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Abstract 
The objective of this study is to propose the Parametric Seven-Number 
Summary (PSNS) as a significance test for normality and to verify its accuracy 
and power in comparison with two well-known tests, such as Royston’s W 
test and D’Agostino-Belanger-D’Agostino K-squared test. An experiment 
with 384 conditions was simulated. The conditions were generated by cross-
ing 24 sample sizes and 16 types of continuous distributions: one normal and 
15 non-normal. The percentage of success in maintaining the null hypothesis 
of normality against normal samples and in rejecting the null hypothesis 
against non-normal samples (accuracy) was calculated. In addition, the type 
II error against normal samples and the statistical power against normal sam-
ples were computed. Comparisons of percentage and means were performed 
using Cochran’s Q-test, Friedman’s test, and repeated measures analysis of 
variance. With sample sizes of 150 or greater, high accuracy and mean power 
or type II error (≥0.70 and ≥0.80, respectively) were achieved. All three nor-
mality tests were similarly accurate; however, the PSNS-based test showed 
lower mean power than K-squared and W tests, especially against non-normal 
samples of symmetrical-platykurtic distributions, such as the uniform, semi-
circle, and arcsine distributions. It is concluded that the PSNS-based omnibus 
test is accurate and powerful for testing normality with samples of at least 150 
observations. 
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1. Introduction 
1.1. The Summary of Five and Seven Numbers and Its Graphic  

Application 

In the first edition of the Elements of Statistics, Bowley [1] introduced 
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stem-and-leaf and cumulative frequency graphs, advocated the use of simple 
random sampling, highlighted the descriptive importance of position measures, 
as reflected in the five-number summary (minimum value, the three quartiles 
and maximum value), and developed the quartile coefficient of skewness [2]. 

In the first edition of the Elementary Manual of Statistics, Bowley [3] ex-
panded the summary from five to seven numbers, by including the first and last 
deciles, allowing two extremes of deviation to be defined. Very low scores are 
below the 10th percentile and very high scores are above the 90th percentile. The 
central tendency or shoulder zone extends into the interquartile range, low 
scores are between the 10th and 25th percentiles, and high scores are between 
the 75th and 90th percentiles. Thus, the seven-number summary is not only 
useful for calculating statistics on central tendency (median), variation (absolute 
and relative ranges), skewness (quartile coefficient) and kurtosis (percentile 
coefficient), but also to interpret the scores [4]. 

The visual representation of the five-number summary led Spear to develop 
the range bar graph among her charting techniques [5] [6], and Tukey to create 
the box-and-whisker plot among his graphical tools for exploratory data analysis 
[7] [8] [9]. Thanks to computational statistics and Tukey’s exploratory data 
analysis, the use of the box-and-whisker plot to evaluate symmetry, kurtosis, the 
presence of outliers, and fit or proximity to the normal distribution was widely 
extended [10]. With Tukey [9], outliers are defined by fences. The lower fence is 
placed at a distance of one and a half times the interquartile range, starting from 
the first quartile. On the other hand, the upper fence is placed at a distance of 
one and a half times the interquartile range from the third quartile. If scores are 
found below the lower fence, then there are outliers in the left tail. Similarly, if 
there are scores above the upper fence, then there are outliers in the right tail 
[11]. McGill, Tukey, and Larsen [12] highlighted the possibility of representing 
two or more variables on a box-and-whisker plot and introduced three variants 
of the basic design. The first variant incorporates a visual measurement of the 
sample size across the width of the boxes. The second variant includes an indica-
tion of the rough significance of differences between medians across notches, 
and the third variant combines the characteristics of the two previous graphs. 

Other modifications to Tukey’s box-and-whisker plot have been proposed, 
such as delimiting the whiskers with the extreme deciles [13] [14] or the 5th and 
95th or 2nd and 98th percentiles [15], give a smooth profile to the boxes to 
represent their density in the so-called vase plot [16], expand the surface of 
smooth edges for all the data in the so-called violin plot [17], and include a ho-
rizontal line for the mean and give more detail to the representation of the den-
sity of the data in the bean plot [18]. In turn, there are two-dimensional forms of 
the box-and-whisker plot [19] [20] [21] [22] and a version for bivariate data 
named bag-and-bolster plot [23]. 

1.2. Assessment of Normality 

For the evaluation of normality, there are three basic strategies: one uses de-

https://doi.org/10.4236/ojs.2022.121009


J. M. De La Rubia 
 

 

DOI: 10.4236/ojs.2022.121009 120 Open Journal of Statistics 
 

scriptive statistics, another applies tests of significance, and the third analyzes 
graphs. From the descriptive statistics, it is observed if the 95% confidence in-
tervals of the arithmetic mean, median, and mode overlap; and the 95% confi-
dence intervals of the coefficients of skewness and excess kurtosis (based on 
standardized central moments) include zero. In the case of a variable of positive 
values, it can be verified if the lower limit of the 95% confidence interval of 
Pearson’s coefficient of variation is less than a half, and that of the quartile coef-
ficient of dispersion is less than a third. In addition, it can be checked if ap-
proximately 68.3% of the data is concentrated at a standard deviation above and 
below the arithmetic mean, 95.4% at two standard deviations, and 99.7% at three 
standard deviations [24]. 

The hypothesis-testing strategy has five variants. The first variant is based on 
the goodness of fit or difference between the observed and expected absolute 
frequencies for k class intervals, such as the Pearson’s chi-squared test [25] and 
Woolf’s G test [26]. The second variant is based on the largest difference be-
tween the empirical and theoretical cumulative distributions of each sample da-
ta, such as the Kolmogorov [27] and Smirnov [28] D test and Kuiper’s V test 
[29]. The third variant s very similar to the second and minimizes the squared 
vertical distance between empirical and theoretical cumulative distributions, 
such as the Cramer [30] and von Mises [31] W-squared test, Anderson and 
Darling’s A-squared test [32], and Watson’s U-squared test [33]. The fourth va-
riant is based on the correction between the observed and expected quantiles, 
such as the W tests of Shapiro and Wilk [34], Royston [35], and Chen and Sha-
piro [36], the W’ tests of Shapiro and Francia [37] and Royston [38], and the D 
test D’Agostino [39] [40]. Finally, the fifth variant is based on standardized cen-
tral moments, such as the tests of D’Agostino and Pearson [41], Jarque and Bera 
[42], Urzua [43], and D’Agostino, Belanger, and D’Agostino [44]. 

The graphical strategy observes if the histogram has a bell shape [45], the 
normal quantile-quantile plot shows an alignment of the cloud of points on a 
45-degree fit line [46], and the box-and-whisker plot has symmetry in its ele-
ments and the absence of atypical cases [9] [44]. 

In the graphical evaluation of normality, Cleveland [13] proposed to include 
the extreme deciles (10th and 90th percentiles) in the box-and-whisker plot. 
Note that when rounded to two decimal places, the 2nd, 8th, 25th, 50th, 75th, 
92nd, and 98th percentiles of a standard normal distribution are almost un-
iformly spaced. The second percentile corresponds to −2.05, the eighth to −1.34, 
the twenty-fifth to −0.67, the fiftieth to 0, the seventy-fifth to 0.67, the nine-
ty-second to 1.34, and the ninety-eighth to 2.05. Within the sequence, a distance 
of 0.67 separates them, except at the two extremes that present a discrepancy of 
fewer than 5 tenths. To be exact, the quantiles of orders 0.022 and 0.978 should 
be used. These percentiles are close to those of the seven-number summary: 
minimum or 0 percentile, 10th percentile, 50th percentile, 75th percentile, 90th 
percentile, and maximum or 100th percentile. Since it is a specific property of 
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the normal distribution, which is a key distribution for parametric statistics, this 
group of percentiles is called a parametric seven-number summary, unlike the 
one defined by Bowley [3], which is more general and is named a non-parametric 
seven-number summary [47] [48]. Based on this property of the normal distri-
bution, the box-and-whisker plot, with notches at the 2nd and 98th percentiles, 
allows us to visualize whether the distance between the notches and the hinges 
(quartiles) are constant and there are no outliers, which would show that the 
sample data present a good fit to normality [4]. 

1.3. Proposal of a New Test from the Parametric Seven-Number  
Summary 

Currently, the parametric seven-number summary is used for the visual assess-
ment of normality, but the present study proposes its application through a test 
of statistical significance. A constant distance or amplitude of two thirds be-
tween the numbers is stipulated, so that the seven points on the ordinate axis of 
the Probit function or quantile function of the standard normal distribution 
would be: −2, ˆ1.3− , ˆ0.6− , 0, ˆ0.6 , ˆ1.3  and 2, and the orders or values on the 
abscissa axis would be: 0.023, 0.091, 0.252, 0.5, 0.748, 0.909 and 0.977. 

The sampling distribution of the quantiles of a distribution that has its finite 
moments corresponds to a normal distribution [49]. Given a sequence of n sam-
ples of a random variable X with density function ( )Xf x  and finite moments, 
the sampling distribution of the quantile of order p, ( )Xq p , is a normal distri-
bution, whose mean is the population quantile ( )ıoX p  and its variance is the 
quotient between the product of the order of the quantile and its complement 
(numerator) and the product of the sample size and the square of the density 
function evaluated in the population quantile (denominator). The standard dev-
iation or error (se) is the root of this quotient: 

( )
( )

( )2
ı

1
oXq p

X X

p p
se

nf p
−

=
  

 

Using this formula, the standard errors of the seven quantiles that constitute 
the parametric seven-number summary can be obtained, which are standard 
normal distribution quantiles. See Table 1.  

The standard errors in Table 1 allow us to estimate by intervals and to check 
whether the sample quantiles are equivalent to those expected for a standard 
normal distribution. 

( )~ 0,1Z N  
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LL = lower limit of the interval for the population quantile of order p. 
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Table 1. Value in the Probit function, cumulative distribution function, density function 
and standard error of the parametric seven-number summary. 

ϙZ (p) = Φ−1 (p) p-order ( ) ( )Z p pf z zϕ=  ( )Zq pse  

−2 0.023 0.054 2.762 n  

ˆ1.3−  0.091 0.164 1.755 n  

ˆ0.6−  0.252 0.319 1.360 n  

0 0.500 0.399 1.253 n  

ˆ0.6  0.748 0.319 1.360 n  

ˆ1.3  0.909 0.164 1.755 n  

2 0.977 0.054 2.762 n  

Note. ϙZ (p) = Φ−1 (p) = Probit function, quantile function or inverse function of the cu-
mulative distribution function of a variable Z with standard normal distribution N (0, 1) 
that gives the population quantiles zp, that is, the values of Z; p-order = order of the quan-

tile zp of a standard normal distribution; ( ) ( )Z p pf z zϕ=  = density function of a stan-

dard normal distribution; and ( )Zq pse  = standard error of the sample quantile of order p 

calculated from a random sample of size n drawn from a standard normal distribution. 
 

UL = upper limit of the interval for the population quantile of order p. 
( )ıoZ p  = population quantile of order p, where ıo  (lowercase koppa) is the 

archaic Greek letter corresponding to the lowercase Latin letter q. 
( )Zq p  = sample quantile or point estimator of the population quantile of 

order p. 
n = sample size. 

