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Abstract 
Objectives: The objective is to analyze the interaction of the correlation struc-
ture and values of the regressor variables in the estimation of a linear model 
when there is a constant, possibly negative, intra-class correlation of residual 
errors and the group sizes are equal. Specifically: 1) How does the variance of 
the generalized least squares (GLS) estimator (GLSE) depend on the regressor 
values? 2) What is the bias in estimated variances when ordinary least squares 
(OLS) estimator is used? 3) In what cases are OLS and GLS equivalent. 4) 
How can the best linear unbiased estimator (BLUE) be constructed when the 
covariance matrix is singular? The purpose is to make general matrix results 
understandable. Results: The effects of the regressor values can be expressed 
in terms of the intra-class correlations of the regressors. If the intra-class cor-
relation of residuals is large, then it is beneficial to have small intra-class cor-
relations of the regressors, and vice versa. The algebraic presentation of GLS 
shows how the GLSE gives different weight to the between-group effects and 
the within-group effects, in what cases OLSE is equal to GLSE, and how 
BLUE can be constructed when the residual covariance matrix is singular. 
Different situations arise when the intra-class correlations of the regressors 
get their extreme values or intermediate values. The derivations lead to BLUE 
combining OLS and GLS weighting in an estimator, which can be obtained 
also using general matrix theory. It is indicated how the analysis can be gene-
ralized to non-equal group sizes. The analysis gives insight to models where 
between-group effects and within-group effects are used as separate regressors. 
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1. Introduction 

Ordinary least squares (OLS) and generalized least squares (GLS) are basic me-
thods to estimate coefficients of regressor variables in regression equations that 
are linear with respect to coefficients. Let OLSE and GLSE denote the corres-
ponding estimators. OLS minimizes the sum of squared residuals (deviations 
from the estimated model), while GLS minimizes the estimation variances of the 
coefficient estimates if the residual errors (deviations from the true model) have 
non-equal variances and/or are correlated between different observations. OLS 
estimates are unbiased also for cases where GLS estimates have smaller variances, 
but the estimated variances of the coefficient estimates can be biased, leading to 
biased t- and F-tests. GLS estimation utilizes the inverse of the covariance matrix 
of residual errors. Thus, GLSE does not exist if the inverse does not exist, i.e., the 
covariance matrix is singular. If the inverse exists, then GLSE is the best linear 
unbiased estimator, BLUE. It requires deeper matrix algebra to derive BLUE 
when GLSE does not exist. Further complications are caused if there are linear 
dependencies between predictor variables, mathematically if the model matrix, 
to be presented shortly, does not have full column rank. In practice, such diffi-
culties can be avoided by dropping linearly dependent predictors. It is assumed 
here that there are no such dependencies. 

In the history of statistics, attention has been given to analyze what are the 
necessary and sufficient conditions that guarantee that OLSE is BLUE. Reference 
[1] describes the influential role of C. R: Rao in this question. 

When analyzing grouped data, a common model for correlated residual errors 
is to assume that there is a constant correlation between all observations of each 
group, and members of different groups are uncorrelated. Let eρ  denote this 
intra-class correlation, and let i. denote group, and j denote an observation number 
within a group. A non-negative intra-class correlation of residual error is implied 
by assuming a variance component model ij i ije v ε= + , where iv  is the random 
group effect with mean zero and variance 2

