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Abstract 
Background: The Poisson and the Negative Binomial distributions are com-
monly used to model count data. The Poisson is characterized by the equality 
of mean and variance whereas the Negative Binomial has a variance larger than 
the mean and therefore both models are appropriate to model over-dispersed 
count data. Objectives: A new two-parameter probability distribution called 
the Quasi-Negative Binomial Distribution (QNBD) is being studied in this 
paper, generalizing the well-known negative binomial distribution. This model 
turns out to be quite flexible for analyzing count data. Our main objectives 
are to estimate the parameters of the proposed distribution and to discuss its 
applicability to genetics data. As an application, we demonstrate that the QNBD 
regression representation is utilized to model genomics data sets. Results: The 
new distribution is shown to provide a good fit with respect to the “Akaike 
Information Criterion”, AIC, considered a measure of model goodness of fit. 
The proposed distribution may serve as a viable alternative to other distribu-
tions available in the literature for modeling count data exhibiting overdis-
persion, arising in various fields of scientific investigation such as genomics 
and biomedicine. 
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1. Introduction 

A random variable X is said to have “Quasi Negative Binomial Distribution”, 
QNBD if the probability function is given by: 

( ) ( )
( ) ( )

( )

1Γ 11
1 !Γ

0,1,2,
0 1
0 1

x xxx
Px P X x

x x x x
x

β ββ β θ θβ
β β β β

θ
βθ

+ − −+ −−
= = = ⋅

− + + −

=
< <
< <

�         (1) 

The distribution whose probability function is given in (1) was first derived by 
Takács [1] as a queuing model. He assumed that we have a single server queue 
with independent customers arriving according to a Poisson process in batches 
of size ( )1β −  with traffic intensity π and exponential service time with mean 
1/α. It is also assumed that the service time is independent of the interarrival 
time. Under these conditions, the probabilities of arrival ( )θ π π α= +  and 
departure = 1 − θ. Takács [1] and later Consul and Gupta [2] showed that the 
probability that a buy period has ( )1 xβ −  is for fixed β given by (1). The dis-
tribution is a member of the Lagrange class of distributions [3] [4] [5]. 

The shape of the histogram of X depends on the combination (β, θ). In Figure 
1 & Figure 2 we can see that the distribution has a much longer tail for large 
values of β. 

The paper is structured as follows: In Section 2 we demonstrate the connec-
tion between the QNBD and the regular exponential family of distributions [6] 
and derive the higher order central moments of the distribution. A limiting form 
of the distribution will be investigated as well. In Section 3, we derive the first 
order approximation of the variances and biases of the moment estimators of (β, 
θ). In Section 4, we derive the maximum likelihood estimators and their asymp-
totic variances and biases. In Section 5, we develop the regression model and es-
tablish discuss the maximum likelihood estimation of the regression parameters. 
In Section 6, we apply the models to real-life data arising from genomic studies. 
We provide general discussion in Section 7. 

2. Moments of the Distribution 

The simplest approach to derive the higher order central moments of the distri-
bution is to first write (1) in the general form of the linear exponential family. 

For fixed β, the QNBD belongs to the regular exponential family of discrete 
random variables: 

( ) ( ) ( ) ( )expPx h x S xη θ ψ θ= −                     (2) 

with 

( ) ( )
( )
( )
Γ1

1 !Γ
x

h x
x x x x

β ββ
β β β β

+−
≡ ⋅

− + + −
 

( )S x x≡  
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Figure 1. Histogram of QNBD for β = 2, and θ = 0.10. 

 

 

Figure 2. Histogram of X when for β = 10, and θ = 0.09. 
 

( )
( )1

log
1 β

θη θ
θ −

 
=  

−  
 

( ) ( ) 1log 1 βψ θ θ −= − −  

The mean 1µ′  and variance 2µ  of X are given respectively by: 

( )
1

1
1
β θ

µ
βθ
−

′ =
−

                         (3) 

( ) ( )
( )2 3

1 1

1

β θ θ
µ

βθ

− −
=

−
                      (4) 

Writing 
( ) ( )expg θ η θ=    , and ( ) ( )expf θ ψ θ=    , one can establish a recurrence 

relationship among the central moments so that:  

https://doi.org/10.4236/ojs.2022.122016


M. M. Shoukri, M. M. Aleid 
 

 

DOI: 10.4236/ojs.2022.122016 219 Open Journal of Statistics 
 

( ) ( )
( )

1
1 1 1

r r
r r

g
E x

g
θ µ µ

µ µ µ
θ θ θ+ −

′∂ ∂  ′= − = +   ′ ∂ ∂ 
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Therefore, the third and fourth central moments are: 

( ) ( )( )
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βθ

− − − + −
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−
              (6) 
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where,  

( ) ( )2 2 2 2 21 6 6 2 4 9 4 6 6M θ θ βθ θ θ β θ θ θ= − + + − + + − + . 

Moreover, the fifth central moment is given by:  

( ) ( )( ) 9
5 2 310 1 1 1 Bµ µ µ β θ θ βθ −= + − − −  

where 

( )
( ) ( )
( ) ( )
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3. Moment Estimators 

Suppose that we have a random sample 1 2 , ,, nx x x�  with sample mean x  and 
sample variance 2s  

( )1 2
1

nx x x x
n

= + + +�  

( )22

1

1 n

i
i

s x x
n =

= −∑  

Equating the sample statistics to their corresponding population parameters 
(3) and (4) and solving for θ and β we get 

( )2

2

1ˆ 1
x x

s
θ

+
= −                         (8) 

( )
2

1ˆ 1
x x

s
β

+
= +                         (9) 

We use the delta method to evaluate the variances and biases of a moment es-
timator. 

