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Abstract 
The paper aims to discuss three interesting issues of statistical inferences for a 
common risk ratio (RR) in sparse meta-analysis data. Firstly, the conventional 
log-risk ratio estimator encounters a number of problems when the number of 
events in the experimental or control group is zero in sparse data of a 2 × 2 table. 
The adjusted log-risk ratio estimator with the continuity correction points 

( )1 2
1 1, ,
6 6

c c  =  
 

 based upon the minimum Bayes risk with respect to the uni-

form prior density over (0, 1) and the Euclidean loss function is proposed. Se-
condly, the interest is to find the optimal weights ˆ

jf  of the pooled estimate 

1
ˆˆ ˆ

j
k

w cjj fθ θ
=

= ∑  that minimize the mean square error (MSE) of ŵθ  subject to 

the constraint on 
1

ˆ 1jj
k f
=

=∑  where ( ) ( ) ( )1 2
ˆ log log ˆ lo ˆgcjcj c j c jR pR pθ = = − , 

( ) ( )1 1 1 1 12ˆc j j jX c n cp = + + , ( ) ( )2 2 2 2 22ˆc j j jX c n cp = + + . Finally, the per-

formance of this minimum MSE weighted estimator adjusted with various 
values of points 1 2c c c= =  is investigated to compare with other popular es-
timators, such as the Mantel-Haenszel (MH) estimator and the weighted least 
squares (WLS) estimator (also equivalently known as the inverse-variance 
weighted estimator) in senses of point estimation and hypothesis testing via 
simulation studies. The results of estimation illustrate that regardless of the 
true values of RR, the MH estimator achieves the best performance with the 
smallest MSE when the study size is rather large ( 16k ≥ ) and the sample siz-
es within each study are small. The MSE of WLS estimator and the pro-
posed-weight estimator adjusted by 1 6c = , or 1 3c = , or 1 2c =  are 
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close together and they are the best when the sample sizes are moderate to 
large ( 1 16jn ≥  and 2 16jn ≥ ) while the study size is rather small. 
 

Keywords 
Minimum MSE Weights, Adjusted Log-Risk Ratio Estimator, Sparse  
Meta-Analysis Data, Continuity Correction 

 

1. Introduction 

Frequently, biostatisticians would like to evaluate the effects of treatments or risk 
factors in terms of risk difference, relative risk (risk ratio), and/or odds ratio 
between two independent sample groups (e.g., treatment or control, presence or 
absence of a risk factor) and binary outcomes (e.g., disease or non-disease, suc-
cess or failure, dead or alive) in a 2 × 2 table. Let 1p  be the probability of out-
come in the treatment or exposed group and 2p  be the probability of outcome 
in the control or unexposed group. On comparing two independent groups, the 
popular effect parameters are defined by the risk difference 1 2RD p p= − , the  

relative risk 1 2RR p p= , or the odds ratio 
( )
( )

1 1

2 2

1
1

p p
OR

p p
−

=
−

. Obviously, all  

three effect sizes are related to the estimation of proportion p on each arm. It has 
widely been known that the conventional proportion estimator p̂ X n=  is a 
good choice for estimating p in general, but may not be in sparse data. For ex-
ample, in sparse data coping with the small number of events X and the small  

sample size n, the variance of p̂ , estimated by ( )ˆ ˆ1p
n

p−
, can cause a problem  

with a value of 0 when 0X =  or X n= . To solve the problem, a continuity 
correction term c is often added to each cell of each group in the 2 × 2 table, 
yielding to ( ) ( )2ˆc X cp c n= + +  in each arm. Yate [1] first used the continuity 
correction of 0.5 in the approximation of a discrete distribution to a continuous 
one in 1934. And it seems that the correction value of 0.5 has been used exten-
sively until now, for examples: Lane [2], Stijnen et al. [3], White et al. [4], Lui 
and Lin [5], Sankey et al. [6], Gart and Zwefel [7], Walter [8], and Cox [9] used 
value 0.5 adjustment for zero observations in each cell of the 2 × 2 table. Another 
choice of c for this class such as 0.25, 0.5 and 1 had been suggested by Li and 
Wang [10]; 1/6 by Turkey [11] and Sánchez-Meca and Marin-Martinez [12]; 
Böhning and Viwatwongkasem [13] showed that the simple adjusted estimate 

( ) ( )2ˆc X cp c n= + +  with 1c =  performed surprisingly well with the smallest 
average MSE. In addition, Agresti and Caffo [14] also suggested a value of 1 to 
solve the zero observations; however, a correction value of 2 was recommended 
by MaClave and Sincich [15].  

Our focus of interest is not on the simple adjusted estimate  
( ) ( )2ˆc X cp c n= + + , but on the logarithm of ˆcp  instead, leading to the final 
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interest to the logarithm of the risk ratio estimate,  


1 1 2 2

1 2
1 1 2 2

ˆ log log log log log
2 2

ˆ ˆcc c c
X c X cRR
n

p p
c n c

θ
   + +

= = − = −   + +   
. The reason is  

that we are interested in the logarithm function, because it is widely known that 
the risk ratio has a non-symmetric and rather right-skewed distribution about 
the null value of 1; consequently, the natural logarithm of the risk ratio is needed 
to transform to be more reliable for the normal distribution. For estimating  

log
1 2
p c n

c n
 +
 + 

, Pettigrew, Gart and Thomas [16] proposed the moment estima-

tor log
2

X c
n c

+ 
 + 

 with the bias and the first four cumulants by means of  

asymptotic Taylor’s series expansion. Likewise, we re-derive and expand on the 
details of the solution properties for the adjusted estimator of the log-risk ratio,  


1 1 2 2

1 2
1 1 2 2

ˆ log log log log log
2 2

ˆ ˆcc c c
X c X cRR
n

p p
c n c

θ
   + +

= = − = −   + +   
.  