vσ  and ijε  is a random individual ef-
fect with variance 2

εσ  and uncorrelated with iv . Thus, ( )2 2 2
e v v ερ σ σ σ= + . The 

intra-class correlation of residual errors can be also negative. If eρ  is positive, 
then two observations taken from a given group are, on average, more alike than 
two observations taken from different groups. When eρ  is negative, then two 
observations taken from a given group are, on average, more different that two 
observations taken randomly from the whole population. Positive eρ  implies 
that group averages have a larger variance than a random sample of equal size 
from the whole population, while negative eρ  implies that group averages vary 
less than averages of samples from the whole population. On the extreme, all 
group means are equal, and all the variation is between individuals. While as-
suming a positive eρ , it is not necessary to specify the group size (of course, 
when dealing with data, group size plays an important role). The effect of a neg-
ative eρ  is always dependent on the group size, and it does not make sense to 
assume constant negative eρ  for different group sizes. The possibility of a neg-
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ative eρ  is too often ignored. Even if the overall eρ  is positive, due to natural 
variation between groups, the competition between individuals from limited re-
sources is decreasing eρ , and this competition should be described when ana-
lyzing grouped data. The lower limit of eρ  can be obtained from the condition

( ) ( )2 2
1var 1 0n

ij e e ej e n n nσ ρ σ
=

= + − ≥∑ , which implies that ( )1 1e nρ ≥ − − . The 
upper limit of eρ  is 1. This paper assumes a constant eρ  and a constant 
group size, which allows a straightforward treatment of negative eρ . 

Even if the matrix formulas of OLSE and GLSE are simple, it may remain in-
tuitively unclear how the correlation structure of residual errors and the values 
of the regressor variables interact. It is shown that this interaction can be de-
scribed in terms of the empirical intra-class correlations of the regressor va-
riables. Closed form algebraic formulas are first derived for a special case where 
a simple linear model is estimated. These derivations are then generalized to a 
model with several regressors. They give a concrete and easily understood ex-
planation and illustration for the matrix theory results which go beyond the 
mathematical expertise of most scientists who are just interested to apply statis-
tical methods in research 

This paper discusses the following questions: 1) How do the variances of the 
GLS estimates depend on the intra-class correlation of residuals and on the val-
ues of the x-variable in a simple linear model? 2) What are the ratios of the GLS 
variances and OLS variances? 3) What is the bias in the estimated variances of 
the coefficient estimates when OLS is used? 4) How does GLS utilize the group 
means of the regressors and the deviations from the group means? 5) How this 
formulation shows why OLS is sometimes equal to GLS? 6) How can a BLUE be 
constructed when the correlation matrix of residual errors is singular, i.e., 

1eρ =  or ( )1 1e nρ = − −  and the intra-call correlations of regressors gets any 
values? Similarly, as with eρ , the extreme values of the regressor correlations 
need to be considered separately. This last BLUE part may not be of interest to 
practicing scientists, but it may serve as an introduction to the BLUE problem 
for researchers, who cannot fluently read matrix theory. For matrix theory ex-
perts this part may be trivial or self-evident.  

Reference [2] compared the GLS estimation of a simple regression line with 
OLS estimation using differences in the predictor variable. This work is here put 
into a general context. The results reported in [3] regarding the bias of F-tests 
when OLS is used, are exemplified and generalized. Algebraic formulas show 
how OLSE, GLSE, BLUE and singular correlation matrices are related, and thus 
illustrate the matrix results presented in [4] [5], and [6]. Reference [5] provides 
the matrix conditions that are used to show that a suggested estimator is BLUE. 

Let us then move to more formal definitions. Let us assume a model = +y Xb e , 
where y  is a N dimensional random vector, X  is N p×  model matrix, b  is p 
dimensional fixed coefficient vector, ( )E =e 0 , and ( ) 2var σ=e V . If b  is esti-
mated with the GLS estimator ( ) 11 1

GLS
ˆ −− −′ ′=b X V X X V y , then  

( ) ( ) 12 1
GLS

ˆvar σ
−−′=b X V X . If b  is estimated with the OLS estimator  
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( ) 1
OLS

ˆ −′ ′=b X X X y  then ( )OLS
ˆE =b b , and  

( ) ( ) ( )1 12
OLS

ˆvar σ − −′ ′ ′=b X X X VX X X . In the OLS regression, 2σ  is estimated 
with ( ) 12

OLSˆ N pσ − ′= − u u , where u  is the residual vector OLS
ˆ−y Xb . Then, 

′ ′=u u e Me  where ( ) 1−′ ′= −M I X X X X . The expected value of ′e Me  is 
( )2 traceσ MV . Thus, ( ) ( ) ( )12 2

