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Abstract 
In this paper, a regression method of estimation has been used to derive the 
mean estimate of the survey variable using simple random sampling without 
replacement in the presence of observational errors. Two covariates were used 
and a case where the observational errors were in both the survey variable 
and the covariates was considered. The inclusion of observational errors was 
due to the fact that data collected through surveys are often not free from er-
rors that occur during observation. These errors can occur due to over-reporting, 
under-reporting, memory failure by the respondents or use of imprecise tools 
of data collection. The expression of mean squared error (MSE) based on the 
obtained estimator has been derived to the first degree of approximation. The 
results of a simulation study show that the derived modified regression mean 
estimator under observational errors is more efficient than the mean per unit 
estimator and some other existing estimators. The proposed estimator can 
therefore be used in estimating a finite population mean, while considering 
observational errors that may occur during a study. 
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1. Introduction 

In sample survey, there are two types of errors, namely; sampling and non-sampling 
errors. Sampling error occurs when there is a difference between an unrevealed 
parameter of population and its estimate, determined using data from a sample 
and not the entire population. The different kinds of errors that may occur dur-
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ing data collection, processing, and estimation are bounded by non-sampling er-
rors, which are: coverage error, frame error, response/non-response error, ob-
servational error, and processing error (Baker [1]). 

In sample survey, an assumption is often made that all observations on the 
elements under research are quantified correctly. However, in practice, this 
supposition is often violated when observational errors occur during the survey. 
This error comes about when the measured quantity differs from the true value. 
The justification for this is stated below: The variable is distinctly specified al-
though it is demanding to take accurate observations at least with techniques 
presently available or due to other types of practical drawbacks, for example. the 
test done on the level of hypoglycaemia in a human being is not exactly the per-
fect measure of the level of sugar in the body. The variable is ideally well de-
scribed but observations can only be obtained on some strongly resembling subs-
titutes known as surrogates. Also, the measurement of economic status of a per-
son is based on a person’s income or occupation, thus, these are the surrogates. 
The variable is totally comprehensible but it is not instinctively defined, for in-
stance, brilliance and aggressiveness (Singh [2]). 

If the size of observational errors is small, then they can be said to be incor-
porated in the disturbance or error term and hence will not have an impact on 
the statistical inferences made. The random error term broadly stands for the in-
fluence of various explanatory variables that have not actually been included in 
the relation. Conversely, if they are large in size, they will then result in errone-
ous and inaccurate statistical inferences. These observational errors will hence 
make the derived result invalid. If they are very minimal, they can be disre-
garded; hence the statistical inferences made from data observed remain reliable 
(Srivasatava et al. [3]). 

Srivasatava et al. [3] studied two regression co-efficient estimators, one of 
which emerged from direct regression and the other from reverse regression 
when predisposed to observational errors with information on a single covariate. 
The comparison study showed that the presence of observational errors influ-
ences the quality of the efficiencies of the proposed estimators such that the 
sample mean could be surpassing the two proposed regression estimators in re-
gard to the variances. The study recommended the analysis of observational er-
rors on the efficiencies of estimators with information on more than one cova-
riate. 

In sample surveys, auxiliary information is utilized at both selection and esti-
mation stages to enhance the efficiency of the estimators. When auxiliary infor-
mation is to be utilized at approximation stage, the ratio, product and regression 
estimators are broadly applied during several cases. In a single-phase sampling 
scheme, a sample is selected using a sampling method and data are collected 
from each unit in the sample. A researcher, then, observes both the survey varia-
ble and covariates in the sample. Single-phase sampling is typically used when 
auxiliary information from the previous census is known. 
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In practice for customary sample surveys, it is common that only sampling 
error is considered when finding the estimate of the MSE since it is quite simple. 
There is then an implication that the sampling error has predominance over ob-
servational errors and all the other round-off errors. This supposition is not 
credible when it comes to administrative data or a complete enumeration. It is 
utilized for most sample surveys because of its expediency and not its credibility. 

The issue of observational errors tainting data and its effects has been studied 
by several authors like Cochran [4], Fuller [5], Alwin [6], Gregoire and Salas [7], 
Kumar et al. [8], Singh and Karpe [9] and Singh et al. [10]. The indistinguishable 
conclusion was that the observational errors have a notable effect on the estima-
tors and that they are worthy of scrutiny during parameter estimation. Singh and 
Karpe [11] studied the estimation of population average in the case where ob-
servational errors arise in the survey. They later observed the properties of the 
bias and mean squared error of these estimators and concluded that the presence 
of observational errors raises the variances of the estimators. 