( )( ) ( )ı
2 2oZZ Z pf p f z=  = square of the height of point ( )ıoZ pp z=  in a stan-

dard normal distribution. 

1 2z α−  = quantile of order 1 − (α/2) of a standard normal distribution, where α 
is the significance level, usually 0.05 (z0.975 = 1.96). 

Statistical hypotheses. null hypothesis: ( ) ( )ı0 : oZZH q p p=  and alternative 
hypothesis: ( ) ( )ı1 : oZZH q p p≠ . 

( )Zq p  = sample quantile or point estimator of the population quantile of 
order p. 

( )ıoZ p  = hypothetical or population value of the quantile of order p. 
Assumptions. A large random sample drawn from a normal distribution with 

unknow parameters N (μ, σ2). 
Test statistics and sampling distribution: 

( )
( ) ( )

( )
( )

( )
ı

2
ı

o

1
o

Z Z

Z
q p q p

Z

Z Z

p

p p
nf p

q p
Z z= =

−
  

−
 

( ) ( )~ 0,1
Zq pZ N  
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Decision. Let ( )( )Zq pP Z z≤  be the probability of obtaining a value less than 
or equal to the absolute value of the test statistic in a standard normal distribu-
tion. If ( )( )( )2 1

Zq pP Z z α× − ≤ ≤ , the null hypothesis is accepted in a two-tailed 
test at a significance level of α. Conversely, if ( )( )( )2 1

Zq pP Z z α× − ≤ > , is re-
jected. 

Knowing how to standardize the sample quantiles of a normal population, the 
planting of the PSNS as an omnibus test for normality is continued. Let X be a 
random variable supposedly with a normal distribution of unknown parameters 

( )2,X XN µ σ . A random sample of size n is obtained (at least 20 cases). The 
quantiles of X are estimated from this sample. By constituting the point estimate 
of the population quantiles, the calculation can be performed using rule 9 of li-
near interpolation [50], which provides approximately unbiased quantiles in the 
case of normality [51]. Let’s see the procedure of this rule: 

The n sample data of X are sorted in ascending order: ( ) ; 1, 2, ,ix i n=   

( )0.375 0.25h p n= + × +  

( ) ( ) ( ) ( ) ( ) ( )( )1ı̂o X i h i h i hX p q p x h h x x= = + =          
= = + − −    

In case h is less than 1, the sample value in the first order x(1) or minimum 
value of the sample is taken as quantile. In case h is greater than n, the sample 
value in the nth order x(n) or maximum value of the sample is taken. 

Next, the mean and variance of the population that is assumed to follow a 
normal distribution are estimated, and the quantiles are standardized so that 
they follow a standard normal distribution ( )0,1N  in case the sample data 
have been drawn from a normal distribution ( )2,X XN µ σ  or at least with finite 
moments and large sample size. 

1ˆ ii
X

n
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n
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n
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s

n
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ˆ
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−
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−
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( )
( ) ( )ı̂o ˆ

ˆX

X X
q p

X

X

X

p q p x
z

s
µ

σ
− −

= =  

The same result is obtained if, first, the n sample data of X (zx) are standar-
dized, and then the sample quantiles are calculated on these standardized data. 

( ) ( )
X Zq pz q p=  

It is tested whether the standardized quantiles are equivalent to those expected 
for a normal distribution. For this purpose, the standardized differences between 
standardized sample quantiles the expected values under the null hypothesis of 
the normal distribution are calculated. 
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( )
( ) ( )

( )
( )

ıo
Z Z

Z

Z
q p p

q

Z
q

p

q p p
Z z

se
−

= =  

( ) ( )~ 0,1
Zq pZ N  

If the ( )Zq pz  values are squared and added, the resulting test statistic follows 
a chi-squared distribution with seven degrees of freedom, since it is the sum of 
squares of seven variables random with standard normal distribution. Thus, an 
omnibus test of normality is obtained, and the test statistic is denoted by SS. 

( )

7
2 2

7
1

~
Zq p

i
SS z χ

=

= ∑  

( ) ( ) ( )

( ) ( ) ( )

( )

0.023 2 0.091 4 / 3 0.252 2 / 3
2.762 1.755 1.360

0.5 0.748 2 / 3 0.909 4 / 3
1.253 1.360 1.755

0.977 2
2.762

Z Z Z

Z Z Z

Z

q p q p q p
SS

n n n
q p q p q p

n n n
q p

n

= + = + = +
= + +

= = − = −
+ + +

= −
+

 

Let ( )2
7P SSχ ≥  be the probability of obtaining a value greater than or equal 

to the absolute value of the test statistic in a chi-squared distribution with seven 
degrees of freedom. If ( )2

7P SSχ α≥ ≥ , the null hypothesis of normal distribu-
tion, ( )2

0 : ~ ,X XH X N µ σ , is accepted in a two-tailed test at a significance level 
of α. If ( )2

7P SSχ α≥ < , it is rejected. 
Here is an example calculation using the PSNS-based omnibus test. Let us be a 

random sample with 20 data points: −0.23, −1.39, 0.38, 0.52, −0.49, 0.28, −0.04, 
0.11, 1.03, −0.33, −0.33, 0.06, 0.16, 0.29, −0.16, −1.06, 0.54, 0.88, −1.64 and −0.31. 
Check that it has been collected from a standard normal distribution at a signi-
ficance level (α) of 5%. These data were generated by inverse transform sampling 
from a standard uniform distribution U (0, 1) and the Probit or inverse function 
of the cumulative distribution function of a standard normal distribution: 

( )1
i ix u−= Φ . To simplify the calculations, the sample data were rounded to two 

decimal places. 
The data is sorted in ascending order: x(1) = −1.64, x(2) = −1.39, x(3) = −1.06, x(4) 

= −0.49, x(5) = −0.330, x(6) = −0.33, x(7) = −0.31, x(8) = −0.23, x(9) = −0.16, x(10) = 
−0.04, x(11) = 0.06, x(12) = 0.11, x(13) = 0.16, x(14) = 0.28, x(15) = 0.29, x(16) = 0.38, x(17) 
= 0.52, x(18) = 0.54, x(19) = 0.88 and x(20) = 1.03. 

The sample quantiles of the orders corresponding to the PSNS are calculated 
using Blom’s rule or the Hyndman-Fan linear interpolation rule 9, which pro-
vides approximately unbiased estimates if the sample is drawn from an (as-
sumed) normal distribution. 

( )0.375 0.25 0.375 0.0228 20.25 0.8367 1h p n= + × + = + × = <  

( ) ( ) ( )10.0228 1.64i hq p x x=  
= = = = −  

( )0.375 0.25 0.375 0.0912 20.25 2.2220h p n= + × + = + × =  
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( )( )

1

2 3 2

0.0912

0.222

1.39 0.222 1.06 1.39

1.3167

X i h i h i hq p x h h x x

x x x

= = + =          
= = + − −  

= + × −

= − + × − − −

= −

 

( )0.375 0.25 0.375 0.2525 20.25 5.488h p n= + × + = + × =  

( ) ( ) ( ) ( )( )
( )( )

5 6 50.2525 0.488

0.33 0.488 0.33 0.33

0.33

Xq p x x x= = + × −

= − + × − − −

= −

 

( )0.375 0.25 0.375 0.5 20.25 10.5h p n= + × + = + × =  

( ) ( ) ( ) ( )( )
( )( )

10 11 100.5 0.5

0.04 0.5 0.06 0.04

0.01

Xq p x x x= = + × −

= − + × − −

=

 

( )0.375 0.25 0.375 0.7475 20.25 15.512h p n= + × + = + × =  

( ) ( ) ( ) ( )( )
( )

15 16 150.7475 0.5

0.29 0.512 0.38 0.29
0.3361

q p x x x= = + × −

= + × −

=

 

( )0.375 0.25 0.375 0.9088 20.25 18.778h p n= + × + = + × =  

( ) ( ) ( ) ( )( )
( )

18 19 180.9088 0.5

0.54 0.778 0.88 0.54
0.8045

Xq p x x x= = + × −

= + × −

=

 

( )0.375 0.25 0.375 0.9772 20.25 20.1643 20h p n= + × + = + × = >  

( ) ( ) ( )200.9772 1.03X i hq p x x=  
= = = =  

The sample mean and standard deviation ( x  and s, respectively) are calcu-
lated. 

1 1.73 0.0865
20

ii
n

n
x

x
== = − = −∑  

( )22
1

ˆ 8.975255 0.6873
1 19

i X
n
i x

s
n

µ
=

−
= = =

−
∑

 

The sample quantiles are standardized. For the quantile of order 0.0228, its 
standardized value is −2.2603. For the rest of the quantiles see Table 2. 

( ) ( ) ( )0.0228 1.64 0.0865
0.0228 2.2603

0.6873X

X
q

q p x
z p

s
= − − − −

= = = = −  

The standard error of each sample quantile is calculated under the assumption 
that the sample data were drawn from a normal distribution. The standard error 
corresponding to the sample quantile of order 0.0228 is 0.6175. For the rest of 
the quantiles see Table 2. 
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Table 2. Testing for normality using the PSNS-based test. 

Theoretical calculation Empirical calculation 

zp p = Φ (zp) φ (zp) qX (p) ( ) ( )
Xq Zz p q p=  ( )Zq pse  ( )Zq pz  ( )

2
Zq pz  

−2 0.0228 0.0540 −1.64 −2.2603 0.6175 −0.4215 0.1777 

ˆ1.3−  0.0912 0.1640 −1.3167 −1.7899 0.3925 −1.1633 1.3532 

ˆ0.6−  0.2525 0.3194 −0.33 −0.3543 0.3041 1.0272 1.0552 

0 0.5000 0.3989 0.01 0.1404 0.2802 0.5010 0.2510 

ˆ0.6  0.7475 0.3194 0.3361 0.6148 0.3041 −0.1704 0.0290 

ˆ1.3  0.9088 0.1640 0.8045 1.2964 0.3925 −0.0941 0.0089 

2 0.9772 0.0540 1.03 1.6245 0.6175 −0.6081 0.3698 

∑       3.2448 

Note. zp = quantiles equispaced at a distance of two thirds in a standard normal distribu-
tion N (0, 1), p = Φ (zp) = order of the quantile in a standard normal distribution, φ (zp) = 
point probability or height of the quantile in a standard normal distribution, qX (p) = 
sample quantile of order p calculated by the linear interpolation rule 9 (Hyndman & Fan, 
1996) or Blom’s rule (1958), ( ) ( )

X Zq qz p z p=  = standardized value of the quantile sam-

ple that is equivalent to calculating the quantile from the standardized data, ( )Zq pse  = 

standard error of the sample quantile under a normality assumption, ( )Zq pz  = standar-

dized difference with respect to the expected value under the hypothesis null of normal 
distribution, ( )

2
Zq pz  = square of the standardized difference with respect to the expected 

value under the null hypothesis of normal distribution, ∑ = sum per column. 
 