OLSˆ traceE N pσ σ−= − MV . 
It is now assumed that that data consist of 2K ≥  groups, indexed with i, 

each group has 2n ≥  observations, indexed with j. It is denoted that N Kn= . 
V  is block diagonal so that each block iV  has a compound symmetry correla-
tion structure where the non-diagonal elements are equal to the intra-class cor-
relation eρ . The term “intra-class correlation” is used for historical reasons, but 
otherwise the term “group” is used. The intercept is the first parameter in b , i.e., 
the first column in X  is vector of ones, N1 . It is assumed further that other 
columns are centered, i.e., the sum of elements of the column is zero. This as-
sumption makes the analysis simpler. Total and group averages are denoted as 
x , ix , y  and iy . 

Closed form algebraic equations are initially derived for the simple linear 
model ij ij ijy a bx e= + + . A model with several regressors is presented later. 
Centering means that the working model is ( )ij ijy a b x x e′= + − + . Estimates of 
a′  and b are uncorrelated both in OLS and GLS. After estimating a′  and b, 
an estimate of a is obtained from ˆˆ ˆa a bx′= − . Thereafter  

( ) ( ) ( )2 ˆˆ ˆvar var vara a x b′= + , and ( ) ( )ˆˆ ˆcov , vara b a′= . 

2. GLS in the Simple Linear Model 

First, let us assume that ( )1 1 1en ρ− − < < , which means that V  is non-singular. 
Then 1

i
−V  is a matrix with diagonal elements: 

( )( ) ( ) ( )( )( )1 2 1 1 1e e en nα ρ ρ ρ= + − − + −               (1) 

The non-diagonal elements are equal to: 

( ) ( )( )( )1 1 1e e enβ ρ ρ ρ= − − + −                   (2) 

Thereafter 1−′X V X  is  

( )( )

( ) ( )( )
1

2

1 1 1 1

1 0

0
K n K n

ij ij ij
i j i j j j

N n

x x x x x x

α β

α β
−

′
′= = = = ≠

 + −
 ′ =  − + − − 
 

∑∑ ∑∑∑
X V X (3) 

The second diagonal element in (3) can be expressed as  

( ) ( )2

1 1

K n

ij x
i j

x x Rα β
= =

− +∑∑ using the empirical intra-class correlation xR , which 

can be presented in two equivalent forms: 

( )( ) ( ) ( )2

1 1 1 1
1

K n K n

x ij ij ij
i j j j i j

R x x x x n x x′
′= = ≠ = =

= − − − −∑∑∑ ∑∑          (4) 

( ) ( ) ( )222

1 1

11
1

K K n

x i ij
i i j

R n x x n x x
n= =

= − − − −
−∑ ∑∑            (5) 
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Reference [7] explains how the intra-class correlation, dating back to Fisher, 
generalizes the correlation idea in order to measure the similarity of group 
members. Equation (4) appears as covariance divided by variance, and (5) is al-
most equal to the sample variance of group means divided by the total sample 
variance, which resembles the definition of eρ . Equation (5) indicates that 

( )1 1xR n≥ − − . The lower limit is obtained when all group means ix  are equal. 
The upper limit 1xR =  is obtained when ij ix x=  for all i and j. If 0xR = ,  

then ( )2K

i
i

x x K−∑ , the population variance of ix , is equal to the population 

variance ( )2

1 1

K n

ij
i j

x x N
= =

−∑∑  divided by n, resembling the variance of the mean 

of uncorrelated random variables. 
Matrix ( ) 11 −−′X V X  is obtained by taking the reciprocals of the diagonal ele-

ments of (3). The variances of the estimates of a′  considered here are propor-
tional to 2

aC Nσ′ = , and the variances of the estimate of b are proportional  

to ( )22

1 1

K n

b ij
i j

C x xσ
= =

= −∑∑ . When 0eρ = , ( )ˆvar aa C′ = , and ( )ˆvar bb C= .  

