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Abstract 
We study the asymptotic properties of adaptive lasso estimators when some 
components of the parameter of interest β  are strictly different than zero, 

while other components may be zero or may converge to zero with rate n δ− , 
with 0δ > , where n denotes the sample size. To achieve this objective, we 
analyze the convergence/divergence rates of each term in the first-order con-
ditions of adaptive lasso estimators. First, we derive conditions that allow se-
lecting tuning parameters in order to ensure that adaptive lasso estimates of 
n δ− -components indeed collapse to zero. Second, in this case, we also derive 
asymptotic distributions of adaptive lasso estimators for nonzero compo-
nents. When 1 2δ > , we obtain the usual 1 2n -asymptotic normal distribu-

tion, while when 0 1 2δ< ≤ , we show nδ -consistency combined with (bi-

ased) 1 2n δ− -asymptotic normality for nonzero components. We call these 
properties, Extended Oracle Properties. These results allow practitioners to 
exclude in their model the asymptotically negligible variables and make infe-
rences on the asymptotically relevant variables. 
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1. Introduction 

Consider the linear regression model  
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where ty  is the response variable, ( )T
,1 ,, ,t t t px x x= �  is a vector of covariates, 

tε  is the error term, and ( )T
1, , pβ β β= �  is the unknown parameter of inter-

est. We focus on adaptive lasso estimators defined as the solution of  
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where 0γ > , , ,1n i n iλ β= , and ( )T
,1 ,, ,n n n pβ β β= �  is nα -consistent pre-

liminary estimator of β , with 0α > . Adaptive lasso estimators have been in-
troduced in [1], as refinements of the lasso approach proposed in [2]. Indeed, 
the adaptive lasso fulfils the oracle properties in the sense introduced in [3]. 
Note that in the seminal definition of adaptive lasso, the penalization term in 
Equation (2) is multiplied by a tuning parameter 0nλ > . In our study, we 
simply set 1nλ = , since our asymptotic results do not require that nλ →∞ . 

Since the introduction in [2], the statistical properties of lasso estimators, so-
lution of (2) with , 0n iλ = , have been analyzed in several studies. As shown in 
[2], the lasso may combine estimation and variable selection. However, as pointed 
out in [4] and [5], among others, to achieve correct model selection lasso esti-
mators require certain irrepresentable conditions. In general, the lasso selects 
more predictive variables than the number of true variables. To overcome this 
problem, [1] introduces adaptive lasso estimators defined in (2), and shows that 
they can achieve the oracle properties; see, e.g., [2] [6] and [7]. More precisely, 
adaptive lasso estimators may combine efficient parameter estimation and cor-
rect variable selection in one step. Following this intuition, recently several stu-
dies propose penalized estimators with these desirable properties in different 
context; see, e.g., [8] [9] [10] and [11]. We refer to [12] and [13] for a detailed 
discussion of lasso estimators. 

In this paper, we extend the analysis of the statistical properties of lasso esti-
mators by studying the asymptotic properties of adaptive lasso estimators when 
some components of the unknown parameter β  are strictly different than zero, 
while other components may be zero or may converge to zero with rate n δ− , 
with 0δ > . To achieve this objective, we analyze the convergence/divergence 
rates of each term in the first-order conditions of adaptive lasso estimators. We 
derive conditions that allow selecting the tuning parameter γ  as a function of 
the nα -consistent estimator nβ , in order to ensure that adaptive lasso estimates 
of n δ− -coefficients of the unknown parameter β  indeed collapse to zero. Fur-
thermore, in this case, we also derive the asymptotic properties of adaptive lasso 
estimators for nonzero components. These results allow practitioners to exclude 
in their model the asymptotically negligible variables and make inferences on the 
asymptotically relevant variables. 

2. Asymptotic Properties 

Before presenting the main results, we formally introduce the following assump-
tions. 

Assumption 1  
1) The parameter ( )TT T, cA A

β β β= , where 0Aβ ≠ , and cA
cn δβ −= , with  

c∈  and 0δ > .  
2) The preliminary estimator nβ  satisfies ( ) ( )1n pn Oα β β− = , for some  
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0α > .  
Assumption 1 1) implies that some components of the unknown parameter 

β  are strictly different than zero, while other components may be zero or may 
converge to zero with rate 0δ > . Assumption 1 2) simply implies that nβ  is 
nα -consistent estimator of β . 

Furthermore, consider also following high-level assumptions. 
Assumption 2  
1) 1 T

1
n

t ttn x x−
=∑  converges in probability to a positive definite matrix D, as 

n →∞ .  
2) 1

1 2 n
t ttn x ε

=
− ∑  converges weakly to normal with mean 0 and variance Ω , 

as n →∞ .  
Assumption 2 provides a set of high-level conditions that are typically satis-

fied in linear regression models (1) when p is fixed and n is large. Currently, we 
are not interested in analyzing high-dimensional models. We believe that first, it 
is important to understand the asymptotic properties of adaptive lasso estima-
tors of n δ− -coefficients in standard settings with standard (high-level) assump-
tions. The extension to high-dimensional linear regression models is left for fu-
ture research. 

