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Abstract 

Machine learning methods, one type of methods used in artificial intelligence, 
are now widely used to analyze two-dimensional (2D) images in various 
fields. In these analyses, estimating the boundary between two regions is basic 
but important. If the model contains stochastic factors such as random ob-
servation errors, determining the boundary is not easy. When the probability 
distributions are mis-specified, ordinal methods such as probit and logit 
maximum likelihood estimators (MLE) have large biases. The grouping esti-
mator is a semiparametric estimator based on the grouping of data that does 
not require specific probability distributions. For 2D images, the grouping is 
simple. Monte Carlo experiments show that the grouping estimator clearly 
improves the probit MLE in many cases. The grouping estimator essentially 
makes the resolution density lower, and the present findings imply that me-
thods using low-resolution image analyses might not be the proper ones in 
high-density image analyses. It is necessary to combine and compare the re-
sults of high- and low-resolution image analyses. The grouping estimator may 
provide theoretical justifications for such analysis. 
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1. Introduction 

The analysis of two-dimensional (2D) images by machine learning methods, one 
type of methods used in artificial intelligence, is widely used [1]-[20]. For details 
see the review and survey works [21] [22] [23] [24] [25] of this subject. Brown 
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[26] mentions the potential of marching learning and its limitations. In keeping 
with Brown’s statement, we believe that it is important to research and identify 
the limitations of machine learning. In 2D image analyses, it is very important to 
divide the sample space into two regions (such as the target and background re-
gions). Suppose that S is a bounded subspace of 2D space, y is a binary variable 
which takes a value of 1 in the region A S⊂  and 0 in the region B S⊂ . The 
boundary is given by the deterministic function ( ) 0g x =  where ( )1 2,x x x= . 
A is given by ( ) 0g x >  and B is given by ( ) 0g x <  as shown in Figure 1. In 
this case, we can separate the space with a non-stochastic line such as by using 
support vector machines [27].  

However, when the model contains stochastic factors such as random obser-
vation errors as in Figure 2, it is necessary to consider stochastic models. Ma et 
al. [28] pointed out that even if non-stochastic patterns of noise are added to 
images, the machine learning methods may not give proper results. In this case, 
we separate the region defined by ( ) 0g x =  such that [ ]1| 1 2P y x= >  if 

( ){ }: 0x A x g x∈ = >  and [ ]0 | 1 2P y x= <  if ( ){ }: 0x B x g x∈ = < . (Note 
that the model can be easily generalized to the α-quantile cases.) 
 

 

Figure 1. The case in which S is divided into two regions by a non-stochastic line. 
 

 

Figure 2. The case in which the model contains stochastic factors. 
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The problem is that it is not easy to estimate ( )g x  properly in the 
non-stochastic case. If ( )g x  is mis-specified, we cannot get proper results. 
Nawata [29] proposed the estimator of ( )g x  by the grouping method based on 
Nawata [30] [31] (hereafter referred to as the grouping estimator). The grouping 
estimator is a semiparametric parameter and does not require [ ]1|P y x=  to be 
specified. The method has not been used because grouping observations are dif-
ficult. Analyses of 2D high-resolution images have become very important in 
many fields. The sizes of 2D images are finite, and the images are overlaid with 
grid lines (and usually rectangles). Therefore, grouping is very easy, and each 
group can have a sufficient number of observations. 

A grouping estimator for binary variables in the 2D case is explained in this 
study, and the results of a Monte Carlo study are presented. 

2. Models and Assumptions of a Grouping Estimator 

Let ijy  be the binary variable that takes 1 if the targeted object occurs and 0 
otherwise, let S be a bounded subspace of the 2D space where we obtain observa-
tions, and let ijz  be an m-dimensional vector given by 

( )2 31, , , ,ij ij ij ijmz z z z′ =  , ( )ijk k ijz z x= , ( )1 2,ij i jx x x S= ∈ ,      (1) 

11, 2, ,i n=  , 21, 2, ,j n=  . 

ijz  is a function of ijx . Let 1 2n n n= ⋅ , which is the total number of observa-
tions. S is divided into two regions such that: 

Region A: 1| 1 2ij ijP y x = >   if ijx A∈ ,            (2) 

and 
Region B: 1| 1 2ij ijP y x = <   if ijx B∈ . 