( )
( )
( )

( )
0.0228 22

1 0.0228 1 0.0228
0.6175

20 0.0540Xq p
Z p

p p
se

nf z=

− × −
= = =

×
 

The standardized sample quantile (minuend) and the expected value under 
the normal distribution (subtrahend) are subtracted, and the difference (nume-
rator) is divided by the standard error of the sample quantile (denominator). In 
the case of the sample quantile of order 0.0228, this standardized distance is 
−0.4220. For the rest of the quantiles see Table 2. 

( )
( ) ( )

( )
0

ı
0. 228

o 2.2603 2 0.4220
0.6175Z

Z

Z
q p

q p

Zq p p
z

se=

− − −
= = = −  

These standardized distances are squared and summed to obtain the test sta-
tistic or sum of squares (SS) of the standardized distance. As can be seen in Ta-
ble 2. 

( )

7
2

1
3.2448

Zq p
i

SS z
=

= =∑  

The p value is obtained as the probability of having a value greater than or 
equal to SS in a chi-squared distribution with seven degrees of freedom. Since 
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the probability is greater than the significance level of 0.05, the null hypothesis of 
normality is accepted. Precisely, the test statistic is less than the critical value of a 
quantile of order 0.95 in a chi-squared distribution with seven degrees of free-
dom: 

( )2
7 3.2448 0.8615 0.05P χ α≥ = > =  

2
0.95 73.245 14.0671SC χ= < =  

The type II error (β) or probability of maintaining the null hypothesis condi-
tional on the alternative hypothesis being true (SS > critical value = 2

0.95 7χ  = 
14.07) is greater than 0.50. In addition, the power (φ ) or the probability of re-
jecting the null hypothesis conditional on the alternative hypothesis being true 
(SS > critical value) is close to 0.20. Consequently, the correct decision is to hold 
the null hypothesis. To calculate these probabilities, the cumulative distribution 
function of a non-central chi-squared distribution with seven degrees of freedom 
(df) and a Non-Centrality Parameter (NCP) located at the value of the SS test 
statistic is used. This distribution function is evaluated at the critical value: 

2
0.95 7 14.07χ =  (true alternative hypothesis). 

( ) ( )2 2 2 2
7, 1 7,3.245 0.95 7 14.0671 0.7932df NCP SS dfαβ χ χ χ χ= = −= = = =  

( )2 2
7, 0.95 71 1 1 0.7932 0.2068df NCP SSφ β χ χ= == − = − = − =  

1.4. Objectives 

Once the new omnibus test of normality has been proposed, based on the sev-
en-number parametric summary (PSNS), the objective of the study is to com-
pare it with the W test [35] and the K-squared test [44], which are the most po-
werful tests for normality in simulation studies [52]. The comparison is made 
both in the precision to maintain the null hypothesis of normality against nor-
mal samples and to reject it against non-normal samples and in the type II error 
level in the first case and the statistical power in the second case. It should be 
noted that in a recent study performed by Khatun [53], the Shapiro and Wilk 
test was the most powerful for testing normality with nine different sample sizes 
(10, 20, 25, 30, 40, 50, 100, 200, and 300), followed by the Shapiro-Francia and 
Anderson-Darling tests. The least powerful test was that of Jarque and Bera. 
However, the present study does not use the version of Jarque and Bera [42], but 
that of D’Agostino et al. [44], which is a more powerful variety of moment-based 
normality tests [54] [55]. 

In applied statistics in the field of social sciences and other sciences, it is 
common to find small samples of less than 30 observations and to want to use 
parametric tests, for which some distributional assumptions, usually of normali-
ty, are required to be met. In case of non-compliance, non-parametric tests 
should be chosen [56]. Thus, having an accurate and powerful normality test for 
small samples is important [53]. However, the proposed PSNS-based normality 
test, built on the asymptotic normality of the sample quantile distribution, is not 
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expected to be useful for this purpose, showing low precision and power with 
small samples. 

2. Materials and Methods 

From a standard continuous uniform distribution U (0, 1), 24 samples of differ-
ent sizes were drawn (n = 20, 30, 40, 50, 60, 70, 80, 90 100, 125, 150, 175, 200, 
250, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, and 2000) to generate by the 
inverse transform sampling 16 continuous distributions: one standard normal 
and 15 non-normal [57]. 
 Standard normal distribution with location parameter μ of 0 and squared 

scale parameter σ2 of 1: N (μ = 0, σ2 = 1). This distribution is unimodal (Mo = 
0), symmetric (Pearson’s coefficient of asymmetry based on the standardized 
third central moment: 3 2

1 3 2 0β µ µ= = ), mesokurtic (Pearson’s excess kur-
tosis [Β2] that is the standardized fourth central moment [ 2

2 4 2β µ µ= ] mi-
nus the value of the standardized fourth central moment in a standard nor-
mal distribution: Β2 = β2 − 3 = 0), has finite moments, and its domain cor-
responds to the interval (−∞, +∞). 

( )~ 0,1ix X N∈  and ( )~ 0,1iu U U∈  

( )1
i ix u−= Φ  

Φ−1 = quantile function or inverse cumulative distribution function of a stan-
dard normal distribution, also called a Probit function. 

Non-normal distributions: 
 Standard logistic distribution with location parameter μ of 0 and scale para-

meter s of 1: Logistic (μ = 0, s = 1). This distribution is unimodal (Mo = 0), 
symmetric (β1 = 0) and leptokurtic (Β2 = 1.2), has finite moments, and its 
domain corresponds to the interval (−∞, + ∞). 

( )~ Logistic 0,1ix X∈  and ( )~ 0,1iu U U∈  

ln
1

i
i

i

u
x

u
 

=  − 
 

 Standard Laplace distribution with location parameter μ of 0 and scale b of 1: 
Laplace (μ = 0, b = 1). This distribution is unimodal (Mo = 0), symmetric (β1 
= 0) and leptokurtic (Β2 = 3), has finite moments, and its domain corres-
ponds to the interval (−∞, +∞). 

( )~ Laplace 0,1ix X∈  and ( )~ 0,1iu U U∈  

1 11 sign ln 1 2
2 2i ix u p  = − × − × − × −  

   
 

 Standard Student’s t distribution with five degrees of freedom: t (ν = 5). This 
distribution is unimodal (Mo = 0), symmetric (β1 = 0) and leptokurtic (Β2 = 
6), at least its first four moments are finite, and its domain corresponds to the 
interval (−∞, +∞). 
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( )~ 5ix X t∈  and ( )~ 0,1iu U U∈  

( )1
i X ix F u−=  

1
XF −  = quantile function or inverse cumulative distribution function of X. 

 Standard Cauchy distribution with location parameter x0 of 0 and scale pa-
rameter γ of 1: Cauchy (x0 = 0, γ = 1). This distribution is a unimodal (Mo = 
0), symmetric (Bowley’s Quartile Coefficient of Skewness: QCS = (P25 + P75 − 
2 × P50)/(P75 − P25) = 0) and leptokurtic (Kelley’s Percentile Coefficient of 
Kurtosis: PCK = (P75 − P25)/[2 × (P90 − P10)] = 0.162; corrected, or centered at 
0 based on the expected value for a normal distribution PCK: CPCK) = CPK 
− 0.263 = −0.101), has no finite moments, and its domain corresponds to the 
interval (−∞, +∞). 

( )~ Cauchy 0,1ix X∈  and ( )~ 0,1iu U U∈  

1tan
2i ix u  = π× −    

 

 Generalized beta distribution with shape parameters α and β of 1.5 and thre-
shold parameters −2 as minimum value a and 2 as maximum value b or 
Wigner’s semicircle distribution with radius r of 2: Beta (α = 1.5, β = 1.5, a = 
−2, b = 2) ≡  Semicircle (r = 2). This distribution is unimodal (Mo = 0), 
symmetric (β1 = 0) and platykurtic (Β2 = −1), has finite moments, and its 
domain corresponds to the interval [−2, 2]. 

( ) ( )~ Beta 1.5,1.5, 2,2 Semicircle 2ix X r∈ − ≡ =  and ( )~ 0,1iu U U∈  

( )1
i X ix F u−=  

1
XF −  = quantile function or inverse cumulative distribution function of X. 

 Uniform distribution with threshold parameters −2 as minimum value a and 
2 as maximum value b: U (a = −2, b = 2). This distribution has no mode, but 
does have finite moments, is symmetric (β1 = 0), platykurtic (Β2 = −1.2), and 
its domain corresponds to the interval [−2, 2]. 

( )~ 2,2ix X U∈ −  and ( )~ 0,1iu U U∈  

2 4i ix u= − + ×  

 Generalized arcsine distribution with threshold parameters −2 as minimum 
value a and 2 as maximum value b: Arcsine (a = −2, b = 2). This distribution 
is bimodal (Mo1 = −2 and Mo2 = 2), symmetric (β1 = 0) and platykurtic (Β2 = 
−1.5), has finite moments, and its domain corresponds to the interval [−2, 2]. 

( )~ Arcsine 2,2ix X∈ −  and ( )~ 0,1iu U U∈  

22 4 sin
2i ix uπ = − + ×  

 
 

The angles of ui are measured in units of radians. 
 Triangular distribution with threshold parameters −2 as minimum value a 

and 2 as maximum value c and with modal value or location parameter b of 
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2: Triangular (a = −2, b = 2, c = 2). This distribution is unimodal (Mo = 2), 
negative asymmetric (β1 = −1) and platykurtic (Β2 = −0.6), has finite mo-
ments, and its domain corresponds to the interval [−2, 2]. 

( )~ Triangular 2,2,2ix X∈ −  and ( )~ 0,1iu U U∈  

2 4i ix u= − + ×  

 Standard Fisher’s Z distribution with shape parameters ν1 of 3 and ν2 of 9: Z 
(ν1 = 3, ν2 = 9). This distribution is unimodal (Mo = 0), negative asymmetric 
(β1 = −0.60) and leptokurtic (Β2 = 1.03), has finite moments, and its domain 
corresponds to the interval (−∞, +∞). 

( )~ 3,9ix X Z∈  and ( )~ 0,1iu U U∈  

( )( ) ( )1
1 20.5 ln ; ~ 3, 9i Y ix F u Y F ν ν−= × = =  

1
YF −  = quantile function or inverse cumulative distribution function of Y. 

 Weilbull distribution with shape parameter α of 2 (increasing failure rate) 
and scale parameter β of 2: Weibull (α = 2, β = 2). This distribution is un-
imodal (Mo = 2 ), negative asymmetric (β1 = −2.09) and leptokurtic (Β2 = 
1.53), has finite moments, and its domain corresponds to the interval [0, 
+∞). 

( )~ Weibull 2, 2ix X∈  and ( )~ 0,1iu U U∈  

( )2 ln 1i ix u= × − −  

 Program Evaluation and Review Technique (PERT) distribution with thre-
shold position parameter −2 as minimum value a and 4 as maximum value c, 
modal value or location parameter b of 0 and scale parameter λ of 4: PERT (a 
= −2, b = 0, c = 4, λ = 4), which is equivalent to a beta distribution with four 
parameters: Beta (α = 7/3, β = 11/3, a = −2, b = 4). This distribution is un-
imodal (Mo = 0), positive asymmetric (β1 = 0.302) and platykurtic (Β2 = 
−6/11), has finite moments, and its domain corresponds to the interval [−2, 
4]. 