First, we note that GLS OLSˆ ˆa a y′ ′= = . Thus, we directly derive that  
( ) ( )( )ˆvar 1 1a ea C n r′ = + − . If ( )1 1er n= − − , then ( )ˆvar 0a′ = . For b, we ob-

tain: 

( ) ( ) ( )( )
( ) ( )GLS

1 1 1ˆvar
1 2 1

e e
b

e x e

n
b C

n n R
ρ ρ

ρ ρ
− + −

=
+ − − −

              (6) 

If 0eρ =  or e xRρ = , then ( )GLS
ˆvar bb C= . It holds that ( )GLS

ˆvar bb C> , if 

eρ  is between 0 and xR . Equation (6) is an increasing function of x eR ρ , an in-
creasing function of xR  when 0eρ > , and a decreasing function of xR  when 

0eρ < . When 1xR = , then ( ) ( )( )GLS
ˆvar 1 1b eb C n ρ= + − . When  

( )1 1xR n= − − , then ( ) ( )GLS
ˆvar 1b eb C ρ= − . The dependency of ( )GLS

ˆvar bb C  
on eρ  for different values of xR  is shown in Figure 1. 

3. OLS in Simple Linear Model When e 0≠ρ  

What happens if OLS is used when 0eρ ≠ ? Using ( )OLS
ˆvar b , provided in the 

introduction section, we obtain: 

( ) ( )( )OLS
ˆvar 1 1b x eb C n R ρ= + −                  (7) 

When 0eρ ≠  and OLS are used to estimate the variances of the parameter 
estimates, the bias combines the bias of the estimate of 2σ  and the errors of 

( ) 2
OLS OLSˆvar a σ′  and ( ) 2

OLS OLS
ˆvar b σ′  where OLSvar  indicates the variances 

implied by OLS assumptions (these are not biases, as they are not related to the 
expected values). In our case: 

( ) ( )( )2 2
OLS

1 1
ˆ 1

2
x en R

E
N

ρ
σ σ

 − +
= −  − 

               (8) 

It holds that ( )2 2
OLSˆ 0eE σ σ ρ< ⇔ > . Now, 
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Figure 1. The dependency of ( )GLS
ˆvar bb C  in (6) on eρ , the intra-class corre-

lation of residual errors, for different values of xR , the intra-class correlation of 

x (denoted on the curves) when n = 3. Blue lines are for negative values of xR  

and red lines for positive values. The thick line is for 0xR = . Note that the same 

variance is obtained for 0eρ =  and e xRρ = . 
 

( ) ( ) ( )( )
( ) ( )( )

2 2
OLS OLS OLS OLS OLS OLS

2
OLS OLS

ˆ ˆ ˆ ˆ ˆ ˆvar var var

ˆ ˆvar 1 1 e

a N a N a

a n

σ σ

σ ρ

′ ′ ′= =

′= + −
          (9) 

In (9), OLSˆvar  denotes the variance estimate we obtain in OLS. If it is com-
bined with (8), we can obtain ( )( )OLSˆ ˆvarE a′  in terms of ( )OLSvar a′ . The esti-
mated variance is biased downwards if 0eρ > . If we similarly combine (8) and 
(7) we obtain: 

( )( ) ( )( )
( ) ( )( ) ( )OLS OLS OLS

2 1 1ˆ ˆˆvar var
2 1 1

x e

x e

N n R
E b b

N n R
ρ
ρ

− − − +
=

− + −
          (10) 

When K increases, the bias coefficient in (10) approaches ( )( )1 1 1 e xn Rρ+ − , 
which again demonstrates the adverse effect of e xRρ . The direction of the bias 
can be seen using the difference between the numerator and denominator of 
(10). Thus 

( )( ) ( ) ( ) ( )OLS OLS OLS
ˆ ˆˆvar var 2 1 0x e x eE b b N R Rρ ρ< ⇔ − + + >       (11) 