Therefore, the first objective of the study is to find the optimal points ( )1 2,c c  
based upon continuity correction of this adjusted log-risk ratio estimator under 
various settings, such as the smallest bias, the smallest average bias, the smallest 
MSE, and the smallest average MSE.  

Secondly, after obtaining the optimal value of ( )1 2,c c  which is the best 
choice when considering the smallest bias and/or the smallest MSE of ĉθ . The 
next focus of interest is concerned with sparse data in meta-analysis studies that 
combine the various risk ratios from k studies to produce a single summary risk 
ratio. Under a common risk ratio overall studies or homogeneity of risk ratios 
across k studies, the second aim of the study is to find the optimal weights ˆ

jf  
of the pooled estimate 

1
ˆˆ ˆ

j
k

w cjj fθ θ
=

= ∑  that minimize the MSE of ŵθ  subject 
to the constraint on 

1
ˆ 1jj

k f
=

=∑  where  
( ) ( ) ( )1 2

ˆ log log ˆ lo ˆgcjcj c j c jR pR pθ = = − , ( ) ( )1 1 1 1 12ˆc j j jX c n cp = + + ,  

( ) ( )2 2 2 2 22ˆc j j jX c n cp = + + . Indeed, these optimal weights ˆ
jf  actually come 

from the roughly similar formula to the work of Viwatwongkasem et al. [19] that 
was used for the risk difference in multi-center studies.  

Finally, the final objective of the study of interest is about comparing the per-
formance of well-known summary effect estimators, such as the Mantel-Haenszel 
(MH) estimator stated with its variance estimate by Greenland and Robin [20] 
and the weighted least square (WLS) estimator or equivalently known as the in-
verse-variance weighted estimator to the new adjusted summary effect estimator 

ŵθ  with various adjustment points ( )1 2,c c  in terms of point estimation and 
hypothesis testing via simulation studies.  

The rest of the paper is organized as follows. Section 2 contains the derivative 
methods and the results of the adjusted log-risk ratio estimator. Section 3 dis-
cusses on the methodology and the outcomes of the minimum MSE weights of 
the adjusted summary relative risk estimator. Section 4 states on the other 
well-known estimators and tests as the comparative candidates to compare the 
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performances of making inference for a common relative risk across me-
ta-analysis studies. Section 5 consists of the simulation plans for studying the 
performances in senses of the estimation, the type I errors and the power of the 
tests. Section 6 contains the results of Section 5. Section 7 is about the discussion 
and the recommendation.  

2. Adjusted Estimator of the Logarithm of the Risk Ratio 

In a single study ( 1k = ), since the conventionally popular estimator of the loga-
rithm of risk ratio, obtained by  


1 2

1 2
1 2

ˆ log log log logˆ logˆ X XRR
n

p p
n

θ
   

= = − = −   
   

, may have a problem when  

data are sparse. To solve the problem, a continuity correction term ( )1 2,c c  is 
often added to each cell of the 2 × 2 table, leading to the adjusted estimate as  


1 1 2 2

1 2
1 1 2 2

ˆ log log log log log
2 2

ˆ ˆcc c c
X c X cRR
n

p p
c n c

θ
   + +

= = − = −   + +   
. In addition, the  

adjusted risk ratio estimator can be further found as  



( ) ( )
( ) ( )

1 1 1 11

2 2 2 2 2

2ˆ
ˆ 2

c
c

c

X c n c
RR

X c
p
p n c

+ +
= =

+ +
. Due to the work of Pettigrew, Gart and  

Thomas [16], we re-derive and extend the results to get the expectation, bias, va-
riance, and MSE of ĉθ  in the following:  

( ) ( ) ( )1 2
ˆ ˆlog logc cE p p Bθ θ= − +                    (1) 

( ) ( ){ }

( ) ( )
( )

( ){ }

( ) ( )
( )

( )

1 1 1

1 1
22 2

1 1 1 1 1 1 1 1 1
2

1 1

2 2 2

2 2

22 2
2 2 2 2 2 2 2 2 2 3

2
2 2

2 1 1 2 2ˆ
2

6 6 2 12 4 9

12

2 1 1 2 2
2

6 6 2 12 4 9

12

c

c p c
B

n p

c c p c q q q p q

n p

c p c
n p

c c p c q q q p q
O n

n p

θ

−

− + −
=

− + + + − −
+

 − + −
− 


− + + + − −
+ +



    (2) 

( )
( )

( )

( )

( )
( )

2 2
1 1 1 2 2 2

31 2
2 2

1 1 2 21 1 2 2

1 11 2 1 2
2 2

ĉ

q c q q c qq qV O n
n p n pn p n p

θ −
− + − +

= + + + +    (3) 

( )
( )( ) ( )

( )

( )( ) ( )

( )
( )

