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Abstract 
Objectives: Developing inference procedures on the quasi-binomial distribu-
tion and the regression model. Methods: Score testing and the method of 
maximum likelihood for regression parameters estimation. Data: Several 
examples are included, based on published data. Results: A quasi-binomial 
model is used to model binary response data which exhibit extra-binomial 
variation. A partial score test on the binomial hypothesis versus the qua-
si-binomial alternative is developed and illustrated on three data sets. The ex-
tended logit transformation on the binomial parameter is introduced and the 
large sample dispersion matrix of the estimated parameters is derived. The 
Nonlinear Mixed Procedure (NLMIXED) in SAS is shown to be very appro-
priate for the estimation of nonlinear regression. 
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1. Introduction 

In many biological and toxicological experiments, the variable of interest is in 
the form of counts resulting from binary responses. In such experiments the data 
may sometimes exhibit greater heterogeneity (variation) than the binomial 
model. It has long been presumed that an inherent characteristic of data from 
these types of studies is the tendency for individual experimental units to re-
spond more alike than individuals from other groups, which is commonly 
known as the “group effect”. When the experimental units are animals which are 
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treated with varying doses of compounds, such group effect is also known as 
“litter effect”. The litters in each group contain varying numbers of live fetuses 
and some of these have a specific abnormality. To explain the extra-variation 
caused by the “litter effect”, several generalized statistical models have been 
proposed in the literature. Altham [1] proposed that the analysis of such expe-
riments be based on two-parameter generalizations of the binomial model which 
allows for the presence of dependent responses within groups and gave two 
models. Kupper and Haseman [2] suggested a correlated binomial model which 
is identical to Altham’s additive generalization of the binomial model. Williams 
[3] proposed that the analysis of toxicological studies be based on the be-
ta-binomial model, which is another generalization of the binomial model. 
However, [1] indicated that the beta-binomial model allows only positive associ-
ation between the subjects of a group whereas the correlated binomial and the 
multiplicative generalization of the binomial model allow negative as well as 
positive associations. A much wider class of family of distributions known as 
“The generalized Linear Mixed Models” or GLMM [4] is developed and is used 
extensively in many applications and to deal with overdispersion that exists in 
count and binary data. 

In this paper we show that the quasi-binomial distribution of Consul [5] re-
viewed by Shenton in [6] can be used as an alternative model for the analysis of 
overly dispersed dichotomous data. The quasi-binomial (QBD) model has two 
parameters p and φ . The parameter p will be called the binomial parameter and 
the other parameter φ  will be called the dispersion parameter. When 0φ = , 
the quasi-binomial distribution (QBD) reduces to the binomial distribution. 
Since the binomial distribution hypothesis is the focus of our investigations, it is 
natural to derive a test statistic for testing the null hypothesis 0φ = . 

The paper is structured as follows: in Section 2 we derive the ( )C α  binomial 
score test of significance [7] and [8] which is asymptomatically optimal against a 
QBD alternative and apply the test to some real data in Section 3. In Section 4 we 
develop a QBD regression model to account for possible extraneous sources of 
variation. The methods are applied to COVID-19 mortality data. 

The flowchart in the Appendix outlines the steps of the model developments 
and the applications. 

2. Quasi-Binomial Distribution and ( )C α  Binomial Score  
Test of Significance 

A discrete random variable Y is said to have a QBD if and only if its probability 
function is given from [6] as:  

( ) ( ) ( ) ( )1 1 ,y m y
r

m
P Y y p y p p y p y

y
φ φ− − 

= = = + − − 
 

        (1) 

for 0,1,2,3, ,y m=   and zero otherwise and where 0 1p< < ,  
( )1p m p mφ− < < − . It reduces to the binomial when 0φ = . The r.v. Y 
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represents the number of successes in m trials such that the probability for the 
first success is p and that the probability of success in each of the other trials is 
p yφ+ . Thus the probability of success increases or decreases as φ  is positive 

or negative and is directly proportional to the number of successes y. All the 
moments of the QBD are finite and the parameter φ  has a very substantial ef-
fect on the model. The Variance of the QBD is larger or smaller than the va-
riance of the binomial model depending upon 0φ >  or 0φ < . Consul [9] pro-
vided a detailed study of the characteristics of the QBD and gave numerous 
properties and moment based estimation of the model parameters. The mean 
µ  of the QBD model (1) is given by 

( )( )
1
11 1m j

j jmp mµ φ−

=
 = + − ∑                    (2) 

We shall formulate a ( )C α  test for testing the binomial model against the 
QBD alternative. This can be done by testing the null hypothesis 0 : 0H φ =  
against its negation in the presence of the nuisance parameter p. Moran [9] 
showed that for such problems the ( )C α  tests, suggested by Neyman [8], are 
asymptomatically equivalent to tests using the maximum likelihood estimates. 