When K increases (and thus N also increases), then the direction of bias is 
dependent on the sign of x eR ρ . The condition can be stated in a simpler form 
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as ( )1 0x e eN R ρ ρ− + > , but (11) is needed for comparison with [3] in which 
two inequalities are derived which taken together, imply that the F-test in OLS 
leads to p-values that are too small. In our case, conditions in [3] are  
( )( )1 1 0x en R ρ− + >  and ( )1 0x en R ρ− > , which together imply the validity of 
the inequality in (11). Moreover, (11) can solve the direction of the bias in the 
case where sub-conditions indicate opposing directions. When ( )OLS OLS

ˆˆvar b  is 
used in a t-test, its bias also produces bias in the computed p-values. Reversing 
the inequality in (11), we obtain a condition for obtaining too large p-values. 

4. BLUE for Several Regressors, Nonsingular V 

Let us now assume a general linear model = +y Xb e , the first column of X  
being N1  and the other columns centered. It is here assumed that V  is non-
singular, i.e., ( )1 1 1en ρ− − < < . Let x and z denote two regressors. Both α  
and β  are inversely proportional to ( ) ( )( )1 1 1e enρ ρ− + − . Thus, α  and β  
increase when eρ  approaches ( )1 1n− −  or 1, leading to singular iV  when 
either of these limits are obtained. Let us define  

( ) ( )( ) 11 1 1i e e inρ ρ −= − + −W V . The diagonal elements of iW  are equal to 
( )( )1 2 en ρ+ − , the nondiagonal elements are equal to eρ− . Let W  combine 

all blocks. Using W , we obtain a linear estimator: 

( ) 1
Ŵ

−′ ′=b X WX X Wy                        (12) 

Element ij  of ′X W  is for x: 

( )( )( ) ( )

( )( )( ) ( )( )

1 2

1 1 1

n

ij e ij e ij
j j

e ij i e i

u n x x x x

n x x x x

ρ ρ

ρ ρ

′
′≠

= + − − − −

= + − − + − −

∑
              (13) 

The first diagonal element of ′X WX , corresponding to the intercept, is 
( )1 eN ρ− , and an element for x is: 

( )( )( ) ( )( )2 2

1 1
1 1 1

K n

xx e ij i e i
i j

n x x x xρ ρ
= =

 ′ = + − − + − −  ∑∑X WX       (14) 

Equation (14) explains why (6) is an increasing function of x eR ρ : with a large 

x eR ρ GLS places large weighting on the component with small variation. The 
non-diagonal elements are zero for the first row and column, and generally: 

( )( )( )( )

( )( )( )

1 1

1 1

1 1

1

K n

xz e ij i ij i
i j

K n

e i i
i j

n x x z z

x x z z

ρ

ρ

= =

= =

′ = + − − −

+ − − −

∑∑

∑∑

X WX
            (15) 

Note that on the second-row summation over n could be dropped by multip-
lying with n. 

The first element of ′X Wy  is ( )1 eN yρ− , and the others are: 

( )( )( )( )

( )( )( )

1 1

1 1

1 1

1

K n

x e ij i ij i
i j

K n

e i i
i j

n x x y y

x x y y

ρ

ρ

= =

= =

′ = + − − −

+ − − −

∑∑

∑∑

X Wy
           (16) 
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The averages iy  and y  do not contribute, but they may increase (or de-
crease) understanding. They do not indicate centering of y because they are not 
involved in the first element of ′X Wy . In GLS, the same estimates are obtained 
with any scaling of 1−V , thus GLS

ˆ ˆ
W =b b  for a non-singular V , but may be 

computationally more stable. Variances are then computed using 

( ) ( ) ( )( )( )( ) 1ˆvar 1 1 1 1W e nρ −′= − + −b X WX             (17). 