( )
( )
~ PERT 2, 0, 4, 4

Beta 7 3, 11 3, 2, 4
ix X a b c

a b

λ

α β

∈ = − = = =

≡ = = = − =
 

y ( )~ 0,1iu U U∈  

( )1
i X ix F u−=  

1
XF −  = quantile function or inverse cumulative distribution function of X. 

 Standard Rayleigh distribution with scale parameter σ of 1: Rayleigh (σ = 1). 
This distribution is unimodal (Mo = 1), positive asymmetric (β1 = 0.63) and 
leptokurtic (Β2 = 0.25), has finite moments, and its domain corresponds to 
the interval [0, + ∞). 

( )~ Rayleigh 1ix X∈  and ( )~ 0,1iu U U∈  

( )2 ln 1i ix u= − × −  
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 Chi-squared distribution with four degrees of freedom (shape parameter): χ2 
(ν = 4). This distribution is unimodal (Mo = 2), positive asymmetric (β1 = 

2 ) and leptokurtic (Β2 = 3), has finite moments, and its domain corres-
ponds to the interval [0, +∞). 

( )2~ 4ix X χ∈  and ( )~ 0,1iu U U∈  

( )1
i X ix F u−=  

1
XF −  = quantile function or inverse cumulative distribution function of X. 

 Log-normal distribution, also known as Galton’s distribution, with location 
parameter μ of 0 and squared scale parameter σ2 of a quarter: Lognormal (μ = 
0, σ2 = 0.25). This distribution is unimodal (Mo = 0.78), positive asymmetric 
(β1 = 1.75) and leptokurtic (Β2 = 5.90), has finite moments, and its domain 
corresponds to the interval (0, +∞). 

( )~ Lognormal 0,0.25ix X∈  and ( )~ 0,1iu U U∈  

( )1

2e
iu

ix
−Φ

=  

Φ−1 = quantile function or inverse cumulative distribution function of a stan-
dard normal distribution, also called Probit function. 
 F distribution with shape parameters ν1 and ν2 of 9: F (ν1 = 9 and ν2 = 9). This 

distribution is unimodal (Mo = 7/11), positive asymmetric (β1 = 4.39) and 
leptokurtic (Β2 = 98.81), has finite moments, and its domain corresponds to 
the interval [0, +∞). 

( )1 2~ 9, 9ix X F ν ν∈ = =  and ( )~ 0,1iu U U∈  

( )1
i X ix F u−=  

1
XF −  = quantile function or inverse cumulative distribution function of X. 

For each of the 368 samples (23 sample sizes by 16 distributions), the null hy-
pothesis of normality was tested using the PSNS-based omnibus test, as well as 
the W-test [35] and the K-squared test [44]. Once the probability value (p) has 
been calculated, it is decided whether or not the null hypothesis is maintained at 
a significance level of 5% (if p ≥ 0.05, the null hypothesis of normality is ac-
cepted; if p < 0.05, is rejected). 

To verify the accuracy of the PSNS-based test when contrasting the null hy-
pothesis of normality, a dichotomous qualitative variable named correct decision 
(A) was created based on the expectation (maintain the null hypothesis of nor-
mality with the normal distribution and reject it with the 15 other distributions): 
A = {0 = no, 1 = yes}. The accuracy or probability of being correct when main-
taining the null hypothesis in case of normality and rejecting it in case of 
non-normality was calculated for each of the three statistical tests for normality 
(PSNS-based, W, and K-squared) through the proportion of the number of cor-
rect decisions and number of trials. The equivalence of this proportion of correct 
decisions among the three tests (k = 3 tests) was tested using the Q test of Coch-
ran [58]. The comparison of proportions was carried out both for each of the 24 
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sample sizes (n = 16 distributions) and for each of the 16 distributions (n = 24 
sample sizes). The effect size was estimated by the eta-squared: ( )( )2ˆ 1Q Q n kη = − , 
where 2

1~ kQ χ −  [59]. This calculation through a quotient is analogous to that 
used to calculate Kendall’s concordance coefficient W, with the test statistic fol-
lowing a chi-squared distribution in the numerator and the product between the 
sample size and the degrees of freedom in the denominator: ( )( )2 1rW n kχ= − , 
where 2 2

1~r kχ χ −  [60] [61]. It is worth noting that there is a correspondence 
between Kendall’s W and the average of Spearman’s rank correlation coefficient 
(rS): ( )( )1 1SW r k k= − +  [62]. This opens the possibility of interpreting the 
effect size in Cochran’s Q test from the cut-off points established for the associa-
tion strength measured by Spearman’s coefficient [63]. When k = 3, 0.10Sr <  
→ 2 0ˆ .4QW η≡ <  show very small agreement, [ )0.10,0.30Sr ∈  →  

[ )2 0.40,0.53ˆQW η≡ ∈  small, [ )0.30,0.50Sr ∈  → [ )2 0.53,0.67ˆQW η≡ ∈  me-
dium, [ )0.50,0.70Sr ∈  → [ )2 0.67,0.80ˆQW η≡ ∈  large, and 0.70Sr ≥  →  

2 0ˆ .80QW η≡ ≥  very large. Pairwise comparisons were made using McNemar’s 
exact (binomial) test [64]. Benjamini and Yekutieli’s correction was applied to 
control the rate of false-positive discoveries with correlated or paired data [65]. 
With this correction, once the three probability values (pi-value) are ordered in 
ascending order, p1-value < p2-value < p3-value, the paired differences are signif-
icant with values less than 0.009, 0.018 and 0.027, respectively. 

On the other hand, the statistical power of the three statistical tests for nor-
mality (k = 3) was calculated and their power averages were compared to the 24 
sample sizes (n = 24) and the 15 non-normal distributions (n = 15). The type II 
error or conservative error (β) is the probability of maintaining the null hypo-
thesis conditioned to the fact that the alternative hypothesis (corresponding to 
the value of test statistic) is true, β = P (H0 is accepted|H1 is true). Its comple-
ment provides the statistical power (φ ) or probability of rejecting the null hy-
pothesis conditional on the alternative hypothesis being true φ  = P (H0 is re-
jected|H1 is true). In the PSNS-based test, the type II error was calculated 
through the cumulative distribution function of a non-central chi-squared dis-
tribution with seven degrees of freedom and the SS statistic as a non-centrality 
parameter (NCP), evaluated at the critical value or quantile of order 0.95 for a 
chi-squared distribution with seven degrees of freedom, so the power is obtained 
using the following formula: 

( )2 2
7, 0.95 71 df NCP SSφ χ χ= == −  

In the K-squared test [44], type II error was calculated through cumulative 
distribution function of a non-central chi-squared distribution with two degrees 
of freedom and the K-squared statistic as a non-centrality parameter, evaluated 
in the critical value or quantile of order 0.95 for a chi-squared distribution with 
two degrees of freedom, so the power is obtained using the following formula: 

( )2
2 2

0.95 22,
1

df NCP K
φ χ χ

= =
= −  

In the W test [35], type II error was calculated as in the one-sample Z test for 
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a mean (alternative hypothesis to the right tail): 

0 0:H µ µ=  

1 1:H µ µ=  

1 0µ µ>  

0 11
21Crit

Z
x

P Z P Z
α µ

µ µ

µ σ µ
µ

β
σ σ

−

  
+ × −    −   = ≤ = ≤    

   
  

 

1

1
2

1
2

Z α
α−

−

 = Φ − 
 

 = quantile of order 1 − (α/2) in a standard normal distri-

bution. 
Applied to the Royston’s test, which applies a logarithmic transformation to 

the W statistic so that it follows a standard normal distribution, the power would 
be obtained by the following formula: 

( )
1

2

ln 1
1

Y Y

Y

Z W
P Z

αµ σ
φ

σ

−

  
+ × − −     = − ≤ 

 
  

 

Given a random sample of size n. 

( ) ( ) ( )3 20.0038915 ln 0.083751 ln 0.31082 ln 1.5861Y n n nµ = × − × − × −  

( ) ( )20.0030302 ln 0.082676 ln 0.4803e n n
Yσ

× − × −=  

( ) ( )
ln 1

~ 0,1YY
Y

Y Y

WYZ N
µµ

σ σ
− −−

= =  

( )
2

iix aW r=  = the square of the correlation between the empirical quantiles or 
values ordered in ascending order (xi) and the means or expected values of the 
corresponding order statistics for a normal distribution, these expected values 
being standardized and normalized (ai). 

In Royston’s W test, the decision is unilateral to the right tail, so when 
( )YP Z Z α≥ ≥ , the null hypothesis of normality is maintained [35]. 
If the normality assumption was fulfilled, the power averages in the 15 

non-normal distributions (n = 15) among the three statistical tests for normality 
(k = 3) were compared for each of the 24 samples using the repeated measures 
analysis of variance (ANOVA). This type of ANOVA is an omnibus parametric 
technique for comparing repeated means based on the decomposition of the to-
tal variance and the assumptions of normal distribution in the variables com-
pared and homogeneity of variance in the differences between variables. The 
first distributional assumption was tested using the original W test [34]. The as-
sumption of sphericity or equivalence of the variances of the differences among 
the three statistical tests for normality was tested using the test of John [66], Na-
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gao [67], and Sugiura [68]. In case of non-compliance with the sphericity, a cor-
rection was applied to the degrees of freedom. The degrees of freedom were 
multiplied by an epsilon correction factor. When the Greenhouse-Geisser epsi-
lon factor [69] was less than 0.75, it was used as a correction, otherwise, the 
Huynh-Feldt epsilon factor [70] was used. The effect size was estimated by the 
partial eta squared and was interpreted from the cut-off points suggested by Co-
hen [71] for ANOVA: <0.01 trivial, [0.01, 0.06) small, [0.06, 0.14) medium and ≥ 
0.14 large. Pairwise comparisons were made using Student’s paired-samples 
t-test as the sphericity assumption was not met in any case [72]. The Benjami-
ni-Yekutieli correction was applied to control for the rate of false-positive dis-
coveries with correlated, or paired data [65]. 

Faced with the breach of the normality assumption, the differences among the 
means were tested using Friedman’s test [60] [73] [74] with the modification of 
Agresti and Pendergast [75]. The effect size was estimated by Kendall’s W from 
Friedman’s original test statistic: ( )( )2 1rW n kχ= −  [60] [61], and it was in-
terpreted from its correspondence with the average of the Spearman’s rank cor-
relation coefficient [62] and the cut-off points to interpret the strength of associ-
ation of Hopkins [63]. When k = 3, values of W < 0.4 show a very small concor-
dance, in the interval [0.40, 0.53) small, in the interval [0.53, 0.67) medium, in 
the interval [0.67, 0.80) large, and ≥0.80 very large. Pairwise comparisons were 
made using Wilcoxon’s signed-rank test [76] with the calculation of exact prob-
ability and the correction of Benjamini and Yekutieli [65] was applied to control 
the rate of false-positive discoveries. 