2
1 1 1 1 1 1 1 1 1 1

1 2
2

1 1 2 21 1

2
2 2 2 2 2 2 2 2 2 2

3
2

2 2

32 2 1 2
4ˆ

32 2 1 2
4

c

c c p c c p q q c qq qMSE
n p n pn p

c c p c c p q q c q
O n

n p

θ

−

− − − + − +
= + +

− − − + − +
+ +

 (4) 

when 1 11q p= −  and 2 21q p= − . 
The first setting to find the optimal point ( )1 2,c c  that minimizes the smallest 
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bias of ĉθ  is investigated. The first derivatives of the bias of ĉθ  with respect to 

1c  and 2c  are given by 

( ) ( ) ( )2 2
1 1 1 1 1 1

2 2
1 1 1

ˆ 1 1 2 1 4cB n p n p c p

c n p

θ∂ + − + − + − +
=

∂
           (5) 

( ) ( ) ( )2 2
2 2 2 2 2 2

2 2
2 2 2

ˆ 1 1 2 1 4cB n p n p c p

c n p

θ  ∂ + − + − + − +
 = −

∂   
         (6) 

Setting 
( )

1

ˆ
0

cB

c

θ∂
=

∂
 and 

( )
2

ˆ
0

cB

c

θ∂
=

∂
, the critical roots ( )1 2,c c  are obtained 

as follows:  
2

1 1 1 1 1
1 2

1

1 2
1 4

p n p n pc
p

− + − +
=

− +
, 1 0.5p ≠                (7) 

2
2 2 2 2 2

2 2
2

1 2
1 4

p n p n pc
p

− + − +
=

− +
, 2 0.5p ≠               (8) 

The sufficient conditions of the second-order derivatives of the bias of ĉθ  to 
guarantee the solutions of (7) and (8) being minimum points are that the deter-
minants 1D  and 2D , evaluated at critical points, are all positive where  

( )2

1 2
1

ĉB
D

c

θ∂
=

∂
 and 

( ) ( )

( ) ( )

2 2

2
1 21

2 2 2

2
1 2 2

ˆ ˆ

ˆ ˆ

c c

c c

B B

c cc
D

B B

c c c

θ θ

θ θ

∂ ∂

∂ ∂∂
=
∂ ∂

∂ ∂ ∂

. Unfortunately, it is impossible  

to find the minimum point ( )1 2,c c  such that  

1 1 2 2

1 1 2 2

ˆ log log
2 2c

X c X c
n c n c

θ
   + +

= −   + +   
 has the smallest bias for all ( )1 2,p p . In  

addition, the solution to (7) and (8) is practically inflexible because it cannot be 
applied when 1p  and 2p  equal 0.5. Therefore, we further consider the other 
settings, such as the smallest average bias and the smallest MSE, to find the op-
timal points ( )1 2,c c . However, these settings still fail, they cannot provide the 
optimal points ( )1 2,c c . 

Another successful setting for finding the optimal values ( )1 2,c c  is coming 
from an average MSE or equivalently known as Bayes risk. Suppose that the 
squared error loss function is given by ( )2ˆLoss cθ θ= − . The risk as the expecta-
tion of loss or the MSE of ĉθ  in such this case, is given by  

( ) ( )2ˆ ˆRisk c cMSE Eθ θ θ= = − . The prior distribution is usually constructed 
based on the previously scientific knowledge or the prior observed data; espe-
cially, in this paper we set the prior distribution based on Table 1. For given the 
prior uniform density ( ) [ ] [ ]1 2 0,1 0,1, 1 1g p p = ×  over [0, 1] × [0, 1], the Bayes risk 
of ĉθ  (or the average MSE of ĉθ ) with respect to the Euclidean loss function is 
obtained as  

( ) ( ) ( )1 1
1 2 1 2 1 20 0

ˆBayes risk , , d dcm c c MSE g p p p pθ= = ∫ ∫  
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Table 1. High sparse data of a multi-center clinical trial in CALGB study (Cancer and 
Leukemia Group B) from Lipsitz et al. [17] and Cooper et al. [18]. 

Center j 
Treatment Control 

1 2

1 2

log logj j

j j

X X
n n

   
−      

   
 

1 jX  1 jn  2 jX  2 jn  

1 3 4 1 3 0.811 

2 3 4 8 11 0.031 

3 2 2 2 3 0.405 

4 2 2 2 2 0.000 

5 2 2 0 3 * 

6 1 3 2 3 −0.693 

7 2 2 2 3 0.405 

8 1 5 4 4 −1.609 

9 2 2 2 3 0.405 

10 0 2 2 3 * 

11 3 3 3 3 0.000 

12 2 2 0 2 * 

13 1 4 1 5 0.223 

14 2 3 2 4 0.288 

15 2 4 4 6 −0.288 

16 4 12 3 9 0.000 

17 1 2 2 3 −0.288 

18 3 3 1 4 1.386 

19 1 4 2 3 −0.981 

20 0 3 0 2 * 

21 2 4 1 5 0.916 

*Either 1 jX  or 2 jX  is 0, leading to the infinity value problem of the natural logarithm. 