Suppose that the boundary C between the two regions in S is given by 
( ) 0g x z′= =β , and  

1 1 2ijP y = >   if 0ijz′ >β , 1 1 2ijP y = <   if 0ijz′ <β ,     (3) 

and 

1 1 2ijP y = =   if 0ijz′ =β , 

where β  is the m-th dimensional vector of unknown parameters. This means  

0ijz′ >β  if ijx A∈  and 0ijz′ <β  if ijx B∈ .            (4) 

Note that we only consider a linear function of ijz , but the method can be 
easily generalized to non-linear cases. From (3) and (4), we get 

*
ijij ijy z u′= +β  and ( )*1 0ij ijy y= > .                (5) 

where ( )1 D  is the indicator function that takes 1 if D is true and 0 otherwise. 

iju  is a random error term such that ( ) 10
2ijF =  where ( )ijF u  is the distribu-

tion function of iju . One of the biggest problems is that we do not know the 
distribution function. A linear probability function (and modified types of linear 
functions) is sometimes used because computation is easy using such a function. 
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However, Amemiya ([32], p. 268) mentions that “(it) is not a proper distribution 
function as it is not lie between 0 and 1.” The other widely used alternative dis-
tribution is the logistic distribution. Miguel-Hurtado [33] considered the linear 
and logistic regression methods and concluded that “Our experiments have 
shown that the machine learning classification typically out-performs linear (lo-
gistic) regression for the prediction of these four demographic trials based on 
bin assessments.” However, it is to be expected that we will not obtain correct 
results if the model is mis-specified; that is, there is no reason to use linear or lo-
gistic regression in the analysis. The grouping estimator is a semiparametric es-
timator that does not depend on the distribution of error terms; it is consistent 
in not only independent and identically distributed (i.i.d) cases but also in hete-
roscedastic cases. 

The following assumptions are made: 
Assumption 1 
S is a bounded closed subspace of the 2D space. S is divided into Region A: 
[ ]1| 1 2P y x= >  if x A∈  and Region B: [ ]1| 1 2P y x= <  if x B∈  where 
( )1 2,x x x= . The boundary C of the two regions is given by ( ) 0g x z′= =β , 
( )2 31, , , , mz z z z=  , ( )k kz z x= , 1,2, ,k m=  . 

Assumption 2 
( )1 2,kz x x  is the continuous and bounded function of 1 2,x x  in the proper 

neighborhood of 0,C C . There exists 1 0>  such that 1z′ > β  if  
( )1 2 0,x x x C= ∉ . 

Assumption 3 
{ }iju  are independent random variables but are not necessarily identically 

distributed. Let ( ) ( ) ( )| , ,ij ij ij i jF u F u x x x x= =  be the distribution function of 

iju . Then ( )0 1 2ijF = , ( ) 1 2ijF u >  if u > 0 and ( ) 1 2ijF u <  if u < 0, ( )ijF u  
is a continuous function of u, and there exists 2 3, 0>   such that  

( ) 2
1
2ijF u u− >   in ( )1 2 0,i jx x C∈  and ( ) 3

1
2ijF u − >   if ( )1 2 0,i jx x C∉ .   

Assumption 4 
{ }ijx  satisfy the following conditions. 
1) Let ( )ijS δ  be the neighborhood of ijx  such that ( ) { }:ij ijS x x x= − <δ δ  

and ( )ijn δ  be the number of observations in ( )ijS δ . Then there exist 

1 2 1 2, , 0,a a >α α  such that ( ) 1
1ijn a n> αδ  and 2

2a n−< αδ  for any ijx . 

2) ,

1
ij iji j z z

n
′∑  converges to a nonsingular matrix.  

3. Grouping Estimator for Binary Cases 

Divide S into T non-overlapping subsets 1 2, , , TS S S  so that the conditions of 
Assumption 4 are satisfied. 

Let tn  be the number of observations in tS . Define  

ij tt ij tx Sz z n
∈

= ∑                         (6) 

and 
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where 
ij tt ijx Sy y+
∈

= ∑ . 

tz  represents the mean of ijz  and ty  is the median of ijy  in tS . The 
grouping estimator for the binary model is the probit estimator using ( ),t tz y , 

1,2, ,t T=  . The estimator maximizes 

( ) ( ){ } ( )0 11
t ty yt t t tzL b n b bzn
= =

= −Φ ′ ′Φ∏ ∏ .            (7) 

where Φ  is the distribution function of the standard normal distribution. b̂  
represents the estimator maximizing ( )L b . Since the boundary of the two re-
gions does not change if we multiply a non-zero constant, we need to normalize 

( )1 2
ˆ ˆ ˆ ˆ, , , mb b b b′ =  . Therefore, b̂  is standardized by the i-th element îb  and 

the grouping estimator is defined by 
ˆ ˆˆ

ib b=β .                            (8) 

From Theorem 4.3 of Nawata [29], the estimator is consistent. Since the idea 
of the grouping estimator is based on the normality of the asymptotic distribu-
tion of the median and the proof uses Bernstein’s inequality, which gives the 
precise probabilities of the tail portions of the sum of random variables (for de-
tails see Benntett [34]), it is useful to consider the normal distribution and probit 
model. 

