ◦C, which is higher than the current findings (12 ◦C to 20 ◦C) and
those of previous studies regarding the optimum temperature range for Psa growth [37,44].
The response curves produced by the MaxEnt model (Figure 3), also indicated that the
probability of pathogen establishment is the highest between 10 and 20 ◦C with optimum
being around 13 ◦C. This is in close agreement with the current CLIMEX findings on
suitable temperature range. Both the CLIMEX and MaxEnt models in the current study
indicated that above 20 ◦C, the probability of Psa establishment starts to decrease, which
is similar to the findings in [44] that showed the probability of Psa establishment rapidly
decreases above 21.2 ◦C.

The soil moisture parameters in the current study are slightly higher than [40], which
indicates that based on the current CLIMEX model, the pathogen is favored by higher soil
moisture content compared with the CLIMEX model presented in the EPPO report. In
CLIMEX, soil moisture is used as a proxy for rainfall and evapotranspiration, meaning
that a higher soil moisture index implies increased rainfall and humidity affecting species
growth [70]. Thus a higher soil moisture parameter value reflects more optimal rainfall, as
spread of the foliar and stem pathogen Psa is not directly affected by soil moisture, and in-
fection through roots is practically absent [71]. While the ensemble model developed in [45]
showed that annual precipitation plays a minor role in Psa spread, similar to the model
in [44], our study shows that precipitation plays an important role in Psa establishment.
The sensitivity of Psa to rainfall has also been highlighted in other studies [48,72] and is
in agreement with the high soil moisture (SM) values indicated in the current CLIMEX
model (Table 1). The response of Psa to annual precipitation shows that while the pathogen
is favored by moist conditions, excessive rain (above 1200 mm/year) will decrease the
probability of pathogen establishment, probably because of the washout of inoculum [71].

The reasons for these differences in model outcomes might be due to coarser climate
data and the fact that the previous CLMEX study was conducted when less information
on the distribution of Psa was available. For example, Psa occurrences from Spain had
not been used in the modelling effort mentioned in the EPPO report [40]. On the contrary,
occurrence data for Perth in Western Australia were used in the EPPO study but these
occurrence(s) proved to be erroneous later [72]. The number of Psa records used in model
development can significantly affect results for species that are still spreading. In the
current study we used 201 presence points while [43] used 82 presence points, explaining
part of the differences found.

While the EI value estimated by the EPPO model [40] for New Zealand ranges from
15 to 35, indicating suitable to highly suitable areas for Psa establishment, the EI values
estimated by the current model range from 50 to 90 suggesting an even higher suitability.
Furthermore, our model projected the north of Iran (an area in which kiwifruit is grown
commercially) as highly suitable but it was not projected as suitable or even marginally
suitable by the CLIMEX model in the EPPO study [40]. To date there has been no report
of Psa presence in this region. It should be noted, however, that one study mentions the
presence of kiwifruit bacterial canker in Iran but refers to the causal agent as P. syringae
pv. syringae [73]. In East Asia, where China is the major kiwifruit producer, all models
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perfectly fitted the occurrence data. At a national level, Yunnan and Guangxi province
(where kiwifruit orchards cover 500 to 1000 ha respectively) were projected as suitable
by all models. Although the number of predictor variables, the number of presence data
and the resolution of the data used in [44] and 45 were different from the current study,
overall, the model projection patterns for China are similar to those reported by [44] and 45
except that MMF projected larger areas in northern parts of China (Figure 4a–c). In Europe,
all three models agreed on the suitability of some countries such as Italy, Spain, Portugal,
France, Turkey, and Greece. The Trabazon Rize province in Turkey, where there are few
reports of Psa presence, is predicted as suitable by all three models. The consensus model
highlighted the areas where Psa establishment has been predicted by all three models. The
areas of interest are California in the USA, northern parts of Iran, unaffected areas in Greece,
Belgium, Denmark, and South Africa (Figure 6).

While prediction models, especially SDMs, can be valuable tools in assessing the risk
of damaging invasive species, the limitation, caveats, and inherent uncertainties should
be considered while interpreting their results [74–77]. In general, for species that may not
have changed their environmental range, the presence profiles are expected to be confined
to a small area in multidimensional space. The widespread predicted presence of Psa may
be an indication that this species is still spreading, and that we may underestimate the full
range of its potential distribution [43,50]. This result questions the validity of applying
presence-only models such as MaxEnt that rely only on current knowledge of species that
are still spreading. Moreover, it is important to note that the presence of a species may not
be recorded for several reasons such as, (1) difficulty in detecting the species (an important
consideration for plant pathogens due to their microscopic size), (2) evolutionary change of
the pathogen, becoming more aggressive, and (3) the sudden appearance of new pathways
aiding species spread.

Despite the limitation of individual models, the consensus model based on model
agreement presented in this study, composed of three different types of models as recom-
mended by [78], minimized the uncertainties and resulted in predictions that reflected
the observed occurrences and the predictions from previous models [40,43]. The consen-
sus model had the highest sensitivity and lowest false negative rate, with 199 out of 201
presence points lying within areas predicted as suitable. In situations involving important
biosecurity threats such as Psa, it is important to minimize false negatives and aim for
models with lower emission errors [79,80]. While over-prediction can also be an issue due
to implementing unnecessary increased biosecurity readiness and response programs and
strategies, prior knowledge of species biology can be used to prioritize areas which are
most at risk so that when limited resources are available, they could be efficiently allocated
in the right place at the right times.

As there are no known cures for Psa, the control of the disease should primarily
rely on preventive measures. The results from predictive modelling suggest that optimal
moisture supply, avoiding overhead irrigation, may contribute significantly to reduce
Psa spread. In addition, management measures can include preventive application of
chemicals such as copper-based compounds and antibiotics (streptomycin) to contain
the pathogen spread. However, effective management would not be achieved without
proper management procedures in the field including orchard hygiene, controlled access
to orchards, monitoring grafting and use of nutrients for a healthier orchard. In addition,
due to environmental concerns about application of chemicals, alternative methods such
as biocontrol strategies using specific bacteriophages to eliminate Psa are currently under
study and some already showed promising results [81].

Apart from some discrepancies among the models, all three models highlighted
suitable areas in which Psa may establish. The high level of agreement between the SVM
model (from the multimodel framework) and CLIMEX and MaxEnt increased confidence
with respect to model projections for novel areas. These results are particularly valuable
indicators for countries where Psa is currently reported from limited localities and for the
USA, Iran, South Africa, Belgium, and Denmark, where Psa has not been reported.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cli10020014/s1, Figure S1: Receiver operating characteristic
(ROC) curve produced by MaxEnt for Psa; Table S1: The geographic coordinates of locations of Psa.
Some presence data such as Australian points are excluded as they are now known to be a different
pathovar; Table S2: The accuracy measures achieved by cross-validation (A) and bootstrapping (B) in
Multi-Model Framework developed for Psa. Acronyms for models are: QDA = quadratic discrim-
inant analysis, NB = naïve Bayes, LDA = linear discriminant analysis, LOG = logistic regression,
CART = classification and regression tree, CTREE = conditional tree, KNN = K-nearest neighbour,
SVM = support vector machine, and NNET = neural network.
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