Allen et al. [12] suggested a class of estimators of the population average with 
multi covariate information and later examined the estimators in the presence of 
observational errors. It was observed that there was an increase in the variance of 
the estimator due to the inclusion of imperfect measurements of the study va-
riates and covariates. 

Kumar [13] proposed an estimator where observational errors were intro-
duced during the estimation stage and showed that his estimator performed best 
after an empirical study was performed on four populations.  

Tum et al. [14] proposed a consistent and efficient modified regression type 
estimator that combined regression estimator and ratio-product type exponen-
tial estimator then compared it to the mean per unit estimator, ratio estimator, 
product estimator, regression estimator, exponential ratio estimator, exponential 
product estimator and ratio-product type exponential estimator. The estimator 
was used to estimate a population mean or total using covariates that had either 
positive or negative correlation with the main variable. It was established that 
the estimator was biased in small samples but the bias was found to be negligible 
in large samples. 

Authors such as Singh and Espejo [15], Hanif et al. [16], Tailor and Sharma 
[17] and Shukla et al. [18] have worked on estimating the mean using a sin-
gle-phase sampling scheme and tested the efficiencies of their estimators, how-
ever, little attention was given to estimation in the presence of observational er-
rors in the data. Quite a number of researchers have, however, emphasized on 
the importance of including non-sampling errors. 

In this paper, we develop the mean squared error of the Tum et al. [14] esti-
mator in single-phase sampling while assuming the presence of observational 
errors in both the survey variable and the covariates. Some existing estimators 
are reviewed and later the mean squared error of the proposed estimator is de-
rived. An empirical study is later done to compare the performance of the pro-
posed estimator with the reviewed existing estimators (in works of Tum et al. 
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[14], Singh and Espejo [15], Kumar [19] and Bahl and Tuteja [20]) in terms of 
their mean squared errors and their relative efficiency. 

In the paper by Tum et al. [14], the emergence of errors in the variables wasn’t 
taken into consideration, specifically observational errors. We’ve briefly dis-
cussed the effects observational errors can have on the final results of statistical 
research hence the reason why the work done by TUM had to be extended.  

2. Review of Existing Estimators 

The estimators mentioned below were used during the simulation study for 
comparison with the proposed regression estimator. 

The ratio estimator:  

1
xt y

x
µ

=                             (1) 

where y  and x  are the sample means of the main variable and covariate re-
spectively and xµ  the population mean of the covariate.  

The MSE of the estimator 1t  is given in Kumar et al. [19] as, 

( ) ( )
2

2 2 2 2 2
1 2

1MSE 2 y
y yx y x x v u

x

t R R
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µ
σ ρ σ σ σ σ σ

µ

   = − + + +      
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R
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= . 

The product estimator: 

2
x

xt y
µ

=                             (2) 

where y  and x  are the sample means of the main variable and covariate re-
spectively and xµ  the population mean of the covariate.  

The MSE of the estimator 2t  is given in Kumar et al. [19] as: 

( ) ( )
2

2 2 2 2 2
2 2

1MSE 2 y
y yx y x x v u

x

t R R
n

µ
σ ρ σ σ σ σ σ

µ

   = + + + +      
 

The regression estimator: 

( )3 xt y xβ µ= + −                          (3) 

where y  and x  are the sample means of the main variable and covariate re-
spectively and xµ  the population mean of the covariate.  

The MSE of the estimator 3t  is given in Kumar et al. [19] as: 

( )
2 2 2

2 2 2
3 2 22MSE 1 1 1 1u u v

y y
y xy

t C
σ σ σ

θµ ρ
σ σσ

      
  = + − + +               

 

where 
2

21 v
y y x x

x

k C Cσ
µ ρ µ

σ
 

= + 
 

. 

The exponential ratio type estimator proposed by Bahl and Tuteja [20] 
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4 exp x

x

x
t y

x
µ
µ

 −
=  + 

                        (4) 

where y  and x  are the sample means of the main variable and covariate re-
spectively and xµ  the population mean of the covariate.  

The MSE of the estimator 4t  is given 

( )
2 2

2 2
4 2
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The exponential product type estimator proposed by Bahl and Tuteja [20] 

5 exp x

x

x
t y

x
µ
µ

 −
=  + 

                       (5) 

where y  and x  are the sample means of the main variable and covariate re-
spectively and xµ  the population mean of the covariate.  

The MSE of the estimator 5t  is given 

( )
2 2

2 2
5 2
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The exponential ratio-product type estimator proposed by Singh and Espejo 
[15] 

( )6 exp 1x x

x x

x x
t y

x x
µ µ

α α
µ µ

    − −
= + −     + +    

               (6) 

where y  and x  are the sample means of the main variable and covariate re-
spectively and xµ  the population mean of the covariate.  