4. Monte Carlo Experiments 

In the Model Carlo study, we consider the case where S is the rectangle given by 

10 5x< ≤  and 20 5x< ≤ . Both 1x  and 2x  are divided by 1000 equidistant 
grid lines. Let 1ix  be the i-th grid line in 1x  and 2 jx  be the j-th grid line in 

2x . The intersection of 1ix  and 2 jx  is denoted as ijx , and each trial contains 
1 million observations ( 1000000n = ). 

We consider the basic but important models given by  
*

0 1 1 2ij i j ijy x x u= − − + +γ γ .                   (9) 

The boundary C is given by  

2 0 1 1x x= +γ γ .                       (10) 

The parameter value of 0γ  is 0 for all cases, and the cases in which 1 1=γ , 2, 
and 4 are considered. The areas of A and B are the same for 1 1=γ ; the area of A 
is 1/4 of S for 1 2=γ , and the area of A is 1/8 of S for 1 4=γ . First, the cases in 
which the error terms are i.i.d. random variables are analyzed. For the distribu-
tions of iju , the normal (normal distribution cases, Cases 1 - 3) and Cauchy 
(Cauchy distribution cases, Cases 4 - 6) distributions are considered. Then, 
non-i.i.d. (heteroscedastic) cases such that 1) iju = ε  if ijx A∈  and 2iju = ε  
if ijx B∈  (heteroscedastic distribution cases I, Cases 7 - 9) and 2) iju = ε  if 
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ijx A∈  and 4iju = ε  if ijx B∈  (heteroscedastic distribution cases II, Cases 10 
- 12) where ε  follows the standard normal distribution are analyzed. 

For all cases, 0γ  and 1γ  are estimated by the probit maximum likelihood es-
timator (MLE) and grouping estimator. For the grouping estimator, each group 
contains 9 intersection points determined by 3 neighboring grid lines of 1x  and 

2x . The number of groups becomes 333 333 110889× = . (The points on 1 5x =  
or 2 5x =  are not used.) As shown in this example, the grouping estimator essen-
tially reduces the resolutions of the images. The number of repetitions is 100. 

Tables 1-4 show the results of the Monte Carlo experiments. When the error 
terms are i.i.d. and follow the normal distribution (Table 1), the probit MLE is 
an efficient estimator, and the biases and standard deviations (SDs) are quite 
small. The biases of the grouping estimator are very small; however, the SDs are 
larger than those of the probit MLE. When the error terms follow a Cauchy dis-
tribution (Table 2), the biases of the probit MLE are very small when 1 1=γ . 
This is considered to occur because the distribution ijy  is symmetric with re-
spect to the boundary C in this case. In the cases in which 1 2=γ  and 4, the bi-
ases of the probit MLE become larger. In particular, in the 1 4=γ  case, the bi-
ases are quite large, and are −0.9485 and −1.2541 for 0γ  and 1γ , respectively. 
On the other hand, the biases of the grouping estimator are very small for the 
cases in which 1 1=γ  and 2. For the 1 4=γ  case, the biases are −0.0421 and 
−0.2264 for 0γ  and 1γ , respectively, much smaller than those of the probit 
MLE. Although the SDs of the grouping estimator are larger than those of the 
probit MLE in many cases, the SDs are much smaller than the biases. Figure 3  
 
Table 1. Normal distribution cases (Cases 1 - 3). 

 

Probit Grouping 

γ0 γ1 γ0 γ1 

Case 1 
    

True 0.0 1.0 0.0 1.0 

mean −0.0006 0.9997 0.000 1.000 

SD 0.0041 0.0016 0.005 0.009 

Case 2 
    

True 0.0 2.0 0.0 2.0 

mean −0.0003 2.0000 −2.0000 1.9997 

SD 0.0053 0.0034 0.0034 0.0178 

Case 3 
    

True 0.0 4.0 0.0 4.0 

mean −0.0031 3.9968 0.0015 4.0011 

SD 0.0078 0.0091 0.0080 0.0527 

SD: Standard Deviation. 
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Table 2. Cauchy distribution cases (Cases 4 - 6). 