Let 1 2, , , nY Y Y  be n independent random variables where each r. v. iY  is 
distributed as a QBD with ( ), ,im p φ . The likelihood function L is given by (3): 

( ) ( )1

1
1i i i

n y m yi
i i

i i

m
L p p y p y

y
φ φ− −

=

  
= + − −  

  
∏             (3) 

and, its logarithm (4) equals 

( ) ( ) ( ) ( )
1 1

constant ln 1 ln ln 1
n n

i i i i i
i i

n p y p y m y p yφ φ
= =

= + + − + + − − −∑ ∑   (4) 

To derive the ( )C α  test statistic for 0 : 0H φ = , the first and second partial 
derivatives of the log-likelihood function  , evaluated at 0φ = , are needed. 

All summations are from 1i =  to n in the expressions unless stated other-
wise. Differentiating the right hand-side of (4) with respect to the model para-
meters, and setting 0φ =  we get 

( ) ( ) ( )

( ) ( )

1 1
1

0

1 1
2

0

1i i i i i

i i i i

T p p y y q y m y

T p p y q y m y
p

φ

φ

φ
− −

=

− −

=

∂
= = − − − ∂ 


∂ = = − − ∂ 

∑ ∑

∑ ∑





          (5) 

where 1q p= − . 
Setting the second equation in (5) to zero and solving for p yields 

ˆ i imp y= ∑ ∑                         (6) 

as the maximum likelihood estimator of p under 0 : 0H φ = . 
Also, the second partial derivatives are given in (7), (8), (9) 

( )
( )

( )
( )

2 22

2 2 2

1 1
,

1
i i i i

i i

y y y m

p y p yφ φ φ

− −∂
= − −

∂ + − −
∑ ∑



             (7) 
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( )
( )

( )
( )

2

2 2

1 1
,

1
i i i i

i i

y y y m
p p y p yφ φ φ

− −∂
= − −

∂ ∂ + − −
∑ ∑



            (8) 

( )
( )

( )
( )

2
2

2 2 2

1

1
i i i

i i

y m y
np

p p y p yφ φ
− − −∂

= − −
∂ + − −

−∑ ∑


           (9) 

Setting 0φ = , the above three equations are obtained in their respective or-
ders as: 

( ) ( ) ( )2 2 2 2
11 1i i i i iT p p y y q y m y− −= − − − −∑ ∑          (10) 

( ) ( ) ( )2 2
12 1i i i i iT p p y y q y m y− −= − − − −∑ ∑           (11) 

and, 

( ) ( ) ( )2 2 2
22 1i i iT p np p y q m y− − −= − − − − −∑ ∑          (12) 

Under the null hypothesis 0 : 0H φ = , the i sY ′  are independent binomial va-
riates. Using the expected values of 2,i iY Y  and 3

iY  for binomial variates one 
can easily see that ( )1 0E T p =   .  

Denoting ( ) ( ) ( ) ( )11 11 12 12,E T p A p E T p A p− = − =        and  
( ) ( )22 22E T p A p− =    we can then show that 

( ) ( ) ( ) ( )1 1 2
11 2 3 1 1 ,i i i iA p p q m m pq m m− −= − − + −∑ ∑        (13) 

( ) ( )1
12 1 ,i iA p q m m−= −∑                     (14) 

and 

( ) ( ) 1
22 .iA p pq m−= ∑                      (15) 

Equations (13), (14), and (15) are in fact the elements of Fisher’s information 
matrix when the null hypothesis 0 : 0H φ =  is true. 