5. BLUE When V is Singular  
5.1. BLUE in the Simple Linear Regression with Singular V 

Let us introduce the estimation with a singular V  using the simple linear mod-
el. ij ij ijy a bx e= + + . If 1eρ =  and 1xR ≠  we can estimate b in the model with 
zero variance with ( ) ( )ˆ

ij ij ij ijb y y x x′ ′= − −  using two observations such that 

ij ijx x ′≠ . As 1eρ =  implies that ij ie e=  for all observations, a can be esti-
mated by computing the arithmetic mean (which is OLS estimator) of ˆ

ij ijy bx−  
or ˆ

i iy bx− , the latter computation implying correct variance estimator 2 Kσ .  
If. 1xR ≠ , we can find at least two observations in the same group having dif-

ferent x values. If there are more observations deviating from the group means, 
there is an infinite number of estimating equations which all produce this same 
estimate with zero variance.  

If 1eρ =  and 1xR = , then all y and x values are equal to the group means in 
all groups (for y with probability one), and b needs to be estimated with OLS 
using group means. This means that ( )ˆvar b  is n times larger than we would 
get for 0eρ = , as could be anticipated from Figure 1 for 3n = . The same es-
timates are produced using observation level OLS regression, which produces 
biased estimates for the variances ( )ˆvar b  and ( )ˆvar a . 

If ( )1 1e nρ = − −  and ( )1 1xR n≠ − − , then we can find at least two groups i 
and i′  so that i ix x ′≠ , and b can be estimated with ( ) ( )i i i iy y x x′ ′− −  with 
zero variance. If there are more than two differing group means, there is an infi-
nite number of estimating equations producing same estimates. After estimating 
b, a can be estimated with the arithmetic mean of i iy bx−  with variance 2 Kσ . 
The same estimate is obtained with the arithmetic mean of ij ijy bx− , but stan-
dard OLS computations would produce a biased estimate for the estimation va-
riance. 

If ( )1 1e nρ = − −  and ( )1 1xR n= − − , i.e. all group means of ie  and ix  
are equal (for ie  with probability one), then BLUE of b and a can be obtained 
by dropping one observation from each group and doing OLS regression in the 
remaining data. This means that ( )ˆvar b  is equal to ( )1n n −  times the OLS va-
riance obtained for 0eρ = . For 3n = , ( )1 1.5n n − =  as could be anticipated 
from Figure 1. 

5.2. BLUE in the Multiple Regression When e 1=ρ  

When 1eρ = , then V  is singular. Also W  is singular, all of its diagonal ele-
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ments are equal to 1n − , and nondiagonal elements are equal to −1. The esti-
mator (12) cannot be applied directly because the first diagonal element of 
′X WX  is ( )1 0eN ρ− =  thus producing singular ′X WX . According to (14) 

the diagonal elements are zero also for such predictors x having 1xR = , i.e. no 
variation in ij ix x− . If all predictors have 1xR =  then OLSE is BLUE, because 
( ) ( )C C⊂VX X , see [4].  
A general BLUE can be obtained using the decomposition ( )1 2=X X X  

where 1X contains N1  and all columns having 1xR =  and 2X  contains 
other columns. It is now required that K ≥ 3. Let ( )1 2

′′ ′=b b b  decompose b  
similarly. If we weight columns of 1X  as done in OLS, i.e. replace columns of 

1′X W  in Equation (12) with 1X  we get an estimator 
1

1 1 1 2 1
GOLS

2 1 2 2 2

ˆ
−′ ′ ′   

= =    ′ ′ ′   

X X X X X
b By y

X WX X WX X W
             (18) 

I suggest that the estimator is called a GOLS estimator as it combines OLS and 
GLS estimation principles in the same estimator. Using the standard formula for 
computing the inverse of a partitioned matrix, the estimator can be presented as 

( ) ( ) ( )
( )

1 1 1
1 1 1 1 1 1 2 2 2 2

GOLS 1
2 2 2

'ˆ
− − −

−

 ′ ′ ′ ′ ′−
 = =
 ′ ′ 

X X X X X X X X WX X W
b By y

X WX X W
   (19) 