 

Probit Grouping 

γ0 γ1 γ0 γ1 

Case 4 
    

True 0.0 1.0 0.0 1.0 

mean −0.00107 0.9995 0.0002 1.0009 

SD 0.0073 0.0029 0.0057 0.0101 

Case 5 
    

True 0.0 2.0 0.0 2.0 

mean −0.03633 −1.9610 −0.0005 1.9925 

SD 0.010669 0.0068 0.0034 0.0195 

Case 6 
    

True 0.0 4.0 0.0 4.0 

mean −1.2541 3.0515 −0.0421 3.7736 

SD 0.0161 0.0196 0.0090 0.0572 

 
Table 3. Heteroscedastic cases I (Cases 7 - 9). 

 

Probit Grouping 

γ0 γ1 γ0 γ1 

Case 7 
    

True 0.0 1.0 0.0 1.0 

mean 0.35605 0.9999 0.0969 1.001 

SD 0.006597 0.0066 0.0069 0.0120 

Case 8 
    

True 0.0 2.0 0.0 2.0 

mean 0.2949 1.9361 0.0860 1.8957 

SD 0.0062 0.0035 0.0075 0.01997 

Case 9 
    

True 0.0 4.0 0.0 4.0 

mean 0.2888 3.8643 0.0675 3.6859 

SD 0.0103 0.0121 0.0114 0.0572 

 
shows the boundaries obtained from the true parameter values, the probit MLE, 
and the grouping estimator for the Cauchy and 1 4=γ  case. The boundaries of 
the probit MLE and grouping estimator are calculated for Case 6 in Table 2. The 
result obtained with the grouping estimator is much more accurate than that of 
the probit MLE. 
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Figure 3. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit) and grouping estimator (Grouping) for Cauchy distributions: Case 6 in Table 2. The 
grouping estimator clearly improves the probit MLE. 
 
Table 4. Heteroscedastic cases II (Cases 10 - 12). 

 

Probit Grouping 

γ0 γ1 γ0 γ1 

Case 10 
    

True 0.0 1.0 0.0 1.0 

mean 0.8224 0.9995 0.1902 1.0016 

SD 0.0095 0.0159 0.0097 0.0159 

Case 11 
    

True 0.0 2.0 0.0 2.0 

mean 0.8021 1.8654 0.2195 1.8282 

SD 0.0114 0.0294 0.0075 0.00559 

Case 12 
    

True 0.0 4.0 0.0 4.0 

mean 0.6592 3.5738 0.1457 3.3466 

SD 0.0153 0.0147 0.0146 0.0147 

 
The results of heteroscedastic error term cases are given in Table 3 (heteros-

cedastic distribution cases I, Cases 7 - 9) and 4 (heteroscedastic distribution cas-
es II, Cases 10 - 12). For the heteroscedastic distribution cases I, the grouping es-
timator clearly reduces the biases of 0γ , but the biases of 1γ  become slightly 
larger. (Although the SDs of the grouping estimator are larger than those of the 
probit MLE, the effects of the SDs are much smaller than those of the biases, as 
noted above.) Figures 4-6 show the boundaries obtained from the true parame-
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ter values, probit MLE, and grouping estimator. As before, the boundaries of the 
probit MLE and grouping estimator are calculated from the results in Table 3. 
The grouping estimator clearly improves the probit MLE in these cases heteros-
cedastic distribution cases I. For the heteroscedastic distribution cases II, the 
grouping estimator reduces the biases of 0γ , but the biases of 1γ  are slightly 
increased in the cases in which 1 2=γ  and 4. Figures 7-9 show the boundaries 
obtained from the true parameter values, probit MLE, and grouping estimator. 
As before, the boundaries of the probit MLE and grouping estimator are calcu-
lated from the results in Table 4. The grouping estimator clearly improves the 
probit MLE in Cases 10 and 11 but slightly improves the probit MLE in Case 12. 
 

 

Figure 4. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit), and grouping estimator (Grouping) for heteroscedastic distribution I: Case 7 in Ta-
ble 3. The grouping estimator clearly improves the probit MLE. 
 