To test the hypothesis 0 : 0H φ = , one can use the statistic ( )1T p  according 
to Neyman’s methodology [7]. Since p is unknown, we can follow Moran’s sug-
gestion [8] and use the statistic ( )1T p , where p  is any root-n consistent esti-
mator of p. The maximum likelihood estimator p̂ , given in (5) is the simplest 
such estimator. On substituting p̂  in (4) and on simplifying, we get 

( ) ( ) ( ) ( )21 1
1 ˆ ˆ ˆ ˆ ˆ ˆi i i i i iT p pq y m p q m y m p m− −= − + − −∑ ∑∑       (16) 

It may be noted that when 2i nm m m m= = = = , the expression for ( )1 ˆT p  
reduces to  

( ) ( )21ˆ ˆ ˆipq y mp mn− − −∑  

which is like Fisher’s variance test statistic. From Cox and Hinkley [10], 

( ) ( ) ( ) ( )2
1 11 12 22ˆVar T p A p A p A p= −                (17) 

The substitution of p̂  for p in (17) gives the functional form of the test sta-
tistic, under 0 : 0H φ = , as 

( )  ( )22
1 1ˆ ˆ .M T p Var T p=                         (18) 

The statistic M2 (18) has an asymptotic (for n →∞ ) chi-square distribution 
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with one degree of freedom. Accordingly, the above statistic provides a ( )C α  a 
binomial score test which is asymptotically optimal against the quasi-binomial 
alternative. 

3. Examples 

We shall now consider two examples. In the first example the data sets are bi-
nomially distributed and the test statistic M2 does not reject the hypothesis of a 
binomial distribution and in the second example the test statistic M2 indicates 
that the data sets are not binomially distributed. 

Example 1. Paul [11] discussed a teratological experiment in which pregnant 
Dutch rabbits were treated with varying doses of a compound. Each litter 
(group) consisted of a varying number of live fetuses in each rabbit. The number 
of fetuses in each litter with skeletal of visceral abnormalities were then ob-
served. For illustration, we consider the group, treated with high dose, consisting 
of 17n =  litters which gave the following observations: 

: 9 10 7 5 4 6 3 8 5 4 4 5 3 8 6 8 6
: 1 0 1 0 1 0 1 1 2 0 4 1 1 4 2 31

i

i

m
y

 

Since 101im =∑  and 23iy =∑ , ˆ 23 101 0.228p = = . 
To test the null hypothesis H0: The data sets are binomially distributed i.e. 

0φ ≠  against H1: The data sets are quasi-binomially distributed i.e. 0φ ≠ , we 
compute the following values for (13) to (14) and apply them to (15) and (16). 

( ) ( ) ( )( )12 22
570 101ˆ ˆ738.342, 573.811,

0.772 0.228 0.772
A p A p= = = =   

( ) ( ) ( ) ( )11

2 3 0.228 0.228ˆ 570 4206 2213.84,
0.772 0.772

A p
−

= + =  

and 

 ( )( ) ( )2

1

738.342
ˆ 2213.84 1263.79.

573.811
Var T p = − =  

Thus, from (11), 

( )
( )

2
2 42.781

1.448
1263.79

M = =  

Since ( ) ( )2 21.448 1.448 0.22r r iP M P X≥ = ≥ = , the null hypothesis cannot be 
rejected. Thus, we conclude that the data sets are binomially distributed with 
ˆ 0.228p = . 

4. Quasi-Binomial Regression Model 

It is well known that the logistic-linear model is a basis for analyzing regression 
data or the data from designed experiments when the response variable is meas-
ured on the binary scale. The purpose of this section is to modify the QBD so 
that a finite number of concomitant variables may be included which may ac-
count for most of the sources of the extra-binomial variation. 
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Suppose that the ith response ( )1iY i n≤ ≤  has the QBD given by (1). Also, let 

1 2 ,, ,i i ikx x x  be the values of k explanatory variables associated with the re-
sponse variable iy , where the n k×  matrix is of rank k. We now employ the 
customary logistic transformation on the binomial parameter p as indicated be-
low” 

( ) 1
e 1 e ,i i

ip θ θ −
= +  

where, 

( ) 1

1
1

k

i i i ij j
j

n p p xθ β−

=

 = − =  ∑                  (19) 

where 1 2, , , kβ β β  in the right-hand side of (19) are the regression coefficients 
which are to be estimated along with the parameter φ . 