The significance level was set at 5% in the omnibus and normality tests. Cal-
culations were performed using Excel 2019 [77] and Real Statistics Resource 
Pack for Excel [78]. 

3. Results 
3.1. Comparison of Accuracy by Sample Size and Type of  

Distribution 

Table 3 shows the omnibus comparison of the proportions of correct decision 
(accuracy) when testing the null hypothesis of normality among the PSNS-based, 
W, and K-squared tests for each of the 24 sample sizes (the 16 distributions 
grouped) using Cochran’s Q test, as well as pairwise comparisons using McNe-
mar’s exact test. Table 4 shows this same information for each of the 16 proba-
bility distributions (the 24 sample sizes grouped).  

The proportion of correct decisions was equivalent in 18 of the 24 sample siz-
es (75%), which corresponds to the samples of 20, 60, 70, 90, 100, and 150, as 
well as to the samples of 200 or more data. With 20 sample data, the three tests 
had the same accuracy, which was very low (0.19). All three detected normality 
and were able to reject normality with the Cauchy and Laplace distributions. 
However, they failed to reject the null hypothesis of normality with all other dis-
tributions, even with the F (9, 9) and arcsine (−2, 2) distributions that are highly  
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Table 3. Comparison of the proportions of correct decision when contrasting normality 
by sample size. 

n 
Accuracy Cochran’s test Effect size McNemar’s exact test 

PSNS W K2 Q p-value 2ˆQη  Pair p-value 

20 0.188 0.188 0.188 - - -   

30 0.313 0.563 0.500 6.5 0.039* 0.203 PSNS − W 0.063 

       PSNS − K2 0.125 

       W − K2 1 

40 0.313 0.375 0.500 4.667 0.097 0.146   

50 0.250 0.500 0.563 8.400 0.015* 0.263 PSNS − W 0.063 

       PSNS − K2 0.125 

       W − K2 1 

60 0.563 0.813 0.813 5.333 0.069 0.167   

70 0.438 0.563 0.625 2 0.368 0.063   

80 0.438 0.625 0.688 6.5 0.039* 0.203 PSNS − K2 0.125 

       PSNS − W 0.25 

       W − K2 1 

90 0.438 0.563 0.563 4 0.135 0.125   

100 0.500 0.688 0.563 4.667 0.097 0.146   

125 0.688 0.875 0.875 6 <0.050* 0.188 PSNS − W 0.25 

       PSNS − K2 0.25 

       W − K2 1 

150 0.813 0.938 0.875 3 0.223 0.094   

175 0.750 1 0.875 6 <0.050* 0.188 PSNS − W 0.125 

       PSNS − K2 0.5 

       W − K2 0.5 

200 0.813 1 0.938 4.667 0.097 0.146   

250 0.813 0.875 0.938 3 0.223 0.094   

300 0.875 1 1 4 0.135 0.125   

400 0.813 1 0.938 4.667 0.097 0.146   

500 0.938 1 1 2 0.368 0.063   

600 0.938 1 1 2 0.368 0.063   

700 0.938 1 1 2 0.368 0.063   

800 0.938 1 1 2 0.368 0.063   

900 1 1 1 - - -   
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Continued 

1000 1 1 1 - - -   

1500 1 1 1 - - -   

2000 1 1 1 - - -   

Total 0.698 0.815 0.810 68.035 <0.001* 0.096 PSNS − K2 0.008* 

       PSNS − W 0.016* 

       W − K2 1 

Note. n = size of the random sample for 16 different distributions, Total = the 24 samples 
with different sample sizes are grouped, Accuracy = proportion of correct decision when 
contrasting normality by the PSNS-based, Royston’s W, and D’Agostino et al.’s K-squared 
tests, Q = statistic of Cochran’s Q test, p value = right-tailed asymptotic probability with 
an asterisk in case of significant difference at a significance level of 0.05, 2ˆQη  = eta 

squared coefficient of Serlin et al. [59] as a measure of effect size. Pairwise comparisons 
using McNemar’s exact test: Pair = compared pairs ordered in ascending order by their p 
values, p-value = two-tailed exact probability by the binomial distribution with an asterisk 
in case of significant difference at a significance level of 0.05 corrected by the Benjami-
ni-Yekutieli procedure for false-positive discovery rate in correlated samples (0.009 for 
the first or lowest p-value, 0.018 for the second, and 0.027 for the third), and indicated in 
italics if the difference is significant at a significance level of 0.05 without correction. 
 
Table 4. Comparison of the proportions of correct decision when contrasting normality 
by type of distribution. 

Distribution 
Accuracy Cochran’s test Effect size McNemar’s exact test 

PSNS W K2 Q p-value 2ˆQη  Pair p-value 

W 0.500 0.667 0.625 5.2 0.074 0.108   

T 0.750 0.875 0.833 4.667 0.097 0.097   

ZF 0.667 0.750 0.708 3 0.223 0.063   

Sin−1 0.875 0.958 0.958 4 0.135 0.083   

U 0.708 0.833 0.833 6 <0.050* 0.125 PSNS − W 0.25 

       PSNS − K2 0.25 

       W − K2 1 

SC 0.500 0.792 0.833 14.25 0.001* 0.297 PSNS − K2 0.008* 

       PSNS − W 0.016* 

       W − K2 1 

N (0, 1) 1 1 1      

Logistic 0.250 0.583 0.542 14.25 0.001* 0.297 PSNS − W 0.008* 

       PSNS − K2 0.016* 

       W − K2 1 

Laplace 0.750 0.792 0.833 3 0.223 0.063   

Student 0.583 0.708 0.792 7.6 0.022* 0.158 PSNS − K2 0.063 
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       W − PSNS 0.25 

       W − K2 0.5 

Cauchy 1 1 1      

PERT 0.458 0.542 0.625 4.8 0.091 0.100   

Rayleigh 0.542 0.833 0.708 10.571 0.005* 0.220 PSNS − W 0.016 

       PSNS − K2 0.125 

       W − K2 0.25 

χ2 0.833 0.875 0.875 0.667 0.717 0.014   

LogN 0.833 0.917 0.875 3 0.223 0.063   

F 0.917 0.917 0.917      

Note. Distribution = type of distribution in the 24 random samples with different sizes: W 
= Weibull (α = 2, β = 2), T = Triangular (a = −2, b = 2, c = 2), ZF = Fisher’s Z (ν1 = 3, ν2 = 
9), Sin−1 = Arcsine (a = −2, b = 2), U = Uniform (a = −2, b = 2), SC = Semicircle (r = 2), N 
(μ = 0, σ2 = 1), Logistic (μ = 0, s = 1), Laplace (μ = 0, b = 1), Student’s t (ν = 5), Cauchy (x0 
= 0, γ = 1), Rayleigh (σ = 1), χ2 = Chi-squared (ν = 4), LogN = Lognormal (μ = 0, σ2 = 
0.25), F (ν1 = 9, ν2 = 9). Accuracy = proportion of correct decision when contrasting 
normality by the PSNS-based, Royston’s W, and D’Agostino et al.’s K-squared test, Q = 
statistic of Cochran’s Q test, p-value = right-tailed asymptotic probability with an asterisk 
in case of significant difference at a significance level of 0.05, 2ˆQη  = eta squared coeffi-

cient of Serlin et al. [59] as a measure of effect size. Pairwise comparisons using McNe-
mar’s exact test: Pair = compared pairs ordered in ascending order by their probability 
values, p-value = two-tailed exact probability by the binomial distribution with an asterisk 
in case of significant difference at a significance level of 0.05 corrected by the Benjami-
ni-Yekutieli procedure for false-positive discovery rate in correlated samples (0.009 for 
the first or lowest p-value, 0.018 for the second, and 0.027 for the third), and indicated in 
italics if the difference is significant at a significance level of 0.05 without correction. 
 
deviated from normality. With a sample of 125, the W and K-squared tests 
achieved high accuracy (≥0.80), and with 150 or more, all three tests accom-
plished this high level. Accuracy was perfect in all three tests from a sample size 
of 900. Differences by Cochran’s omnibus Q test appeared with sample sizes of 
30, 40, 50, 80, 125, and 175. In these six comparisons, the effect size ( 2ˆQη ) was 
less than 0.27, which corresponds to a very small effect size when interpreted 
from the analogy of this coefficient with Kendall’s coefficient of agreement W 
and the relation of Kendall’s W with the Spearman’s rank correlation coefficient. 
Thus, when making pairwise comparisons, no difference was significant with or 
without Benjamini-Yekutieli correction for the false-positive discovery rate. 
When grouping the 24 sample sizes and 16 distributions (total), the proportion 
of correct decisions for the PSNS-based test was 0.70, for the W test 0.82, and the 
K-squared test 0.81. The difference among these proportions was significant by 
the omnibus test. The accuracy of PSNS-based test was significantly lower than 
that of K-squared and W tests when these last two tests had a statistically equiv-
alent accuracy. See Table 3. 

https://doi.org/10.4236/ojs.2022.121009


J. M. De La Rubia 
 

 

DOI: 10.4236/ojs.2022.121009 138 Open Journal of Statistics 
 

By distributions, the three tests discriminated the Cauchy distribution and 
detected the normal distribution with the 24 sample sizes, that is, its accuracy 
was 1. With no statistically significant difference between the three tests, the ac-
curacy was greater than 0.90 with the F distribution; greater than 0.80 with the 
arcsine distribution, chi-squared distribution with four degrees of freedom, and 
lognormal distribution; and greater than 0.70 with the triangular distribution. 
The lowest efficacy appeared with the logistic distribution that closely resembled 
the normal distribution. With this latter distribution, the PSNS-based test has 
lower efficacy than the other two tests. See Table 4. 

The accuracy of the three tests was equivalent in 11 of the 16 (68.75%) distri-
butions. There was a significant difference by omnibus Cochran’s Q test in the 
Wigner’s semicircle, logistic, Student’s t, Rayleigh, and uniform distributions. 
However, the effect size was very small ( 2 .30ˆ 0Qη < ). When making pairwise 
comparisons with the Benjamini-Yekutieli correction, the PSNS-based test was 
less accurate than the W and K-squared tests when rejecting non-normality in 
the Wigner’s semicircle and logistic distributions. Without the correction, its ef-
ficiency would also be significantly lower than that of the W test in the Rayleigh 
distribution. The pairwise differences, even without correction, were not signifi-
cant in the uniform and Student’s t distributions. See Table 4. 

3.2. Comparison of Potency by Sample Size and Type of  
Distribution 

As a preliminary step to comparing the central tendency of power when con-
trasting the null hypothesis of normality using the PSNS-based, W, and 
K-squared tests, it was verified whether the power distributions follow the nor-
mal probability model. If the distributional assumption was accepted, a parame-
tric test, such as the repeated measures ANOVA, was used to compare the cen-
tral tendency; if the assumption was rejected, a non-parametric test was used, 
such as Friedman’s test. 