 

Figure 5. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit), and grouping estimator (Grouping) for heteroscedastic distribution I: Case 8 in Ta-
ble 3. The grouping estimator clearly improves the probit MLE. 
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Figure 6. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit), and grouping estimator (Grouping) for heteroscedastic distribution I: Case 9 of Ta-
ble 3. The grouping estimator clearly improves the probit MLE. 
 

 

Figure 7. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit), and grouping estimator (Grouping) for heteroscedastic distribution I: Case 10 in Ta-
ble 4. The grouping estimator clearly improves the probit MLE. 
 

 

Figure 8. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit), and grouping estimator (Grouping) for heteroscedastic distribution II: Case 11 in 
Table 4. The grouping estimator clearly improves the probit MLE. 
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Figure 9. Boundaries obtained from the true parameter values (True), probit MLE (Pro-
bit), and grouping estimator (Grouping) for heteroscedastic distribution II: Case 12 in 
Table 4. The grouping estimator slightly improves the probit MLE. 

5. Discussion 

Analyses of high- and very-high-resolution images [35]-[44] are becoming more 
important as such data become more widely available. When the boundary be-
tween two regions is not deterministic, a stochastic approach must be used to 
determine the boundary, and it is necessary to identify the proper functional 
form of [ ]1|t iP y x= . Although distributions such as normal, logistic, and li-
near probabilities are frequently used, we cannot obtain consistent results unless 
the distribution is correctly specified. The Monte Carlo experiments conform 
this conclusion. The probit MLE has very large biases in many cases.  

The grouping estimator is a semiparametric estimator and does not depend 
on the probability functions. It is consistent under very general assumptions. The 
results of the Monte Carlo experiments show that the grouping estimator clearly 
improves the conventional probit MLE when the distribution of the error terms is 
not only non-normal but also heteroscedastic. The grouping estimator essentially 
reduces the resolutions of the images. The previous low-resolution-image analyses 
[35] [45] [46] [47] [48] unintentionally used the methods of the grouping estima-
tor. In other words, misspecification of the probability distributions might not be a 
critical problem for low-resolution images, but it might not be proper to use the 
methods of low-resolution images to high-resolution images. When we analyze 
high-resolution images, the conventional methods (used in low-resolution-image 
analyses) might not produce satisfactory results, and special attention should be 
paid to the selection of the models. Shao et al. [49] used a pyramid scene parsing 
pooling module that combines high-resolution and low-resolution images. Xu 
et al. [50] also suggested a method that involved changing a high-resolution 
image into low-dimensional images by bicubic downsampling and combining 
them. However, their methods lack a theoretical background. The grouping es-
timator may provide theoretical justifications for these methods. The results of 
high-resolution image analyses performed by conventional methods such as the 
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probit MLE should be combined and compared with the results obtained 
low-resolution images. Although 2D cases are considered in this paper, this me-
thod can easily be applied to 3D cases [51] [52]. 

6. Conclusions 

Analyses of 2D images are increasing in importance as high-resolution images 
become more commonly available. Dividing 2D images into two regions, A and 
B, is a basic but very important challenge. When the boundary of the two regions 
is not deterministic, a stochastic approach must be used to determine the boun-
dary between the regions. In this case, it is necessary to identify a proper proba-
bility functional form. Although distributions such as normal, logistic, and linear 
probability are frequently used, accurate results cannot be obtained unless the 
distribution is correctly specified, as shown in the Monte Carlo experiments.  

The grouping estimator does not depend on probability distributions. It is a 
consistent estimator not only in i.i.d. cases but also in heteroscedastic cases. The 
Monte Carlo experiments show that the grouping estimator improves the probit 
MLE in many cases when the distribution of error terms is either non-normal or 
heteroscedastic. The grouping estimator is based on grouping the data, and it 
essentially decreases the resolutions of the images. In other words, misspecifica-
tion of the distributions of the error terms might not be critical for low-resolution 
images, but it is critical for high-resolution images. The grouping estimator gives 
the theoretical justifications for this. It implies that we might not obtain proper 
results by applying the conventional methods used for low-density images to the 
analysis of high-resolution images. If the probability distributions are mis-specified, 
we may obtain incorrect results in high-resolution image analyses. It is important 
to combine and compare the high- and low-resolution-image results. 

The methods to determine the optimal grouping (for example, numbers of 
observations in each group) are not yet unknown. The proper methods to com-
bine and compare the high- and low-resolution-image results are important. 
However, proper methods are not developed yet. Researches to use the grouping 
estimator for 3D images are also important. These are the topics to be studied in 
the future. 
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