 

( )
( )( ) ( )

( )

( )( ) ( )

( )

2
1 1 1 1 1 1 1 1 1 11 1 1

1 2 20 0
1 1 1 1

2
2 2 2 2 2 2 2 2 2 2

2
1 22

2 2 2 2

32 2 1 2
4,

32 2 1 2
4 d d

c c p c c p q q c qqm c c
n p n p

c c p c c p q q c qq p p
n p n p

− − − + − +
= +

− − − + − +
+ +

∫ ∫
 

( )
( ) ( )2 2 2 2 2

1 1 2 1 2 1 2 2 2
1 2 2 2

1 2

1 3 3.25 3
,

c c n n n n c c n
m c c

n n

− + + − + − − +
=        (9) 

The first and second order of partial derivatives of ( )1 2,m c c  with respect to 
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1c  and 2c  are as follows: ( )1 2 1
2

1 1

, 1 6m c c c
c n

∂ +
=

∂
, ( )1 2 2

2
2 2

, 1 6m c c c
c n

∂ − −
=

∂
,  

( )2
1 2
2 2
1 1

, 6m c c
c n

∂
=

∂
, 

( )2
1 2
2 2
2 2

, 6m c c
c n

∂ −
=

∂
, 

( )2
1 2

1 2

,
0

m c c
c c

∂
=

∂ ∂
. Unfortunately, the result 

of Bayes risk shows that the critical point ( )1 2
1 1, ,
6 6

c c  = − − 
 

 is not a mini-

mum point. With the conditions of 
( )2

1 2
1 2

1

,m c c
D

c
∂

=
∂

 and  

( ) ( )

( ) ( )

2 2
1 2 1 2
2

1 21
2 2 2

1 2 1 2
2

1 2 2

, ,

, ,

m c c m c c
c cc

D
m c c m c c

c c c

∂ ∂
∂ ∂∂

=
∂ ∂
∂ ∂ ∂

, the critical point ( )1 2,c c  is a saddle point 

since 2 2 2
1 2

36 0D
n n
−

= < . However, in particular case, we let 1 2c c c= =  and try 

again to find the minimum point. Fortunately, with the condition of 2 1n n> , 

the optimal point c with the smallest average MSE is obtained by 
1
6

c = − ; equi-

valently, with the condition of 1 2n n> , the minimum point is 
1
6

c = . The solu-

tion of 
1

6
c −
=  or 

1
6

c =  looks well and can be considered as an appropriate 

one in practice.  

3. Minimum MSE Weights of the Adjusted Summary Relative  
Risk Estimator 

Under a common risk ratio overall k studies or homogeneity of risk ratios across 
k studies, the optimal weights jf  are investigated to minimize the MSE of ŵθ  
of the form 

1
ˆ ˆ
w cj jj

k fθ θ
=

= ∑ , subject to the constraint on 
1 1jj

k f
=

=∑ , where  
( ) ( ) ( )1 2

ˆ log log ˆ lo ˆgcjcj c j c jR pR pθ = = − , ( ) ( )1 1 1 1 12ˆc j j jX c n cp = + +  and  

( ) ( )2 2 2 2 22ˆc j j jX c n cp = + + . The MSE of 
1

ˆ ˆ
w cj jj

k fθ θ
=

= ∑ , used under a true 

common risk ratio θ  across all k studies, is given by  

( ) ( ) ( )22

1
ˆ ˆ ˆ
w w cj jj

kMSE E E fθ θ θ θ θ
=

= − = −∑  

To find the optimal weights jf  with the constraint on 
1 1jj

k f
=

=∑ , we form 
the auxiliary function φ  in extending ( )ˆMSE wθ  under the Lagrange’s me-
thod where λ  is a Lagrange multiplier as follows: 

( ) ( )2

1 1
ˆ 1k
c

k
j j jj jE f fφ θ θ λ

= =
= − + −∑ ∑  

( ) ( ) ( )2
2

1 1 1
ˆ ˆ2 1cj j cj

k k
j jj j

k
jE f E f fφ θ θ θ θ λ

= = =
= − + + −∑ ∑ ∑  

( ) ( )( ) ( )
( )

2

1 1 1

2
1

ˆ ˆ ˆ2

1

k k
cj j cj j cj jj j j

k

jj
k

Var f E f E f

f

φ θ θ θ θ

θ λ

= = =

=

= + −

+ + −

∑ ∑ ∑

∑
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( ) ( )( ) ( )( )
( )

2

1 1 1

2

2

1

ˆ ˆ ˆ2

1

cj j cj j cjj j j

jj

j
k k k

k

f Var f E f E

f

φ θ θ θ θ

θ λ

= = =

=

= + −

+ + −

∑ ∑ ∑

∑
 

( ) ( )( ) ( )2

1 1 1
2 ˆ ˆ 1k

cj jj cj jj j
k k
jf Var f E fφ θ θ θ λ

= = =
= + − + −∑ ∑ ∑  

From the previous section, we have the following results: 

( )
( )

( )
( )

( )
( )

2
1 1 11 2

2
1 1 2 21 1

2
2 2 2

3
2

2 2

11 2
2ˆ

11 2
2

j jj j
j cj

j j j jj j

j j

j j

q c qq q
V Var

n p n pn p

q c q
O n

n p

θ

−

− +
= = + +

− +
+ +

 

and 

( ) ( ) ( ){ }

( ){ } ( )

1 1 1
1 2

1 1

2 2 2 2

2 2

2 1 1 2 2ˆ log log
2

2 1 1 2 2
2

j
j cj j j

j j

j

j j

c p c
E E p p

n p

c p c
O n

n p

θ

−

 − + −
= = − + 


− + −

− +


 

The partial derivatives with respect to λ  and jf  yield 
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More details of derivation can be found from the work of Viwatwongkasem et 
al. [19] that used the minimum MSE weights for the risk difference in mul-
ti-center studies. After replacing the unknown parameter quantities with their 
sample estimates, the minimum MSE weighted estimate is obtained in the fol-
lowing:  

1
ˆˆ ˆ

j
k

w cjj fθ θ
=

= ∑                          (10) 

where 
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( ) ( ) ( )1 2
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Assuming that a normal approximation is reliable, the minimum MSE weights 
Z-test for testing 0 0:H θ θ= , ( 0 0log RRθ = ) is  
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We will reject 0H  at α  level for two-sided test if 2cwZ Zα>  where 2Zα  
is the upper ( )100 thα  percentile of the standard normal distribution. Alterna-
tively, reject 0H  when the p-value (p) is less than or equal to α  where  

( )( )2 1 cwp Z= −Φ  and ( )ZΦ  is the cumulative standard normal distribu-
tion.  