As can be seen in Table 5, the hypothesis of normality in the average power 
distribution of the three statistical tests for normality was maintained with sam-
ple sizes of 30, 50, 60, 70, 90, and 100 (when grouping the 15 non-normal distri-
butions). With none of the 14 non-normal distributions (when grouping the 24 
sample sizes), this hypothesis was accepted. This assumption was also not ful-
filled with the normal distribution (when grouping the 24 sample sizes), al-
though in this case the average type II error distribution of the PSNS-based, W, 
and K-squared tests was tested.  

Table 6 shows the comparisons among the average power (in 15 non-normal 
distributions) of the PSNS-based, W, and K-squared tests for 18 different sample 
sizes without assuming normality, since this distributional assumption was re-
jected. Table 7 shows these comparisons for the six sample sizes in which the 
normality assumption was held. Finally, in Table 8, there are comparisons of the 
average power (in the 24 sample sizes) of the PSNS-based, W, and K-squared 
tests for the 15 types of non-normal distribution without assuming normality.  
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Table 5. Testing for normality through the Shapiro and Wilk’s test in the distribution of average power by sample size and type of 
distribution. 

n 
PSNS W K2 Dist. PSNS W K2 

SW p SW p W p  SW p SW p SW p 

20 0.73 0.003 0.80 0.018 0.86 0.086 W 0.84 0.001 0.76 <0.001 0.80 <0.001 

30 0.86 0.104 0.94 0.551 0.84 0.056 T 0.70 <0.001 0.58 <0.001 0.80 <0.001 

40 0.80 0.022 0.82 0.033 0.88 0.140 ZF 0.81 <0.001 0.70 <0.001 0.71 <0.001 

50 0.89 0.187 0.86 0.094 0.87 0.124 Sin−1 0.60 <0.001 0.36 <0.001 0.32 <0.001 

60 0.85 0.078 0.90 0.232 0.85 0.082 U 0.76 <0.001 0.61 <0.001 0.50 <0.001 

70 0.90 0.248 0.86 0.090 0.87 0.136 SC 0.83 0.001 0.76 <0.001 0.64 <0.001 

80 0.85 0.082 0.83 0.041 0.92 0.373 N 0.84 0.001 0.81 <0.001 0.81 0.001 

90 0.86 0.087 0.84 0.055 0.85 0.078 Log 0.91 0.043 0.82 0.001 0.87 0.004 

100 0.86 0.097 0.85 0.066 0.86 0.086 Laplace 0.74 <0.001 0.68 <0.001 0.67 <0.001 

125 0.81 0.027 0.36 <0.001 0.75 0.005 Student 0.84 0.001 0.66 <0.001 0.68 <0.001 

150 0.67 0.001 0.67 0.001 0.68 0.001 Cauchy 0.21 <0.001 0.21 <0.001 0.22 <0.001 

175 0.82 0.035 0.59 <0.001 0.61 <0.001 PERT 0.86 0.003 0.83 0.001 0.85 0.002 

200 0.77 0.010 0.58 <0.001 0.55 <0.001 Ray 0.81 <0.001 0.72 <0.001 0.79 <0.001 

250 0.70 0.002 0.55 <0.001 0.59 <0.001 χ2 0.63 <0.001 0.54 <0.001 0.62 <0.001 

300 0.84 0.059 0.59 <0.001 0.55 <0.001 LogN 0.61 <0.001 0.48 <0.001 0.51 <0.001 

400 0.67 0.001 0.35 <0.001 0.44 <0.001 F 0.42 <0.001 0.44 <0.001 0.48 <0.001 

500 0.58 <0.001 0.31 <0.001 0.31 <0.001        

600 0.55 <0.001 0.29 <0.001 0.32 <0.001        

700 0.46 <0.001 0.29 <0.001 0.30 <0.001        

800 0.44 <0.001 0.29 <0.001 0.32 <0.001        

900 0.40 <0.001 0.29 <0.001 0.29 <0.001        

1000 0.49 <0.001 0.29 <0.001 0.28 <0.001        

1500 0.37 <0.001 0.36 <0.001 0.30 <0.001        

2000 0.62 <0.001 0.46 <0.001 0.30 <0.001        

Total 0.76 <0.001 0.65 <0.001 0.67 <0.001        

Note. n = size of the random sample in each of the 15 non-normal distributions that provide the power data when testing normal-
ity, either by the PSNS-based, Royton’s W, or D’Agistino et al.’s K-squared tests, SW = statistic of the original test of Shapiro and 
Wilk [35] and p value = one-tailed exact probability of the Shapiro-Wilk test, Distr. = type of random distribution in each of the 
24 sample sizes that provide the power data, except for error II in the standard normal distribution N (0, 1), when normality is 
tested, either by PSNS-based, W, or K-squared tests. The distributions appear in ascending order by degree of skewness first and 
excess kurtosis second: W = Weibull (α = 2, β = 2), T = Triangular (a = −2, b = 2, c = 2), ZF = Fisher’s Z (ν1 = 3, ν2 = 9), Sin−1 = 
Arcsine (a = −2, b = 2), U = Uniform (a = −2, b = 2), SC = Semicircle (r = 2), N (μ = 0, σ2 = 1), Log = Logistic (μ = 0, s = 1), Lap-
lace (μ = 0, b = 1), Student’s t (ν = 5) , Cauchy (x0 = 0, γ = 1), PERT (a = −2, b = 0, c = 4, λ = 4), Ray = Rayleigh (σ = 1), χ2 = 
Chi-squared (ν = 4), LogN = Lognormal (μ = 0, σ2 = 0.25), F (ν1 = 9, ν2 = 9), Total = the 15 samples with different types of 
non-normal distribution are grouped. It is marked in bold when the null hypothesis of normality is maintained in the three dis-
tributions of average potency. 

https://doi.org/10.4236/ojs.2022.121009


J. M. De La Rubia 
 

 

DOI: 10.4236/ojs.2022.121009 140 Open Journal of Statistics 
 

Table 6. Comparison of the average power by sample size without assuming normality. 

n 
Average power Friedman’s test 

W → Sr  
Wilcoxon’s exact test 

PSNS W K2 F p-value Pair |MD| p-value 

20 0.283 0.243 0.344 100.609 0.001* 

0.431 W − K2 0.100 <0.001* 

↓ PSNS − K2 0.061 0.107 

0.147 PSNS − W 0.045 0.188 

40 0.385 0.392 0.585 260.909 <0.001* 

0.658 W − K2 0.193 <0.001* 

↓ PSNS − K2 0.200 <0.001* 

0.487 PSNS − W 0.007 0.847 

80 0.495 0.605 0.661 50.937 0.007* 

0.298 PSNS − K2 0.166 0.007* 

↓ PSNS − W 0.110 0.015* 

0.053 W − K2 0.056 0.359 

125 0.731 0.947 0.849 230.019 <0.001* 

0.622 PSNS − W 0.216 <0.001* 

↓ PSNS − K2 0.118 0.007* 

0.433 W − K2 0.098 0.011* 

150 0.822 0.879 0.876 130.584 <0.001* 

0.477 PSNS − W 0.057 0.004* 

↓ PSNS − K2 0.054 0.009* 

0.216 W − K2 0.003 0.855 

175 0.850 0.934 0.876 80.941 0.001* 

0.390 PSNS − W 0.085 <0.001* 

↓ PSNS − K2 0.026 0.244 

0.085 W − K2 0.058 0.426 

200 0.885 0.963 0.935 110.023 <0.001* 

0.441 PSNS − W 0.077 0.001* 

↓ PSNS − K2 0.049 0.003* 

0.162 W − K2 0.028 0.855 

250 0.811 0.864 0.908 70.778 0.002* 

0.357 PSNS − W 0.053 0.010 

↓ PSNS − K2 0.097 0.013* 

0.036 W − K2 0.044 0.715 

300 0.889 0.974 0.975 170.744 <0.001* 

0.559 PSNS − W 0.083 <0.001* 

↓ PSNS − K2 0.082 0.002* 

0.339 W − K2 0.001 0.426 

400 0.888 0.961 0.958 120.875 <0.001* 

0.479 PSNS − W 0.068 0.003* 

↓ PSNS − K2 0.070 0.006* 

0.219 W − K2 0.002 1 

500 0.932 0.991 0.991 100.769 < 0.001* 

0.435 PSNS − W 0.059 <0.001* 

↓ PSNS − K2 0.059 0.012* 

0.153 W − K2 0.0001 0.542 
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Continued 

600 0.957 0.988 0.995 120.498 <0.001* 

0.472 PSNS − K2 0.038 0.003* 

↓ PSNS − W 0.031 0.003* 

0.208 W − K2 0.008 0.094 

700 0.940 1 0.998 150.211 <0.001* 

0.521 PSNS − W 0.060 0.004* 

↓ PSNS − K2 0.058 0.004* 

0.282 W − K2 0.002 0.010* 

800 0.957 0.998 0.999 90.964 0.001* 

0.416 PSNS − K2 0.043 0.004* 

↓ PSNS − W 0.041 0.010* 

0.124 W − K2 0.001 0.068 

900 0.990 0.999 0.998 80.139 0.002* 

0.368 PSNS − W 0.009 0.004* 

↓ PSNS − K2 0.008 0.012* 

0.052 W − K2 0.001 0.695 

1000 0.988 0.996 0.998 130.632 <0.001* 

0.493 PSNS − W 0.008 0.004* 

↓ PSNS − K2 0.010 0.004* 

0.240 W − K2 0.002 0.105 

1500 0.990 1 1 170.698 <0.001* 

0.558 W − K2 <0.001 0.002* 

↓ PSNS − W 0.010 0.004* 

0.337 PSNS − K2 0.010 0.004* 

2000 1 1 1 20.771 0.080 <0.001    

Total 0.744 0.805 0.824 1510.798 <0.001* 

0.297 W − K2 0.080 <0.001* 

↓ PSNS − W 0.061 <0.001* 

0.055 PSNS − K2 0.020 <0.001* 

Note. n = size of the 15 samples with non-normal distributions, Total = the 15 samples 
with non-normal distributions are grouped, average power when contrasting the null 
hypothesis of normality by the tests of the PSNS-based, Royston’s W, and D’Agostino et 
al.’s K-squared tests, F = value of the Friedman’s test statistic with the Agresti-Pendergast 
modification, p-value = right-tailed probability value with an asterisk in case of signifi-
cant difference at a significance level of 0.05, W → Sr  = Kendall’s coefficient of agree-
ment as a measure of effect size [62] and its correspondence with the average of the 
Spearman’s rank correlation coefficient between the PSNS-based, W, and K-squared tests. 
Pairwise comparisons through the Wilcoxon’s exact test: Pair = compared pairs ordered 
in ascending order by their p values, |MD| = mean difference in absolute value, p value = 
two-tailed exact probability with an asterisk in case of significant difference at a signific-
ance level of 0.05 corrected using the Benjamini-Yekutieli procedure for false-positive 
discovery rate in correlated samples (0.009 for the first or lowest p-value, 0.018 for the 
second, and 0.027 for the third), and it is indicated in italics if the difference is significant 
at a significance level of 0.05 without correction. 
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Table 7. Comparison of the mean power by sample size assuming normality. 