The likelihood function will be given by 
1 1

1

e e 1
1 e 1 e 1 e

i ii i

i i i

y m y
n i

i ii
i

m
L y y

y

θ θ

θ θ θφ φ
− −

=

       = + −     + + +      
∏      (20) 

Taking the log of the likelihood function (20) we get the log-likelihood func-
tion in (21) 

( ) ( ) ( )
( ) ( )

1 1

1

e 1 e 1 e 1 e

1 e constant,

i i i i

i

i i

i i i

n y n y

m y n y

θ θ θ θ

θ

φ

φ

− −

−

   = + + − + +      
 + − + − +  

∑ ∑

∑

  



      (21) 

where the summations are for 1i =  to n and iθ  is defined in (19). 
Differentiating  , given in (21) partially with respect to , 1, 2, ,r r kβ =  , and 

φ , we have the following system of ( )1k ML+  equations: 

( )

( )
( )

( )

( )
( )

( )

1

2

1

2

1

e 1 e

e 1 e
1

e 1 e

e 1 e
0, 1,2, ,

1 e

i i

i i

i i

i i

i

r ir ir
r

i ir

i

i i ir

i

x x

y x
y

m y x r k
y

θ θ

θ θ

θ θ

θ θ

θ

β

φ

φ

−

−

−

−

−

∂
= = − +
∂

+
+ −

+ +

+
− − = =

+ −

∑ ∑

∑

∑









    (22) 

and 

( )
( )

( )
( )1 1

1
0.

e 1 e 1 ei i i

i i i i i

i i

y y y m y

y y
φ

θ θ θφ φ φ
− −

− −∂
= = − =
∂ + + + −

∑ ∑



        (23) 

The second partial derivatives are given by (where 1i iq p= − ) 

( )
( )

( )
( )

2 22

2 2 2

1

1
i i i i i

i i i i

y y y m m

p y p y
φφ φ φ φ

− −∂
= = − −
∂ + − −

∑ ∑



  

( )
( )

( )
( )

2

2 2

1

1
i i i i i i i i i

r ir
r i i i i

y y p q y m y p q
x

p y p y
φ φ β φ φ

− −∂
= = − −
∂ ∂ + − −

∑ ∑




  
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and 

( )

( )
( )
( )

2

2 2
2 2

2 2

1
1 2

1
1

i
rs i i ir is i i i ir is

r s i i

i i i ii
i i ir is ir is

i i i i

y
p q x x p q p x x

p y

m y p qy
p q x x x x

p y p y

β β φ

φ φ

−∂
= = − + −
∂ ∂ +

−−
− −

− − −

∑ ∑

∑ ∑







 

  for , 1, 2, ,r s k=  . 
The expectations of the negatives of the above second partial derivatives 

would give the elements of the Fisher’s information matrix. For these we use 
some results from [9] on inverse moments of the QBD. Thus 

( )
( )

( )
( )

( ) ( )
( ) ( )

2 2

2 2

1

1

1

1 2 1

1 2

i i i i i

i i i i

n
i i i i i i

i i i i

Y Y Y m Y
I E E

p Y p Y

m m p q m p

q m p

φφ
φ φ

φ φ=

   − −
   = +
   − − −   

 − + − =
 − − + 

∑ ∑

∑
           (24) 

( )
( )

( )
( )

( ) ( )( )
( )( )

2 2

2

1

1

1

1 1 3
, 1,2, ,

2 1

i i i i i
r i i ir i i ir

i i i i

n
i i i i i ir

i i i i

Y Y Y m Y
I E p q x E p q x

p Y p Y

m m m p q x
r k

p p m

φ
φ φ

φ

φ φ φ=

   − −
   = +
   − − −   

− − −
= =

+ − − +

∑ ∑

∑ 

      (25) 

( ) ( ) 2

1

1 1
1 ,

2

n
i i i i

rs i i i ir is
i i i i

m p m p
I m p q x x

p q m
φ φ

φ φ φ=

 − + −
= − + − − + 
∑          (26) 

where , 1, 2,3, ,r s k=  . 
Equations (24), (25), (26) are the elements of Fisher’s information matrix. 