4. Other Well-Known Estimators and Tests for Making  
Inference for a Common Relative Risk 

Under a common risk ratio or homogeneity of risk ratios across k studies, we 
wish to compare the performance of the minimum MSE weighted estimator ad-
justed by various points 1 6c = , 1 3c = , 1 2c =  with the other well-known 
summary risk ratio estimators, such as the Mantel-Haenszel (MH) estimator and 
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the weighted least square (WLS) estimator or equivalently known as the in-
verse-variance weighted estimator via a simulation study. According to these 
well-known estimators, we will present briefly both estimators. 

Mantel-Haenszel Weights (MH) 
For Mantel-Haenszel (MH) relative risk estimator overall centers/studies from 

binomial data, the estimator has been proposed by 



2 11

1 21

k
j j jj

MH

j j jj
k

n X N
RR

n X N
=

=

=
∑
∑

                   (11) 

where 1 2j j jN n n= + . 
The variance estimator of the log-relative risk of Mantel-Haenszel was pro-

posed by Green and Robin [20] based on unconditional binomial distribution is 
given by 


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j
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R S
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where: 

( ) 2
2 1 1 2j j j j j j j jD n n t x x N N= − , 1 2j j j jR x n N= , 2 1j j j jS x n N= ,  

1 2j j jt x x= +  and 1 2j j jN n n= + . Note that under a binomial sparse-data mod-
el, the Mantel-Haenszel relative risk is consistent in sparse stratification. 

Assuming that a normal approximation is valid, the Mantel-Haenszel’s Z-test 
for testing 0 0:H θ θ= , ( 0 0log RRθ = ) is  


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0
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RRV H
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=  

We will reject 0H  at α  level for two-sided test if 2MHZ Zα>  where 

2Zα  is the upper ( )100 thα  percentile of the standard normal distribution. Al-
ternatively, reject 0H  when the p-value (p) is less than or equal to α  where 

( )( )2 1 MHp Z= −Φ  and ( )ZΦ  is the cumulative standard normal distribu-
tion.  

Weighted least square (WLS) estimator  
The weighted least square (WLS) estimator or equivalently known as the in-

verse-variance weighted estimator of the log-relative risk overall centers/studies is 

 

1 1
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Practically, the weights jw  are often replaced by their estimates. 


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The variance of the summary estimator ŴLSθ  is given by 
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Assuming that a normal approximation is valid, the weighted least square 
Z-test for testing 0 0:H θ θ= , ( 0 0log RRθ = ) is 
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We will reject 0H  at α  level for two-sided test if 2WLSZ Zα>  where 

2Zα  is the upper ( )100 thα  percentile of the standard normal distribution. Al-
ternatively, reject 0H  when the p-value (p) is less than or equal to α  where 

( )( )2 1 WLSp Z= −Φ  and ( )ZΦ  is the cumulative standard normal distribu-
tion.  

5. Simulation Plan for the Estimation, Studying the Type I  
Error and the Power of the Test 

We present here a simulation study using the following designs: 
Parameters: Let the common relative risk be some constants (RR = 1, 2 and 4) 

and generate the baseline proportion 2 jp  in the control arm for the jth study 
from a uniform distribution in which the range corresponds to the values of RR. 
If 1RR = , then ( )2 ~ 0,0.9jp U ; if 2RR = , then ( )2 ~ 0,0.45jp U ; and if

4RR = , then ( )2 ~ 0,0.23jp U . The correspondent proportion risks in the ex-
posure arm is 1 2j jp p RR= × . The sample size 1 jn  and 2 jn  in each study are 
fixed and varied as 4, 8, 16, 32 and 100. The number of studies is 1, 2, 4, 8, 16, 32 
and 100.  

Statistic 1 (estimation of RR): Generate 1 jx  and 2 jx  from the binomial 
distribution with parameter ( )1 1,j jp n  and ( )2 2,j jp n  for each study j  
( 1,2, ,j k=  ). All summary estimates are calculated. The procedure is repli-
cated 5000 times. From these replicates, we compute bias, variance, and mean 
square error (MSE) for the adjusted relative risk estimator with the proposed 
weight to compare the performance with Mantel-Haenszel (MH) estimator and 
the weighted least square estimator.  

Statistic 2 (studying the type I error under 0 0:H RR RR= ): Generate 1 jx  
and 2 jx  from the binomial distribution with parameter ( )1 1,j jp n  and 

( )2 2,j jp n  and replicate these generations 5000 times for every procedure. From 
these replicates, the number of null hypothesis rejections when 0H  is true un-
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der three Z-tests is counted for the actual type I error. 