The MSE of the estimator 6t  is given 

( )
2 2

2 2 2 2
6 2 2

2 2
2 2

2 2

1 1MSE
4 4

1
4

U V
y x y x O

U V
O

S S
t Y C C C C

Y X

S S
Y

Y X

θ γρ γ µ

λ µ

   = − + + +        
 

+ + 
 

 

Lastly, the modified regression estimator proposed by Tum et al. [14], given 
by 

( )( ) ( )7 exp 1 expZ z Z zt y X x
Z z Z z

β α α
    − −

= + − + −    + +    
       (7) 

where X  and Z  are the population means of the covariates, x  and z  are 
the sample means of the covariates and y  the sample mean of the main varia-
ble. 

The MSE of the estimator 7t  is given, 

( ) ( )2 2 2
7 . .MSE 1y y xz y xzt Y Cθ ρ ρ= −  

where, 
N n
Nn

θ −
= , Y  is the mean of the main variable, yC  is the coefficient 

of variation and .y xzρ  is the multiple correlations between the main variable 
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and the covariates. 
The above estimators are consistent but biased in small samples. However, the 

bias is negligible in large samples. The estimators are more efficient than mean 
per unit estimator in large samples. 

3. The Proposed Modified Regression Estimator in Single  
Phase Sampling 

Let ( ),i ix y  be the observed values and ( ),i iX Y  be the true values on two 
characteristics ( ),x y  respectively corresponding to the ( )1,2, ,thi i n= �  sam-
ple unit. Let the observational errors be  

i i iU y Y= −  

i i iV x X= −  

i i iQ z Z= −  

where iU  is for the study variable and iV  and iQ  for the covariates. 
The observational errors are assumed to be random in nature and they are 

uncorrelated with mean zero and variances, 2
US , 2

VS  and 2
QS  respectively. The 

actual values of the variables Y and X are assumed to be independent of observa-
tional errors. An additional assumption is that the observational errors for vari-
able Y, X and Z are independent. 

Let 2
YS , 2

XS  and 2
ZS  denote the variances of the study variable of interest Y 

and the auxiliary variables X and Z respectively for the population. Let YXρ , 

YZρ  and XZρ  be the coefficients of correlation between the variable Y and X, Y 
and Z and X and Z for the population. 

Let, ( )
1

n

X i
i

W X X
=

= −∑ , ( )
1

n

X i
i

W X X
=

= −∑  and ( )
1

n

Z i
i

W Z Z
=

= −∑     (8) 

1

n

U i
i

W U
=

= ∑ , 
1

n

V i
i

W V
=

= ∑  and 
1

n

Q i
i

W Q
=

= ∑ .           (9) 

[ ( )1
Y Uy Y W W

n
= + + , ( )1

X Vx X W W
n

= + +  and ( )1
Z Qz Z W W

n
= + + ] (10) 

Let iY Y− , iX X−  and iZ Z−  be the deviations of the true values from 
the population means of the study variable and auxiliary variable for the ith unit 
and these deviations are summed over the sample size. Further, assumed that the 
average of the main variable Y is unknown and the average of the covariate X is 
known. 

Taking expectation of corresponding summations of (8) and (9) divided by n 
and squaring we get the following 

( ) ( )

( ) ( )

( ) ( )

2
2 2 2 2 2

2
2 2 2 2 2

2
2 2 2 2 2

Y U
Y U Y U
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n

θ θ

θ θ

θ θ
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=
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
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Further combining pairs in (11), we obtain 

Z QY U
YZ Y Z YZ Y Z

Z QX V
XZ X Z XZ X Z

Y U X V
XY Y X XY Y X

W W W W
E S S CYX
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n n

W WW W
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C

n
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θρ θ ρ

ρ

θ

θ

ρ ρ

ρ

θ

 +  +  = =       
 +  +  = =   

  + +    = =       

   










       (12) 

The estimator from (7) is utilised, however, the study variable Y and the two 
covariates X and Z are assumed to contain observational errors. 