n 
Average potency JNS test ANOVA Comparisons 

PSNS W K2 χ2 p-value Stat. F p-value 2ˆpη  Pair p-value 

30 0.407 0.482 0.537 380.36 <0.001 HF 50.38 0.011 0.278 PSNS − K2 0.009* 

      ε = 1    PSNS − W 0.103 

          W − K2 0.108 

50 0.378 0.484 0.551 330.96 <0.001 HF 70.36 0.004 0.345 PSNS − K2 0.006* 

      ε = 0.91    PSNS − W 0.035 

          W − K2 0.075 

60 0.589 0.757 0.793 28 <0.001 GH 80.01 0.006 0.364 PSNS − W <0.001* 

      ε = 0.72    PSNS − K2 0.009* 

          W − K2 0.528 

70 0.567 0.651 0.713 200.20 <0.001 
GH 

ε = 0.59 
10.91 0.186 0.120   

90 0.513 0.583 0.637 380.42 <0.001 HF 30.93 0.031 0.219 PSNS − K2 0.030 

      ε = 1    PSNS − W 0.092 

          W − K2 0.219 

100 0.613 0.641 0.631 390.39 <0.001 HF 00.30 0.744 0.021   

      ε = 1      

Note. n = size of the 15 samples with non-normal distributions, mean of the power (in 15 
non-normal distributions) when testing the null hypothesis of normality using the 
PSNS-based, Royston’s W, and D'Agostino et al.’s K-squared tests, JNS test = test for 
sphericity [66] [67] [68]: χ2 = test statistic, p−value = probability value to the right tail in a 
chi-squared distribution with two degrees of freedom. ANOVA = repeated measures 
analysis of variance: Test: HF = analysis of intragroup variance with the Huynh-Feldt 
correction for sphericity when the epsilon value is greater than or equal to 0.75 (ε ≥ 0.75), 
and GH = with Greenhouse-Geisser correction for sphericity when the value of epsilon is 
less than 0.75 (ε < 0.75), p value = probability value to the right tail in a distribution F (2 
× ε, 11 × ε), 2ˆpη  = partial eta squared coefficient. Comparisons with Student’s t-test for 

paired samples, p-value = two-tailed exact probability with an asterisk in case of signifi-
cant difference at a significance level of 0.05 corrected using the Benjamini-Yekutieli 
procedure for false-positive discovery rate in correlated samples (0.009 for the first or 
lowest p-value, 0.018 for the second, and 0.027 for the third), and it is indicated in italics 
if the difference is significant at a significance level of 0.05 without correction. 
 
This last table includes the comparisons of the average type II error of the 
PSNS-based, W, and K-squared tests when applied to the 24 samples of different 
sizes generated to follow a standard normal distribution. 

The PSNS-based, W, and K-squared tests had an average power of less than 
0.70 with sample sizes of 100 or less. With a sample of 125, the PSNS-based test 
had an average power of 0.73, and the other two tests were greater than 0.80.  
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Table 8. Comparison of the average power or type II error by type of distribution without 
assuming normality. 

Distr. 
Average power Friedman’s test W 

→ 
Sr  

Wilcoxon’s exact test 

PD PSNS W K2 F p-value Pair |MD| p-value 

W ϕ 0.622 0.698 0.712 170.12 <0.001* 

0.427 PSNS − K2 0.090 <0.001* 

↓ PSNS − W 0.076 0.004* 

0.141 W − K2 0.014 0.684 

T ϕ 0.818 0.884 0.805 220.17 <0.001* 

0.491 PSNS − W 0.066 <0.001* 

↓ W − K2 0.079 0.001* 

0.237 PSNS − K2 0.012 0.165 

ZF ϕ 0.715 0.760 0.780 130.30 <0.001* 

0.366 PSNS − K2 0.065 0.003* 

↓ W − K2 0.020 0.027 

0.049 PSNS − W 0.045 0.056 

Sin−1 ϕ 0.874 0.936 0.950 310.25 <0.001* 

0.576 PSNS − K2 0.076 <0.001* 

↓ W − K2 0.014 0.001* 

0.364 PSNS − W 0.062 0.001* 

U ϕ 0.751 0.838 0.897 810.37 <0.001* 

0.780 W − K2 0.059 <0.001* 

↓ PSNS − K2 0.145 <0.001* 

0.670 PSNS − W 0.087 <0.001* 

SC ϕ 0.609 0.750 0.847 720.17 <0.001* 

0.758 PSNS − K2 0.239 <0.001* 

↓ W − K2 0.098 <0.001* 

0.637 PSNS − W 0.141 <0.001* 

N (0, 1) β 0.807 0.902 0.828 140.11 <0.001* 

0.380 PSNS − W 0.095 <0.001* 

↓ W − K2 0.074 0.002* 

0.070 PSNS − K2 0.021 0.375 

Logistic ϕ 0.473 0.576 0.636 90.06 <0.001* 

0.283 PSNS − K2 0.163 <0.001* 

↓ W − K2 0.060 0.005* 

0.076 PSNS − W 0.103 0.061 

Laplace ϕ 0.788 0.795 0.844 60.69 0.003* 

0.225 PSNS − K2 0.055 0.016 

↓ W − K2 0.049 0.190 

0.163 PSNS − W 0.006 0.198 

Student ϕ 0.639 0.716 0.784 190.53 <0.001* 

0.459 PSNS − K2 0.146 <0.001* 

↓ W − K2 0.069 0.003* 

0.189 PSNS − W 0.077 0.089 
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Continued 

Cauchy ϕ 0.992 0.998 0.999 30.05 0.057 0.117    

PERT ϕ 0.550 0.621 0.677 170.31 <0.001* 

0.429 PSNS − K2 0.127 0.002* 

↓ PSNS − W 0.071 0.004* 

0.144 W − K2 0.056 0.056 

Ray ϕ 0.712 0.815 0.782 200.01 <0.001* 

0.465 PSNS − W 0.103 <0.001* 

↓ PSNS − K2 0.070 0.003* 

0.198 W − K2 0.033 0.060 

χ2 ϕ 0.851 0.880 0.864 70.46 0.002* 

0.245 PSNS − W 0.029 0.012 

↓ PSNS − K2 0.013 0.132 

0.133 W − K2 0.016 0.395 

LogN ϕ 0.850 0.892 0.885 80.43 0.001* 

0.268 PSNS − W 0.043 0.002* 

↓ PSNS − K2 0.035 0.008* 

0.098 W − K2 0.008 0.623 

F ϕ 0.916 0.910 0.902 40.75 0.013* 

0.171 PSNS − W 0.005 0.144 

↓ PSNS − K2 0.013 0.233 

0.244 W − K2 0.008 0.782 

Note. Distr. = type of distribution followed by the 24 samples with different sizes: W = 
Weibull (α = 2, β = 2), T = Triangular (a = −2, b = 2, c = 2), ZF = Fisher’s Z (ν1 = 3, ν2 = 
9), Sin−1 = Arcsine (a = −2, b = 2), U = Uniform (a = −2, b = 2), SC = Semicircle (r = 2), N 
(μ = 0, σ2 = 1), Logistic (μ = 0, s = 1), Laplace (μ = 0, b = 1), Student’s t (ν = 5), Cauchy (x0 
= 0, γ = 1), PERT (a = −2, b = 0, c = 4, λ = 4), Ray = Rayleigh (σ = 1), χ2 = Chi-squared (ν 
= 4), LogN = Lognormal (μ = 0, σ2 = 0.25) and F (ν1 = 9, ν2 = 9). PD = probabilities for 
the decision in the statistical test: ϕ = power or probability that the test statistic remains 
in the rejection region conditioned to the alternative hypothesis (parameter at the critical 
value), that is, to reject the null hypothesis when is false, and β = type II error or proba-
bility that the test statistic remains in the region of acceptance conditioned to the alterna-
tive hypothesis (parameter at the critical value), that is, to maintain the null hypothesis 
when it is false. Average power = arithmetic means of power (ϕ) or type II error (β) when 
contrasting the null hypothesis of normality using the PSNS-based, Royston’s W, and 
D’Agostino et al.’s K-squared tests in 24 random samples of different sizes with the same 
distribution. F = value of the Friedman’s test statistic with the Agresti-Pendergast mod-
ification, p-value = probability to the right tail in a Fisher-Snedecor F distribution with 
degrees of freedom 2 and 28, it is marked with an asterisk in case of significant difference 
at a significance level of 0.05. W → Sr  = Kendall’s W concordance coefficient as a 
measure of effect size [62] and its correspondence with the average of Spearman’s rank 
correlation coefficients between the PSNS-based, W, and K-squared tests. Pairwise com-
parisons through the Wilcoxon’s exact test: Pair = compared pairs ordered in ascending 
order by their p values, |MD| = mean difference in absolute value, p-value = two-tailed 
exact probability with an asterisk in case of significant difference at the significance level 
of 0.05 corrected by the Benjamini-Yekutieli procedure for false-positive discovery rate in 
correlated samples (0.009 for the first or lowest p-value, 0.018 for the second, and 0.027 
for the third), and it is indicated in italics if the difference is significant at a significance 
level of 0.05 without correction. 
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With samples of 150 and more, all three tests had an average power greater than 
0.80. Except for the sample sizes of 70, 100, and 2000, there was a significant dif-
ference in the average power among PSNS-based, W, and K-squared tests 
through the omnibus test. With sizes of 20 and 40, the K-squared test had higher 
average power than the W test, the average power of the PSNS-based test being 
equivalent to that of the other two tests. In the other nineteen significant pair-
wise comparisons, PSNS-based test either had significantly lower power than W 
and K-squared test (with size sample of 60, 80, 125, 150, 200, 300, 400, 500, 600, 
700, 800, 900, 1000, and 1500) or lower than one of them (than the W test with a 
sample size of 175 and the K-squared test with sample sizes of 30, 50, 90 and 
250). On the other hand, the power was equivalent between W and K-squared 
test, except with the size of 125 in which the W test had more power than the 
K-squared test and with the size of 1500 in which the K-squared test had more 
power than the W test. With the sample size of 2000, the average power was unit 
with no difference among the three tests. When grouping the 15 non-normal 
distributions and the 24 sample sizes, the PSNS-based test had an average power 
of 0.74, W test of 0.81, and K-squared test of 0.82. By the omnibus test, there was 
a significant difference with a very small effect size (Kendall’s W = 0.30 → Sr  = 
0.05). In the pairwise comparisons, the K-squared test had higher power than 
the other two tests, and the PSNS-based test had lower power than the other two 
tests. See Table 6 and Table 7. 