( )
0 0Number of rejections of when is true

Numb
The actua
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l ty

lic
p

a
e I err

tes 500 mes
or

0 ti
H H

=  

Statistic 3 (studying the power of the test under 1H ): Before comparing the 
power of tests, all test statistics should be calibrated to handle the same type I 
error rate under the null hypothesis. Under the alternative hypothesis with the 
random effects model, the powers of three candidate tests are compared. We 
need to revise the parameter setting for studying the power of the test. Let 2 jp  
be a uniform distribution over [0, 0.25] and we assume that logj jRRθ =  fol-
lows as ( )0.1 0.1 2 1j mU mm Uθ = + = + −  where mU  is a uniform [ ],mm mm−  
random variable for a given 0.2,0.4,0.6mm = , or equivalently, U is a uniform 
over (0, 1). Note that these parameter settings provide: ( ) 0.1jE θ =  and  

( ) ( )22 12jVar mmθ = × . Consequently, we still have 1 2j jp p RR= × . Binomial 
variates 1 jx  and 2 jx  are also generated with parameter ( )1 1,j jp n  and 

( )2 2,j jp n , respectively. All proposed test statistics under this alternative hypo-
thesis are computed and replicated 5000 times. From these replicates, the num-
ber of null hypothesis rejection is counted for the power of the test.  
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6. Results from Simulation Studies 
6.1. Comparative Performance for Point Estimation 

Under a constant of relative risk (RR = 1, 2 and 4), the performance in terms of 
bias, variance, and mean square error (MSE) of several summary relative risk es-
timators are compared. Results show that increasing k can decrease the variance 
and the MSE of all estimators and the increase of both ijn  can also decrease the 
variance of all estimators while fixing k. The unbalance cases of ijn  ( 1,2i =  
and 1, ,j k=  ) have less affected on the order performance of MSE estimators. 
The summary adjusted relative risk estimator in meta-analysis study of size k has 
shrinkage estimator to be a simple adjusted relative risk estimator in one single 
study case. The optimal point ( 1 2c c c= = ) providing the bias, variance, and 
MSE of ŵθ , adjusted by 1 6c = −  is identical to 1 6c = . By these, the numer-
ical evidence has confirmed the derivation process of finding the root c and it is 
very useful in practice. 

For a single center study ( 1k = ), regardless of a true value of RR, the pro-
posed estimator adjusted by 1 3c =  performs the best with smallest MSE.  

For a multi-center study of size k, when 1RR = , the WLS estimator is the 
best in sense of the smallest MSE ignoring the sample size ijn . In case 2RR = , 

4k =  the proposed estimator adjusted by c performs the best with the smallest 
MSE. Another issue, when 2, 16RR k= = , the MH estimator achieves the smal-
lest MSE when sample sizes are small. The MSE of the WLS estimator and the 
proposed estimator adjusted by c are close together when the sample sizes are 
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moderate and large ( 16ijn ≥ ). For the case 4RR =  and 4k =  or 16, the MH 
estimator well performs generally with the smallest MSE. Some comparisons of 
the performances of all summary estimators when 1 4,8jn =  and 2 4,8,16,32jn =  
are depicted in Figures 1(a)-(f) for bias; Figures 2(a)-(f) for variance; and Fig-
ures 3(a)-(f) for MSE. 

In summary for the performance of estimators, regardless of the true values of 
RR, the MH estimator achieves the best performance with the smallest MSE 
when the study size is rather large ( 16k ≥ ) and the sample sizes within each 
study are small. The MSE of WLS estimator and the proposed-weight estimator 
adjusted by 1 6c = , 1 3c = , 1 2c =  are close together and they are the best 
when the sample sizes are moderate to large ( 16ijn ≥ ) while the study size is ra-
ther small.  

6.2. Studying the Type I Error 

A type I error comparison between the tests is considered by comparing the ac-
tual (empirical) type I error ( α̂ ) with the nominal level of significance. In this 
study, the evaluation of the ability to control type I error probability for 
two-sided tests is based on Cochran limits as follows. 

At 0.01α =  significant level, the actual α̂  value is between [0.005, 0.015]. 
At 0.05α =  significant level, the actual α̂  value is between [0.04, 0.06]. 
At 0.10α =  significant level, the actual α̂  value is between [0.08, 0.12]. 
If the actual type I error or the empirical alpha lies within those Cochran lim-

its, then the statistical test can control type I error rate. 
For a single study ( 1k = ), regardless of the true values of RR, it is unfortunate 

that almost all tests shown in Table 2 cannot control type I error rate. There are 
some type I error rates lying in the Cochran limits. 

For a meta-analysis study of size k, also displayed in Table 2, regardless of the 
true values of RR, the Mantel-Haenszel’s Z-Test can control type I error rate 
when the sample size either in treatment or control group is moderate to large 
( 1 16jn ≥  or 2 16jn ≥ ). In addition, the weighted least square Z-test and the 
proposed weight Z-test adjusted by 1 6c = , 1 2c = , 1c =  can handle type I 
error rate when both ijn  are large. But the proposed Z-test adjusted by 2c =  
cannot control type I error rate into Cochran’s limit at almost all situations. 