Taking (10) in (7), the proposed estimator becomes 

( ) ( )

( )

( )

( )
( )

( )

Proposed
1 1

1

exp
1

1

1 exp
1

Y U X V

Z Q

Z Q
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Z Z W W
n

Z Z W W
n

Z W W Z
n

Z Z W W
n

β

α

α

  = + + + − − +  
  

  − − +  
×  
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 + + −  
+ −  

 + + +  

        (13) 

Using first-order approximation, ignoring the second and higher terms for 
each expansion of (13) and after simplification, we can write  

( ) ( ) ( )Proposed
1 1 1 1
2 Z Q Y U X Vt Y Y W W W W W W

Zn n n
α β = + − + + + − + 

 
   (14) 

The mean squared error of (14) is given by  

( ) ( )

( ) ( ) ( )

2
Proposed Proposed

2

MSE E

1 1 1 1E
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t t Y

Y Y W W W W W W Y
Zn n n
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≈ −
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  (15) 

Squaring the terms in (15) and taking expectation we find 
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Substituting (11) and (12) in (16) we find 

( ) ( ) ( )

( )

2
2 2 2 2 2 2 2
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1 12 2
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On expansion and simplification, the ( )ProposedMSE t  can be divided into two 
sections: 

MSE Independent of observational errors given by 

( ) 2 2 2 2 2 2 2 2 2 2 2 2
Proposed

2 2

1MSE
4

2
2 2

Z Z Z Y X

YZ Y Z YZ Y Z XZ Z X

XZ Z X XY Y X
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θ αθ α θ θ β θ

θ ρ αθ ρ βθ ρ

α βθ ρ βθ ρ

= − + + +

+ − −

+ −

 (17) 

And MSE is dependent on observational errors given by 

( ) 2 2 * 2 2 *2 2 2 2 2 *2 2 2
Proposed

1MSE
4 Q Q Q U Vt Y C Y C Y C Y C X Cθ α θ α θ θ β θ= − + + +  (18) 

Differentiating (18) with respect to *α  and *β  then equating to zero, 

2 2 2 22 0Q QY C Y Cθ α θ∗− + =  then 1
2

α∗ =  

* 2 22 0VX Cβ θ =  *
2 2

0 0
2 VX C

β
θ

= =  

Differentiating (17) with respect to  β  and α  then putting it in matrix 
form to find the optimum values of α  and  β  

1 2
2

1 2
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Y
XZ XYX
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ρ ρβ
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=    
    

 

Let 
1

1
XZ

XZ

ρ
ρ

 
 
 

 be denoted by a square matrix 2 2R × . Then 
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− ×
×

×

 − +    
= =     

    
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( )

1 1
2 2

2 1
2 2 2 2

12 2
2 1

Z Z Y

X

RYC YC YC
RXC R

α
β

+
×

+
× ×

 − − +  =   −   
 

( )1 1

2 2

2
2 1Y

Z Z yz yxz

YCYC YC R
R

α +

×

− + = −  

( )1 1

2 2

1 1
2

Y
yz yxz

Z

C R
C R

α +

×

= + −                  (19) 
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( )2 1

2 2

2
2 1Y

X yx yxz

YCXC R
R

β +

×

= −  

( )2 1

2 2

1Y
yx yxz

X

YC R
XC R

β +

×

= −                   (20) 

Using normal equations that are used to find the optimum values of α  and 
β  ( )ProposedMSE t  can be written in simplified form as: 

( ) ( ) ( ) ( )

( )

Proposed
1 1 1 1MSE

2

1 

Y U Y U Z Q

X V

t E W W W W Y W W
n n Zn

W W
n

α

β

   ≈ + + + − +   
  
− + 


. 

Taking expectation and using (11) and (12) 

( ) ( )2 2 2
Proposed

1 1MSE
2Y U YZ Y Z XY Y Xt Y C C Y YZ C C YX C C

Z
θ α θ ρ βθ ρ ≈ + + − − 

 
 

Substituting the optimum values of α  and β  from (19) and (20) and sim-
plifying 

( )
2 2

2 2
Proposed

2 2

MSE 2Y
Uyxz

Y Ct R Y C
R

θ
θ

×

= +  

4. Simulation Study 

A simulation study was performed using R-programming language to compare 
the performance of the proposed modified regression type estimator in the 
presence of observational errors with already existing estimators in finite popu-
lation, developed by Kumar et al. [10], Bahl and Tuteja [3], Singh and Espejo [15] 
and Tum et al. [14]. 

4.1. Simulated Population 

1) The true study variable ( )~ 75,10iY N . The observational error is  
( )~ 3,1.5u N . The observed ( )iY  in presences of observational error i i iy Y u= + . 

2) The characteristics of the auxiliary variable for Ratio estimator are; N = 500, 
n = 60 mean = 60.72 standard deviation = 9.69. The observational error is 

( )~ 2,1q N . The observed ( )iz  in presences of observational error is i i iz Z q= + . 
3) The characteristics of the auxiliary variable for Regression estimator are; N 

= 500, n = 60 mean = 23.16, standard deviation = 2.59. The observational error is 
( )~ 2.5,1v N . The observed ( )ix  in presences of observational error i i ix X v= + . 