From [12], and based on the large sample theory of the likelihood estimation, we 
can establish the asymptotic normality of ( )ˆ ˆ ˆ,β φΛ = ; that is  

( ) ( )1 0ˆ ,kn N +
 − → ΣΛ Λ   

in law. The large sample variance covariance matrix is given by 
1

.rs r

r

I I
n

I I
φ

φ φφ

−
 

Σ =  
 

 

In testing hypothesis about parameters in a logit model, one generally uses 
large sample tests. The choice is between the likelihood ratio test and other con-
sistent tests which are asymptotically equivalent to the likelihood ratio test under 
the null hypothesis [8], in contrast to the likelihood-ratio test which requires fit-
ting the model under both the null and alternative hypotheses). Now, to test the 
null hypothesis 0 : 0H φ =  versus 1 : 0H φ ≠ , the Wald statistic given in (27) is 

( )
( )

2

0

ˆ
,

ˆ
W

AV

φ

φ
=                          (27) 

In (27) ( )0
ˆAV φ  is the asymptotic variance of φ̂ , evaluated under the null 

hypothesis H0. Under H0, the statistic W has the same asymptotic (for large 
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samples) 2
iX  distribution as the likelihood ratio statistic. Equivalently, 

0 : 0H φ =  is rejected whenever the value of  

( )0 1
ˆ ˆˆ ,AV Z αφ φ −>  

where 1Z α−  is the standard normal deviate for α-level of significance, and 

( )0
ˆˆAV φ  denotes the large sample variance of φ̂ , under H0, and after all other 

parameters are replaced by their maximum likelihood estimates. 

5. Applications of the QBD Regression 

1) Clinical trial results 
One group of 16 pregnant female rats was fed a control diet during pregnancy 

and lactation and a second group of 16 pregnant female rats was given a diet 
treated with a chemical. Weil [13] published clinical trial data on the number m 
of pups alive at 4 days and the number y of pups that died at the end of 21 days 
lactation period for each litter. The fractions i iy m  for the two groups are giv-
en below: 

Control: 0/13, 0/12, 0/9, 0/9, 0/8, 0/8, 1/13, 1/12, 
   1/10, 1/10, 1/9, 2/13, 1/5, 2/7, 3/10, 3/10. 
Treated: 0/12, 0/11, 0/10, 0/9, 1/11, 1/10, 1/10, 1/9, 
   1/9, 1/5, 2/9, 3/7, 5/10, 3/6, 7/10, 7/7. 
We apply the quasi-binomial regression model to the above data with 16 rep-

lications in each group and take 
2

1
, 1, 2, ,32i ij j

j
x iθ β

=

= =∑   

where 1 1ix =  and 2 0ix =  when the subject is in the control group and 2 1ix =  
when it is in the treatment group. 

The maximum likelihood estimates of ( )1 2, ,β β φ  were obtained by simulta-
neously solving the system of equations.  

0r =

  and 0φ =

 , given in (14) and (15), with the help of NLMIX proce-
dure in SAS (version 9.4). ML estimates are 

( ) ( )1 2
ˆ ˆ2.5135 0.3435 , 0.6595 0.4307β β= − =  

and  

( )ˆ 0.0517 0.0114φ =  

The numbers in the brackets are the large sample standard deviations. Both 

1̂β  and φ̂  are highly significant (p-value < 0.001). 
2) Example 2: Multiple regression (risk factors associated with COVID 19 case 

fatality) 
The novel coronavirus disease (COVID-19) pandemic affected every country 

in our world and imposed tremendous strains on the world economies and the 
health care systems. 

During the 2901-2020 year over 5000 research papers have been published 

https://doi.org/10.4236/ojs.2022.121001


M. M. Shoukri, M. M. Aleid 
 

 

DOI: 10.4236/ojs.2022.121001 9 Open Journal of Statistics 
 

and the fundamental aim has been to understand the mechanism of spread of 
the virus and the main risk factors leading to associated mortality. Many of these 
reports on the COVID-19 pandemic suggested that the coronavirus was associ-
ated with more serious chronic diseases and mortality regardless of country and 
age. Other reports suggested that those with underlying comorbidities, including 
obesity, type 2 diabetes, heart, and kidney diseases are at high risk of infection 
and death. Therefore, there is a need to understand how common comorbidities 
and other factors are associated with the risk of death due to COVID-19 infec-
tion. Our investigation aims at exploring this relationship. Specifically, our fun-
damental aim is to explore the relationship between the aggregate numbers of 
deaths among total number of reported COVID-19 cases.  