6.3. Studying the Power of the Test 

Usually, the empirical power of the tests will be compared under the same type I 
error value. In summary, the Mantel-Haenszel Z-test performs best when ijn  is 
moderate to large with satisfying the type I error value within Cochran’s range 
limit, regardless of the study size k. The inverse variance weighted Z-test is good 
when ijn  is large. For the proposed Z-test adjusted by 1c = , 2c = , the Z-tests 
perform well under the same type I error value when k is small ( 4k ≤ ) and ijn  
is large ( 32ijn ≥ ). The results in Table 3 illustrate the comparison of the power 
of tests under the same rate of the type I error. 
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Figure 1. Bias comparison of relative risk between well-known estimators and adjusted relative risk estimators at k = 1, k = 4 and 
k = 16 for n1 = 4 and n2 = 4, 8, 16 and 32 ((a)-(c)) and at k = 1, k = 4 and k = 16 for n1 = 8 and n2 = 8, 16 and 32 ((d)-(f)). 
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Figure 2. Variance comparison of relative risk between well-known estimators and adjusted relative risk estimators at k = 1, k = 4 
and k = 16 for n1 = 4 and n2 = 4, 8, 16 and 32 ((a)-(c)) and at k = 1, k = 4 and k = 16 for n1 = 8 and n2 = 8, 16 and 32 ((d)-(f)). 
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Figure 3. MSE comparison of relative risk between well-known estimators and adjusted relative risk estimators at k = 1, k = 4 and 
k = 16 for n1 = 4 and n2 = 4, 8, 16 and 32 ((a)-(c)) and at k = 1, k = 4 and k = 16 for n1 = 8 and n2 = 8, 16 and 32 ((d)-(f)). 
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Table 2. Comparison of the empirical type I error for testing 0 0:H RR RR=  in a center 
study ( 1k = ) and multi-center study ( 4k = , 16 and 32) at 5% significant level. 

RR k 1 jn  2 jn  MHZ  WLSZ  cwZ  

( )0.05c =  
cwZ  

( )1c =  
cwZ  

( )2c =  
cwZ  

( )1 6c =  

1 1 

16 16 2.34 1.90 0.74 1.36 13.72 0.74 

16 32 3.88 3.22 2.64 2.46 10.06 2.96 

32 32 3.12 3.06 2.00 2.54 4.44 2.14 

32 100 5.08 4.96 3.82 4.46 9.44 3.78 

100 100 4.28 4.28 3.78 3.96 4.52 3.80 

2 1 

16 16 2.94 2.96 1.68 3.52 18.62 1.68 

16 32 2.46 0.46 1.06 2.62 14.00 1.06 

32 32 2.90 2.90 1.96 3.64 14.28 1.96 

32 100 3.90 3.90 2.70 4.02 6.58 2.78 

100 100 4.14 4.14 3.44 4.38 8.16 3.40 

1 4 

16 16 3.56 2.06 2.20 4.28 20.20 2.14 

16 32 4.64 4.36 4.32 5.86 15.32 4.34 

32 32 5.00 4.46 4.34 5.84 10.06 4.32 

32 100 4.60 6.36 5.34 6.40 8.96 5.30 

100 100 4.80 4.44 5.16 5.80 6.56 5.12 

2 4 

16 16 3.78 4.82 2.66 5.78 21.24 2.52 

16 32 4.52 3.48 2.14 5.04 18.28 2.06 

32 32 4.12 5.04 2.90 5.04 10.86 2.86 

32 100 5.18 4.56 3.88 5.36 8.50 3.80 

100 100 5.12 5.24 4.38 5.24 6.40 4.30 

1 16 

16 16 4.50 2.54 6.20 9.32 29.64 5.52 

16 32 4.76 6.20 7.02 10.88 24.38 6.88 

32 32 5.06 3.90 7.08 9.38 15.74 7.04 

32 100 5.22 10.66 7.90 10.64 14.26 7.74 

100 100 4.88 4.94 7.74 8.60 9.64 7.70 

1 32 

16 16 4.56 1.82 7.24 10.70 30.96 6.20 

16 32 4.94 9.16 9.06 14.18 27.12 8.64 

32 32 4.54 3.86 7.18 9.50 15.80 7.10 

32 100 4.64 15.92 9.06 13.16 17.02 8.76 

100 100 5.48 5.36 8.05 8.87 9.24 7.89 

Bold Values denote that the statistical tests can control the type I error. 
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Table 3. Comparison of the empirical power of test (percent). 