Regarding the distributions, there was the only equivalence of average power 
with the Cauchy distribution by the omnibus test. In the F distribution, the om-
nibus test showed a significant difference, but the effect size was very small, and 
the pairwise comparisons did not detect any significant difference, even without 
the Benjamini-Yekutieli correction for false-positive discovery rate. With the 
Laplace and chi-squared distributions, the omnibus test also shows a significant 
difference, but not the pairwise comparisons with the correction. Without the 
correlation, the K-squared test had higher power than the PSNS-based test in the 
Laplace distribution (p = 0.016) and the W test had higher power than the 
PSNS-based test in the chi-squared distribution (p = 0.012). In the other distri-
butions, there were significant differences by pairs and the PSNS-based test that 
had the lowest average power. The effect size was large (W ≥ 0.67) in the uni-
form and semicircle distributions, medium (≥0.53) in the arcsine distribution, 
and there were significant differences between the three tests in the three distri-
butions. The K-squared test had the highest average power, the W test interme-
diate, and the PSNS-based test the lowest. The average power was equivalent 
between K-squared and W tests and greater than that of the PSNS-based test in 
the Weibull, Rayleigh, and LogNormal distributions. In the triangular and nor-
mal distributions, the average power of the W test was greater than that of the 
other two that had an equivalent average power. In Fisher’s Z, logistic, and Stu-
dent’s t distribution, the mean power of the K-squared test was higher than 
those of the other two tests that had an equivalent mean power. See Table 8. 
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4. Discussion 

The present study takes up the proposal to test whether a sequence of sample 
data has been drawn from a normal distribution using seven quantiles that are 
equally spaced, at a distance of two-thirds, from the central point in a standard 
normal distribution [4]. The proposal is an adaptation of the seven-number 
summary for an assessment of normality [47]. As the summary refers to the 
normal distribution, it is qualified as parametric [48]. Until now, its application 
in the form of an omnibus test of significance had not been considered. In this 
work, a very simple proposal is posed, considering that the standard error and 
distribution of the quantiles from their asymptotic approximation to the normal 
distribution is known [49]. To calculate the test statistic, first, the sample quan-
tiles corresponding to the seven equidistant population quantiles in a normal 
distribution are calculated, second, they are standardized with the sample mean 
and standard deviation, and third, the standardized difference of each sample 
quantile with the expected quantile is calculated on the basis that the sampling 
distribution of quantiles is asymptotically normal. The sum of squares of these 
differences constitutes the test statistic that follows a chi-squared distribution 
with seven degrees of freedom under the null hypothesis of normality and large 
sample size [57]. In turn, the non-central chi-squared distribution allows calcu-
lating the type II error and statistical power [79]. 

Once the proposal is made, it is necessary to answer whether the new test for 
normality based on PSNS has accuracy, that is, whether its proportion of correct 
decisions when maintaining the null hypothesis against a sample drawn from a 
normal distribution and rejecting the null hypothesis against samples drawn 
from non-normal distributions is at least 0.70 and preferably greater than 0.80 
[80]. It is also necessary to find out whether its probability of rejecting the null 
hypothesis of normality when it is false (power) in samples from non-normal 
populations is high, that is, greater than or equal to 0.80 [81]. On the contrary, 
does the PSNS-based test show a potency is very low (<0.20) when the sample is 
drawn from a normal distribution? There are many tests of significance for 
normality with proven accuracy and power, such as the W test of Royston [35] 
and the K-squared test of D’Agostino et al. [44], so it is required to know 
whether the PSNS-based test is equivalent in accuracy and power to these tests 
for normality. 

The proposal has a first large sample requirement. The minimum criterion for 
a large sample is variable, so large samples can be considered those greater than 
or equal to 20, 30, 40, 100, 200, 500, or 1000 [82]. It was decided to start with a 
small size of 20 and go up to 2000, contemplating a total of 24 sample sizes. 
Within each sample size, 16 distributions were considered, one normal and 15 
non-normal. The latter include a negative asymmetric and platykurtic distribu-
tion, namely Triangular (a = −2, b = 2, c = 2); two negative asymmetric and lep-
tokurtic distributions, namely Weibull (α = 2, β = 2) and Fisher’s Z (ν1 = 3, ν2 = 
9); three symmetric and platykurtic distributions, namely Arcsine (a = −2, b = 
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2), U (a = −2, b = 2) and Wigner’s semicircle (r = 2); four symmetric and lepto-
kurtic distributions, namely logistic (μ = 0, s = 1), Laplace (μ = 0, b = 1), Stu-
dent’s t (ν = 5), and Cauchy (x0 = 0, γ = 1), a positive asymmetric and platykurtic 
distribution, namely PERT (a = −2, b = 0, c = 4, λ = 4); and four positive asym-
metric and leptokurtic distributions, namely Rayleigh (σ = 1), χ2 (ν = 4), Log-
normal (μ = 0, σ2 = 0.25), and F (ν1 = 9, ν2 = 9). 

It has been pointed out that simulation results have little generalizability be-
cause real situations are much more complex than the simplified reality assumed 
by the simulation [83]. Nevertheless, this remark refers to explanatory models of 
real complex phenomena and does not apply to the type of research presented 
[84]. To achieve the objectives of the proposed study, it is necessary to know ex-
actly the population from which each sample is drawn. The simplest and most 
direct method to achieve this is simulation. Simulation using random extractions 
allows its generalization to real situations with variables that follow with good fit 
some of the considered distribution models [84]. On the contrary, carrying out 
the study using empirical samples of variables with clearly established distribu-
tions would have provided less certainty, as well as being more expensive and 
less generalizable [85]. Therefore, simulation was chosen as the best option. 

It should be noted that faced with distribucions distribution without a 
closed-form density function, but infinitely divisible, there exists a simulation 
option, namely the minimum Hellinger distance (SMHD) estimation. Luong and 
Bilodeau [86] have shown that the SMHD estimators are consistent and high ef-
ficiency in general with less regularity conditions needed than the maximum li-
kelihood estimators. In adittion, they have asymptotic efficiency and normality, 
as well as the potential to be robust. 

As expected, the accuracy of the PSNS-based omnibus test is very low with 
sample sizes from 20 to 50. Nevertheless, it is also low for the W and K-squared 
tests. Even the accuracy is equivalent between the three tests, either by the om-
nibus test or the pairwise comparisons. Although the W and K-squared tests are 
supposed to be powerful with these sample sizes [24] [44], the present results 
agree with recent studies with small samples [52] [53] [54]. On the other hand, 
the average power is low, although there is a difference between the PSNS-based, 
W, and K-squared tests with these sample sizes (20 to 50). The K-squared test 
shows the highest average power. With samples of 20 and 40, the average power 
of the PSNS-based test is equivalent to that of the W test; however, with sizes 30 
and 50, the PSNS-based test has the lowest accuracy. This pattern continues up 
to 100. Namely, a pattern of low accuracy in the three tests with equivalent pro-
portions by the omnibus test or the pairwise comparisons when the omnibus test 
is significant, but with a low average power difference, showing the PSNS-based 
test the lowest average power and the K-squared test the highest. 

With a size of 125, the accuracy and average power of the W and K-squared 
tests are high, while the PSNS-based test is not. A sample size of 150 is required 
for the PSNS-based omnibus test to have high accuracy and power. Conse-
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quently, the large sample size requirement implies a sample of at least 150 par-
ticipants. From 200 participants, the accuracy of the PSNS-based test is equiva-
lent to the other two tests using the omnibus test, but its power is lower than that 
of the K-squared and W tests when these last two tests have equivalent power, 
except with a sample of 1,500, in which the K-squared test outperforms the W 
test. 

As expected, the logistic distribution, which is the closest to the normal dis-
tribution [87], is difficult to discriminate for the three tests with small sample 
sizes, so sizes of 500 or larger are required for W and K-squared test to be high 
average power and 600 or larger are required for the PSNS-based test to be high 
average power. The low average power situation also appears with the PERT (a = 
2, b = 0, c = 4, λ = 4) distribution, which is a very slightly positive asymmetry (β1 
= 0.30) and platykurtic (Β2 = −0.55) distribution. A sample size of 250 is re-
quired for the PSNS-based and K-squared tests to achieve high average power 
and 175 for the W test to achieve high power. 

All three tests have high and equivalent power in discriminating the Cauchy 
and F (ν1 = 9, ν2 = 9) distributions, which are quite far from normal distribution 
due to leptokurtosis, as well as in discriminating the Laplace and chi-squared 
(with four degrees of freedom) distributions, which are also leptokurtic, al-
though the statical equivalence in average power with the latter is through pair-
wise comparisons corrected for false-positive discovery rate. 

With significant difference, the PSNS-based test has lower power than the 
K-squared and W tests with symmetrical-platykurtic distributions, such as the 
uniform, semicircle, and arcsine distributions; the effect size is large with the 
first two and medium with the last. With the triangular, Rayleigh, Student’s t, 
PERT, and Weibull distributions, the effect size is small, with the PSNS-based 
test showing less power than the W and K-squared tests, which do not differ in 
power. With the logistic and lognormal distributions, the effect size is very small, 
and the same differential pattern appears. With Fisher’s Z distribution, the effect 
size is very small, but the K-squared test has a differentially higher power than 
the PSNS-based test when the PSNS-based and W tests do not differ in power. 

As for the normal distribution, the three tests not only have an accuracy of 
100%, but also a mean power of less than 0.20 and a type II error of more than 
0.80, making them sensitive to the presence of normality. The W test is the one 
that generates the highest error by maintaining the null hypothesis of normality 
conditional on the alternative hypothesis being true (type II error) with a signif-
icant difference compared to the K-squared and PSNS-based tests that present 
an equivalent level of error. Therefore, the W test was the most sensitive to nor-
mality, as previously reported in other studies [24] [44] [52] [53] [54]. 

5. Conclusion 

The proposed seven-number parametric summary as a significance test for nor-
mality is accurate (correct decisions greater than 0.70) and powerful (mean 
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power greater than 0.80) with samples of 150 or more. It is less powerful than 
the W and K-squared tests up to a sample size of 2000, before which the power 
of all three tests is unity. The greatest difference in mean power appears with the 
symmetrical-platykurtic distributions. It should be noted that the W and 
K-squared tests also show low power with sample sizes below 100, especially 
when faced with logistic, PERT, and Weibull distributions. 

6. Limitations 

A limitation of the study is that it consists of a single repetition of the experi-
ment, hence it constitutes a pilot test of the proposal. In turn, repeating the ex-
periment a large number of times, such as 500 or 1000 times, makes it possible to 
calculate the sensitivity (probability of detecting cases), specificity (probability of 
rejecting non-cases), positive predictive value (probability that at giving a posi-
tive test is a case), and negative predictive value (probability that a negative test 
is a non-case) in each of the 384 conditions (16 types of distribution and 24 
sample sizes). For these estimations, the case is normality with normal samples, 
but the case definition should be reversed with samples drawn from non-normal 
distributions. 

7. Suggestions 

If the PSNS is contemplated, it is recommended to apply the omnibus test pro-
posed in this study with large samples (n ≥ 150). Furthermore, it is suggested to 
replicate this study simulating a large number of samples per condition, even 
extending the conditions by including the hyperbolic secant, hyperexponential, 
Pareto, exponentially modified Gaussian, truncated normal, and raised cosine 
distributions. 

With longer than 150 observations, the based-PSNS test can be used with due 
caution, which involves examining the histogram, boxplot, and normal quan-
tile-quantile plot. It should be noted that Royston’s W and D’Agostino et al.’s 
K-squared tests also show deficiencies in precision and power with samples less 
than 100 against non-normal distributions. However, the three normality tests 
are accurate and powerful with small samples taken from a normal distribution. 
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