4) The characteristics of the auxiliary variable for Product estimator are; N = 
500, n = 60 mean = 40.59, standard deviation = 7.52. The observational error is 

( )~ 1,0.5q N . The observed ( )iz  in presences of observational error i i iz Z q= + . 

4.2. Simulation Results  

A summary of the results from Tables 1-4  
1) The mean squared error of the estimators decreases as the sample size in-

creases from n = 30 to n = 90. This shows that the efficiency of the estimators 
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increases with an increase in sample size. 
2) Out of the eight estimators the proposed estimator ( ( )MRE proposedy ) is the 

most efficient followed by the exponential ratio product estimator ( ERPy ) with 
covariates positively correlated to main variable, regression estimator ( REy ), 
exponential ratio estimator ( ERy ), exponential product estimator ( EPy ), expo-
nential ratio product estimator ( ERPy ) with covariates negatively correlated to 
main variable, ratio estimator ( Ry ) and the least efficient being the product es-
timator ( Py ). This arrangement stays true with increasing sample size. 

3) The proposed estimator ( ( )MRE proposedy ) is less efficient than the estimator by 
Tum et al. [14] ( )MRE TUMy . 

 
Table 1. Mean squared error of existing estimators and the proposed estimator. 

Estimators 
Mean squared errors, MSE for 

varying sample sizes, n 

N n = 30 n = 60 n = 90 

( )var y  3.94 1.78 1.11 

Product estimator, Py  3.17 1.67 0.72 

Ratio estimator, Ry  2.06 0.92 0.59 

Regression estimator, REy  1.52 0.67 0.39 

Exponential product estimator, EPy  1.59 0.78 0.58 

Exponential ratio estimator, ERy  1.35 0.66 0.45 

Exponential ratio-product estimator, ERPy  1.63 0.82 0.59 

Exponential ratio-product estimator ERPy  1.25 0.62 0.42 

Modified regression estimator (Proposed) ( )MRE proposedy  1.05 0.44 0.29 

Modified regression estimator (Proposed) ( )MRE proposedy  0.92 0.41 0.25 

 
Table 2. Relative efficiency of existing and proposed estimator with respect to mean per 
unit estimator in single phase sampling in the presence of observational error. 

Estimators 
Relative percent efficiency  

with respect to mean per unit 

( )var y  100 

Product estimator, Py  106 

Ratio estimator, Ry  192 

Regression estimator, REy  264 

Exponential product estimator, EPy  225 

Exponential ratio estimator, ERy  268 

Exponential ratio-product estimator, ERPy  216 

Exponential ratio-product estimator, ERPy  278 

Modified regression estimator (Proposed), ( )MRE proposedy  398 

Modified regression estimator (Proposed), ( )MRE proposedy  429 
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Table 3. Mean Squared Error of the proposed Modified regression estimator in the pres-
ence of observational errors and the estimator by Tum et al. [14]. 

Estimators Mean squared errors 

N n = 30 n = 60 n = 90 

Modified regression estimator (Proposed) ( )MRE proposedy  0.96 0.47 0.20 

Modified regression estimator (TUM) ( )MRE TUMy  0.55 0.34 0.14 

 
Table 4. Relative efficiency of the proposed modified regression estimator in the presence 
of observational errors and the estimator by Tum et al. [14]. 

Estimators 
Relative percent  

efficiency for n = 90 

Modified regression estimator (Proposed) ( )MRE proposedy  100 

Modified regression estimator (TUM), ( )MRE TUMy  145 

 
The proposed estimator was seen to be less efficient than the Tum et al. [14] 

estimator. This is owing to the fact that the proposed estimator has taken into 
account observational errors that have in turn led to its higher variance. Similar 
results have been seen by Srivastava and Shalabh [3], Allen et al. [12], Singh and 
Karpe [9] and Kumar et al. [13]. 

5. Conclusions 

This study dealt with the problem of observational errors that occur in a survey 
and derived the mean squared error of a modified regression estimator in sin-
gle-phase sampling while assuming the presence of observational errors in both 
the main variable and the covariates.  

A comparison of the obtained MSE with an increasing sample size shows a 
decrease in the MSE with an increase in sample sizes. Also, the proposed esti-
mator had the least mean squared error and highest efficiency compared to the 
other existing estimators, except for the Tum et al. [14] estimator. This was a 
result of the consideration of observational errors that have in turn led to its 
higher variance when compared to the Tum et al. [14] estimator. 
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