Thus  

( ) 1
2 2 2 2

ˆ −′ ′=b X WX X Wy                      (20) 

Thus, 2b̂  is the GLSE of 2b  as estimated solely using 2X . Now  

( ) ( ) ( )1 1
2 2 2 2 2 2 2

ˆvar − −′ ′ ′= = 0b X WX X WVWX X WX . Noting that the second row of 
B  is part of the first row, we obtain: 

( ) ( )1 1
1 1 1 1 1 1 1 2
ˆ ˆ− −′ ′ ′ ′= −b X X X y X X X b                (21) 

( ) 1
1 1,OLS 1 1 1 2 2
ˆ ˆ ˆ−′ ′= −b b X X X X b                   (22) 

where 1,OLSb̂  is the OLS estimator of 1b  obtained ignoring 2X . 
Using (22), we get ( ) ( ) 12

1 1 1
ˆvar nσ −′=b X X , i.e. the same variance what we get 

when 2 0=b  and we regress group means of y on group means of all variables 
in 1X . This is natural because all y values and x values are equal in all observa-
tions in each group. 

Denote that ( ) 1−= ′− ′XM I X X X . An estimator Ay  is BLUE for Xb , if 
and only if ( ) ( )=A X VM X 0 , see [5]. If X  has full column rank (as we 
have), then b  is estimable and By  is BLUE for b  if and only if  
( ) ( )=B X VM I 0 . Then, that =BX I  can be seen directly from (19) taking 

into account that 2 1′ =X WX 0 . Noting that =WV 0  and 1 1n′ ′=X V X  we obtain 
that:  

( ) ( ) ( )( )1 1 1
1 1 1 1 1 1 ,n n− − − ′′ ′− ′ ′′ ′= XBVM X X X X X X XX X 0         (23) 

Matrix ( ) 1−′ ′X X X X  is a projector to the space spanned by X . Now  
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( )( ) ( )1
1 1 1C n C−′ ′ ⊂X X X X , thus ( ) ( ) ( )1 1 1

1 1 1 1 1 1n n− − −′ ′′ ′′′ =X X X X XX X X XX , 
which completes the demonstration that =BVM 0 . 

The GOLS estimator can be put into general matrix theory context using [5]. 
Now ( )1C X  and ( )2C X  are disjoint and ( ) ( )1C C⊂X V  and  
( ) ( )2C C⊄X V . In such a case (20) provides BLUE for 2b . The estimator 
( ) 1

1 1 1 1
−′ ′X X X X y  is an unbiased for 1 1X b . This unbiased estimator is updated 

into BLUE in (22), being an application of proposition 10.5 on p. 228 of [5]. 

5.3. BLUE When ( )e nρ = − −1 1  

If ( )1 1e nρ = − −  then all elements of iW  are equal to ( )1 1n − . Let us or-
ganize X  into ( )1 2=X X X , where 1X  contains all such predictors for 
which ( )1 1xR n= − −  and 2X  contains all other columns. Equation (20) 
provides again a BLUE with ( )2

ˆvar 0=b  and the same arguments can be used to  

prove it also for this case. Now ( ) ( ) 12
1 1 1
ˆvar

1
n

n
σ −′=

−
b X X , which is the same 

variance we obtain if 2 0=b  and 1b  is estimated from data where one redun-
dant observation is dropped from each group.  

It may a useful exercise to get confidence in multiple regressor derivations to 
show how the estimators derived in Section 5.1 for the simple linear model are 
produced also with the matrix formulas. Matrix formulas use in computations of 
all observations while formulas in section 5.1 utilize only nonredundant infor-
mation.  