mm k 1 jn  2 jn  MHZ  WLSZ  cwZ  

( )0.05c =  
cwZ  

( )1c =  
cwZ  

( )2c =  
cwZ  

( )1 6c =  

0.2 

1 
32 32 2.08# 2.08# 0.44# 2.42# 9.36 0.40# 

32 100 4.80 4.80 3.24# 6.38 24.02# 3.24# 

4 

32 32 5.10 3.34 1.02 7.16 26.94# 0.86 

32 100 9.74 11.68# 8.16 13.30# 22.84# 8.00 

100 100 10.68 9.38 7.92 11.70 18.18# 7.70 

16 

32 32 10.08# 6.28# 2.60# 18.12# 53.30# 2.22# 

32 100 17.80# 30.98# 19.70# 17.28# 21.16# 19.72# 

100 100 23.44 21.46 18.70# 27.02# 38.56# 18.24# 

32 

32 32 15.06 9.60 5.70# 25.10# 62.38# 4.92# 

32 100 31.08# 57.40# 39.24# 24.68# 20.74# 39.84# 

100 100 40.02# 37.30# 33.50# 45.56# 58.48# 32.70# 

100 100 100 83.40 81.52 76.68 86.24 92.26# 78.28 

0.4 

1 
32 32 2.86# 2.86# 0.80# 3.34# 10.80 0.72# 

32 100 7.32 7.32 5.50# 8.90 26.70 5.50# 

4 

32 32 6.78 4.60 1.80 9.64 32.10 1.68 

32 100 13.12 15.94# 11.40 17.20# 27.42 11.14 

100 100 16.24 14..78 12.94 17.92 25.90 12.56 

16 

32 32 13.54# 9.74# 4.92# 21.88# 57.70 4.34# 

32 100 24.56# 42.44# 27.56# 23.20# 26.10 27.66# 

100 100 32.74 31.76 27.98# 36.58# 47.58 27.72# 

32 

32 32 20.70 15.72 8.84# 31.88# 67.96 8.22# 

32 100 39.74# 68.88# 47.60# 32.58# 27.36 48.12# 

100 100 53.04# 52.20# 47.32# 56.42# 66.48 46.82# 

100 100 100 89.74 90.14 87.24 91.42 94.80 87.04 

0.6 

1 
32 32 4.74# 4.74# 1.70# 5.22# 12.94 1.64# 

32 100 10.48 10.48 7.88# 11.98 30.46 7.88# 

4 

32 32 10.58 10.54 5.02 16.94 58.58 4.72 

32 100 19.36 23.52# 17.22 23.34# 34.18 16.94 

100 100 24.86 23.70 20.44 26.56 34.90 20.26 

16 

32 32 20.86# 16.38# 9.94# 30.10# 64.52 9.00# 

32 100 33.58# 55.00# 36.32# 32.20# 34.86 36.50# 

100 100 45.72 45.96 40.72# 48.60# 57.60 40.22# 
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Continued 

 
32 

32 32 32.26 27.66 17.90# 42.94# 75.32 16.84# 

32 100 52.74# 82.28# 60.64# 45.68# 36.78 61.36# 

100 100 64.74# 66.66# 60.44# 67.14# 74.80 60.08# 

100 100 100 95.78 96.82 94.56 96.22 97.66 94.36 

#denotes that the statistical tests cannot control type I error rate under 0 : 1H RR = . 

7. Discussion and Recommendation 

The main question rises which continuity correction values are the best choice 
for the adjusted relative risk estimator in a center study and multi-center study 
with sparse data. Due to the conventional continuity correction, most of investi-
gators such as Yate [1], Lane [3], Stijnen et al., [4], Lui and Lin [6], Sankey et al., 
[7], Gart and Zwefel [8], Walter [9] and Cox [10], suggest to use 0.5c = . How-
ever, in this study with the smallest average MSE of ˆ log cc RRθ = , the optimal 
point ( ) ( )1 2, 1 6,1 6c c =  can perform the best for the point estimation. The 
minimum point ( ) ( )1 2, 1 6,1 6c c =  of ĉθ  agrees with the suggestion of Tur-
key [12], which is very useful and the most appropriate in a practice way.  

For estimation of fixing θ  ( log RRθ = ) in a center ( 1k = ), regardless of a 
true value of RR, the proposed estimator adjusted by 1 2 1 3c c c= = =  performs 
the best with the smallest MSE. For a meta-analysis study of size k, in general the 
MH estimator achieves the smallest MSE when the sample size ijn  is small 
while the study size is rather large ( 16k ≥ ). The MSE of the WLS estimator and 
the proposed estimator adjusted by the various values of c are closed together 
and they are the best when the sample sizes are moderate to large ( 1 16jn ≥  and 

2 16jn ≥ ) while the study size is rather small. This finding is consonant with the 
work of Viwatwongkasem et al. [19]. Since the true value of RR is usually not 
available in practice as mentioned earlier, we suggest to choose the proposed rel-
ative risk estimator adjusted by 1 6c =  that can minimize the Bayes risk with 
respect to uniform prior (0, 1) and Euclidean loss function.  

For the empirical power of the test under ( )1 : 0.1 ,j mH U mm mmθ = + − , re-
gardless of the study size k, the MH Z-test performs the best with the highest 
power when both ijn  are moderate to large. The inverse-variance weighted 
Z-test is good when ijn  is large. In accordance with Soulakova and Bright [21], 
the empirical power of the test will increase when the sample sizes increase. For 
the power of the proposed Z-test adjusted by 1c = , 2c = , the Z-test has the 
higher performance under the same type I error when k is small ( 4k ≤ ) and ijn  
is large ( 32ijn ≥ ). 

If we don’t know information about parameter RR, we recommend to use the 
adjusted estimator θ̂  by using continuity correction defined by 1 2 1 6c c= = , 
or 1/3, or 1/2 in a center study. For a multi-center study of size k, we recom-
mend to use adjusted ŵθ  defined by 1 2 1 6c c= = , or 1/3, or 1/2, including op-
timal weights ˆ

jf . 
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Generally, the effect of exposures or the effect of treatments with binary out-
comes covers the risk difference, the relative risk, and the odds ratio. Obviously, 
all three conventional effect estimators have the same problem of the zero values 
in sparse data. The conventional proportion estimate of p̂ X n=  is in need of 
replacement by ( ) ( )2ˆc X cp c n= + +  to solve this problem. Therefore, the 
recommendation for a further study is to use these ideas, such as the smallest 
MSE, the smallest Bayes risk to fine the appropriate point ( )1 2,c c  in estimating 
the odds ratio parameter. 
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