The WHO website [14] provided detailed account of the number of COVID-19 
cases by country, which we accessed on December 2-2020. We included in the 
study the cumulative number of COVID-19 cases and the associated death 
counts by country as of December 2-2020. We excluded countries that had cu-
mulative counts less than 10,000 cases. We denote the number of cases pe-country 
by m, and the corresponding deaths denoted by y. The data base has 112 coun-
tries, we divided them into regions according to the classification given in data 
source number [15]. The most referenced risk factors are: 

1) X1 = log (percentage of obese persons in a country reported in the year 
(2018) [17]. 

2) X2 = log (population density) [18] [19] [20]. 
3) X3 = log (number of people with colorectal cancer in a country reported in 

the year (2017) [21]. 
4) X4 = log (Chronic Kidney Disease-case fatality in a country as reported in 

(2017) [15] [16]. 
Note that we used the log (factor) to stabilize the variance. The data are sum-

marized in Table 1. 
The histogram of y is given in Figure 1, showing the severe skewness in the 

distribution. 
Figures 2-5 are the box plots of the risk factors. The plot shows that the dis-

tributions are evenly distributed among regions, except for X3. 
 
Table 1. Summary statistics of the COVID-19 cases (m), deaths among cases, and the 
four covariates. 

 N Minimum Maximum Mean Std. Deviation 

m 113 10,129 13,385,755 555,864.71 1,657,855.674 

y 113 29 266,043 12,972.13 34,784.047 

LOG_CKD_CASE_FATALITY 113 3.44 6.50 5.0616 0.51962 

LOG_COLOREC_CANCER 113 3.69 12.98 8.0393 1.69123 

LOG_OBESITY 113 1.28 3.63 2.8430 0.61066 

LOG_POPDENSITY 113 6.57 16.65 12.3378 1.91657 
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Figure 1. Histogram of the number of deaths. 

 

 

Figure 2. Box plot of X1 by region. 
 

 

Figure 3. Box plot of X2 by region. 
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Figure 4. Box plot of X3 by region. 
 

 

Figure 5. Box plot of X4 by region. 
 

We estimated the average case-fatality rate as: 

ˆ 0.023i ip y m == ∑ ∑ . 

Moreover, the other quantities are given as: 

( ) 19
11 8.49 10A p = × , ( ) 14

12 3.51 10A p = × , ( ) 6
22 2772 10A p = × ,  

( ) 12
1 ˆ 1.1 10T p = − × , ( ) 19

1 ˆ 4.05 10Va T pr    = × . 

Hence ( )  ( )22
1 1 29932.ˆ 22ˆM T p Var T p= =       , and we therefore reject the 

binomial hypothesis. We used the SAS NLMIXED procedure to fit the QB re-
gression model. The results are shown in Table 2. 

We note that the fitting algorithm produces variance covariance matrix of the 
estimated regression parameters (not shown here). 

The Nonlinear Mixed Model procedure (NLMIXED) is an iterative algorithm 
and its convergence, which can be slow, depends heavily on the starting.  
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Table 2. Results of the quasi-binomial regression for the COVID-19 case fatality data. 

Parameter Estimate Standard Error 95% confidence limits 

b0 −6.3423 0.0122 −6.3662 −6.3183 

b1 0.4180 0.0020 0.4145 0.4222 

b2 −0.0960 0.0007 −0.0974 −0.0946 

b3 0.2063 0.0010 0.2039 0.2087 

b4 0.0560 0.0007 0.0547 0.0574 

phi 0.0050 0.0020 0.001 0.0090 

6. Discussion 

For observed data sets which exhibit variation greater than what is expected un-
der the hypothesized model, the researchers often try to determine the sources of 
this phenomenon which is known as over-dispersion. There are three broad cat-
egories of such sources of over dispersion: 1) genuine or significant over-dispersion 
or under-dispersion which may be accounted for by generalizations of the 
known distribution, 2) the apparent over-dispersion is due to some outliers, 
which may be detected by residual analysis by some other diagnostic method, 3) 
poor choice of some of the explanatory variables. Therefore, it seems appropriate 
that one should apply a model which includes a dispersion parameter as well as a 
reasonable number of carefully chosen covariates and variates. The fitting of the 
QBD regression model can be tricky, and one may adopt one of the algorithms 
described in [22] and [23]. 
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