To simplify the exposition of our results, we consider the linear regression 
model (1) with 2p = , 1 1 0cβ = ≠ , 2 2c n δβ −= , 2 0c ≠ , and 0δ > . We intro-
duce the function  
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Note that since 1 0β ≠ , then ( ) ( ),1
1 2

1 1n pn sign u o
γ

β
−− = . On the other hand, 

since 2 2c n δβ −= , then when 2 0u ≠ ,  
( ) ( )( )min ,

,2 2
1 21 2

n pn sign u O n
γ γ δ αβ− − ⋅ −= . It turns out that for large n, when  

( )min , 1,γ δ α⋅ >                        (6) 

then, the dominant term in Equation (5) is ( ),2 2
1 2

nn sign u
γ

β
−− . Furthermore, 

the sign of 2u  fully determines the sign of ( )2 1 2,f u u . Indeed, ( )2 1 2, 0f u u < , 
when 2 0u < , while ( )2 1 2, 0f u u > , when 2 0u > . Therefore, ,2

ˆ 0nβ = , where 

,2
ˆ

nβ  is the adaptive lasso estimator of 2β . 
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In the next step, we derive the asymptotic properties of the adaptive lasso es-
timator ,1

ˆ
nβ  of 1β , when ,2

ˆ 0nβ = . We consider first the case 1 2δ > . Then, 
in Equation (4), besides ( ) ( ),1

1 2
1 1n pn sign u o

γ
β

−− = , also  

( ) ( )1
2 ,2 ,1 ,2

1 2
1

ˆ 1n
n t t ptn n x x oβ β −
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− =∑ . Therefore, for large n, ( )1 1 2, 0f u u = ,  

when,  
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It turns out that by Assumption 2, for the adaptive lasso estimator ,1
ˆ

nβ  we 
obtain the usual 1 2n -asymptotic normal distribution. 

Finally, we consider the case 0 1 2δ< ≤ . Note that in this case, when  

,2
ˆ 0nβ = , then ( )2 ,2

1 2
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1 2ˆ
nn n cδβ β −− = . It turns out that in Equation (4), for 

large n, ( )1 1 2, 0f u u = , when  
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Note that we can rearrange the left term of Equation (7) as follows,  
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Consequently, we have,  
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Under Assumption 2, Equation (9) establishes nδ -consistency combined with 
(biased) 1 2n δ− -asymptotic normality for the adaptive lasso estimator ,1

ˆ
nβ  of 1β . 

Obviously, this approach can be easily applied also to the general case 2p > , 
under Assumption 1. These results suggest the introduction of following Ex-
tended Oracle Properties. 

Extended Oracle Properties 
Consider the linear regression model (1) with Assumption 1. Then, a statistic-

al procedure fulfils the Extended Oracle Properties when:  
1) Identifies the (asymptotically) nonzero components Aβ .  
2) For 1 2δ > , ensures the optimal 1 2n -asymptotic normality for the (asymp-

totically) nonzero components Aβ .  
3) For 0 1 2δ< ≤ , ensures nδ -consistency combined with (biased) 1 2n δ−

-asymptotic normality for the (asymptotically) nonzero components Aβ .  
From a practical point of view, in Equation (6) we provide conditions that al-

low to select the tuning exponent γ  as a function of the preliminary nα -consistent 
estimator, in order to ensure that adaptive lasso estimates of n δ− -components 
indeed collapse to zero. For instance, for 1 2δ α= = , we simply have 2γ > . 
These conditions are quite intuitive. Indeed, when δ  decreases (large neigh-
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borhoods of zero), then γ  increases (stronger penalization). These results may 
be useful for practitioner that would like to include in their model only the 
(asymptotically) relevant variables. From a theoretical point of view to the best 
of our knowledge, we have never seen nδ -consistency combined with (biased) 

1 2n δ− -asymptotic normality. Since δ  is unknown, inference based on these 
results seems quite challenging. Also modified residual [14] and pairs [15] boot-
strap seem not appropriate. Probably, multiplicative bootstrap procedures re-
cently introduced in penalized regression models may help also in this case. 

3. Conclusion 

In this paper, we extend the analysis of the statistical properties of lasso estima-
tors by studying the asymptotic properties of adaptive lasso estimators when 
some components of the unknown parameter β  are strictly different than zero, 
while other components may be zero or may converge to zero with rate n δ− , 
with 0δ > . To achieve this objective, we analyze the convergence/divergence 
rates of each term in the first-order conditions of adaptive lasso estimators. First, 
we derive conditions that allow selecting tuning parameters of adaptive lasso es-
timators in order to ensure that adaptive lasso estimates of n δ− -components of 
the unknown parameter of interest β  indeed collapse to zero when 0δ > . 
Second, in this case, we also derive asymptotic distributions of adaptive lasso es-
timators for strictly nonzero components. When 1 2δ > , we obtain the usual 

1 2n -asymptotic normal distribution, while when 0 1 2δ< ≤ , we show nδ

-consistency combined with (biased) 1 2n δ− -asymptotic normality for nonzero 
components. Several Monte Carlo simulations about 1) selection of the tuning 
exponent γ , and 2) nδ -consistency combined with (biased) 1 2n δ− -asymptotic 
normality confirm the theoretical results and are available from the author. These 
results allow practitioners to exclude in their model the asymptotically negligible 
variables and make inferences on the asymptotically relevant variables. 
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