6. Discussion 

When ijy  is regressed on ijx , it is implicitly assumed that the regression of 

ijy  on ij ix x− , and the regression of iy  on ix x− , have the same slope. GLS es-
timation provides different weights to ij ix x−  and ix x−  when attempting to 
utilize the correlation structure, although ( )( )( )1 1 e ij in x xρ+ − −  and 
( )( )1 e ix xρ− −  are put into the same column of X  as shown in (14). When 
developing mixed models for grouped data, it is often necessary to consider both 

ij ix x−  and ix  as separate predictors, see [8]. It is natural to assume that ijy  
is related to ij ix X−  and ij ix X− , where iX  is the mean of x in the whole 
group. Reference [8] suggests a solution, based on a multivariate mixed model, 
which solves the measurement error bias problem that occurs when ix  com-
puted from a sample from group i is used to “measure” iX .  

The mean of variable ij ix x−  is zero in each group, thereby indicating a neg-
ative within-group correlation. If ijy  is linearly related to ij ix x− , the negative 
within-group correlation of ij ix x−  is also transmitted to ijy . Hence, the addi-
tion of predictor ij ix x−  to the models makes the estimated variance of the 
random intercept larger, as the “negative variance” is subtracted from the resi-
dual variance, see [8] and [9].  

The mixed model formulation always leads to non-negative intra-class corre-
lations. However, negative intra-class correlations are needed in situations where 
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the group means have a smaller variance than that implied by the assumption of 
uncorrelated individuals. In the marginal interpretation of mixed model equa-
tions, a negative definite variance matrix of random effects that maximize the li-
kelihood is allowed, leading to negative correlations and negative variances, pro-
vided the marginal variance of the y-vector is positive semi-definite, see [10]. The 
significance of a negative intra-class coefficient is dependent on the group size. 

When the x-variable is a random variable with a theoretical intra-class corre-
lation xρ , the empirical intra-class correlation xR  is a random variable. The 
expected value of xR  approaches xρ  when K increases. Simulations with 
normally distributed variables show that, for given values of n and K, ( )var xR  
can be well described with function ( )( ) ( )1 1 1

s q
x xc nρ ρ+ − − . Negatively cor-

related variables can be simulated using principal components. 
Reference [2] discussed the estimation of the slope in a simple linear model 

assuming that 2n = , 1 0ix =  and 2i ix t=  for all i. To compare the formulas 
presented above with the formulas in [2], denote that 2 2

1
K

iip Kt t
=

= ∑  where 
t  is the average of it , then 0 1p< ≤ , and 1p =  when all it ’s values are 
equal. It holds that ( )2xR p p= − − . They compare the variance of GLSE to the 
variance of the OLS estimate obtained by regressing 2 1i iy y−  on it . The stan-
dard OLSE of the slope has, however, a smaller variance than their OLSE based 
on differences when 0.5eρ > . For 0eρ = , the ratio of the variance of the stan-
dard OLSE to the variance of their OLSE is 2 p− . When all it ’s are equal, then 

1p = , 1xR = − , and all three methods provide the same estimate. 
If the group sizes in  vary in a data set, it is not reasonable to assume the 

same negative intra-class coefficient eρ  for all groups. Thus eρ  needs to be made 
group specific eiρ . Reference [7] generalizes the intra-class correlation to non-equal 
group sizes, but this generalization does not provide meaningful analysis for the 
interaction of the intra-class correlation of the residual and the values of regres-
sors. However, it is possible to define a measure for the between-group variation 
of x which gets value of zero if there is no variation between groups, and use this 
measure to analyze how the intra-class correlation of residual errors and the 
between-group and within-group variation of predictors interact. This analysis 
can be extended to auto-correlation structures., and is under development. 

In experiments, (6) informs us that xR  should be ( )1 1n− −  (all ix  should 
be equal) if it is anticipated that 0eρ > . If it is anticipated that 0eρ < , then 
the same treatment level should be applied to the whole group.  

The derivations of this paper are fully covered with the general matrix theory. 
The purpose of the paper is to make general matrix formula understandable us-
ing algebraic derivations which show how between-group variation and with-
in-group variations of residual errors are connected to the between-group and 
within-group variations of regressors in the estimation of a general linear model.  
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