From Kendall and Ord [7] we have:  
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With similar expressions for ( )ˆvar β  and ( )ˆBias β . 
One can show that: 
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Note that, the information matrix is the determinant of the variance cova-
riance matrix of the moment estimators and is given by:  

( ) ( ) ( )2ˆ ˆ ˆ ˆvar var cov ,D θ β θ β= ⋅ −  

Example: Modeling the number of brain lesions to predict Multiple Sclerosis. 
The use of gadolinium (Gd) withT1 weighted imaging can identify areas of 

breakdown in the blood-brain barrier and increases the reliability and in detect-
ing active Multiple Sclerosis (MS) lesions [8]. The number of new Gd enhancing 
lesions is a widely used end point for monitoring disease activity and for eva-
luating the effect of treatments in phase II clinical trials. In these studies, the re-
sults of the Magnetic Resonance Imaging (MRI) end point are in the form of 
counts [9]. To deal with the problem of overdispersion, the negative binomial 
distribution is used to model this type of data. 

As application of the QNBD we simulated lesions count data like the situation 
described in [8] (Table 1).  
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The sample size = 116 subjects. 
The histogram of the data s is given in Figure 3. 
The y-axis we have the frequency of each x.  
mean(x) = 3.37, and var(x) = 69.63. 
The moment estimators are ˆ 0.077θ =  and ˆ 10.227β = .  
Bootstrapping the distribution of the moment estimators 

( )ˆSE 0.344θ = , and ( )ˆSE 0.106β =
 

(Figure 4).  
 

Table 1. Distribution of the number of brain lesions. 

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 50 60 
Freq 56 14 7 5 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

 

 

Figure 3. Histogram of the data shown in Table 1. The 
x-axis we have the x values. 

 

 

Figure 4. Histogram of distribution of θ̂  based on 1000 
bootstrap samples. 
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The distribution is negatively skewed. The empirical bias in the moment esti-
mator of θ̂  is ( )ˆbias 0.1659θ = − . 

Similarly ( )ˆbias 9.77β = − . 
From Figure 5 we may infer that the distribution of β̂  seems to be a mix-

ture of two distribution or is bimodal. From these results, we may conclude that 
the moment estimators are not reliable unless we have extremely large sample. 
In the next section, we discuss the maximum likelihood estimation.  

4. Maximum Likelihood Estimators (MLE) 

It is well-known that the estimators obtained from application of the method of 
MLE possess optimal properties such asymptotic normality and efficiency. Based 
on a simple random sample the log-likelihood (l) function is given by: 

( ) ( ) ( )

( )( ) ( )
1 1 1

log 1 log 1 1

log 1 1 log 1

ixn n

i i
i i j

l n x x j

nx n x

β β β β
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= = =

 = − − − + + + − 

+ + − + −

∑ ∑∑
       (10) 

( )1 1
x
x

βθ
β

=
+ −

�                        (11) 

Similarly, setting l
β
∂
∂

 equal to zero and solving for β we get: 
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Figure 5. Histogram of distribution of β̂  based on 1000 
bootstrap samples. 
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The MLEs of θ and β are thus obtained by solving (11) and (12) iteratively, 
noting that (12) is in the form of ( )fβ β=� �  or a fixed-point equation. 

Elements of the variance-covariance matrix of the ( ),θ β� �  are obtained by 
inverting the Fisher’s information matrix. We can show that  

( )
( )( )

2

2

1
1 1

nli Eθθ

β
θ θ βθθ

− ∂
= − =  − −∂ 

                    (13) 

2

1
l ni Eθβ θ β βθ

 ∂
= − = ∂ ∂ − 

                    (14) 
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2 22

2 2 2 2
1 1 1
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i i
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x xl ni E E
x x j

ββ β β β β= = =

 + + ∂  = − = − +   ∂ −    + − + −      
∑ ∑∑ (15) 

( ) ( )var , var ,i iββ θθθ β= ∆ = ∆� �  

and 

( )cov , iθβθ β = − ∆� �  

where 2i i iθθ ββ θβ∆ −⋅=  
We note that on using the digamma approximation we can write 

( )
( )
( )

( )
( ) ( )

2 2

2 2
1 1

1 1
1 1 1 11 1 1

n n
i i i

i i i i ii

x x xni E
x x xx

ββ β ββ β= =

 + + = − +
    + + + + −−  + −      
∑ ∑  

The R-Code for fitting the QNBD is given in Appendix 1. 

5. Orthogonal Polynomial Approximation for iββ  

The evaluation of the asymptotic variance covariance matrix is difficult because 
2

22 2

log lP E
β

 ∂
= −  ∂ 

 does not have a tractable form. To overcome this difficulty, 

following [5] we employ an asymptotic expansion for 
2 log xP
β

∂
∂

 as a linear  

combination of orthogonal polynomials. From Morgan et al. [9], if xP  is a dis-
tribution function with feint moments rµ  of all orders, then the point 0x  is a 
point of increase for xP , if 0 0x h x hP P+ −>  for every 0h > . If the distribution 
function P has atleast Y points of increase, Cramér [10] has proved that there 
exists a sequence of polynomials ( ) ( )0 1,G x G x , uniquly determined under the 
following conditions: 

1) ( )nG x  is of degree n, and the coefficient of nx  in ( )nG x  is positive  
2) ( )nG x  satisfy the orthogonality conditions 

( ) ( ) ( )( )2

0
r s r

x
G x G x E G x

∞

=

=∑  

If r s=  

( )0 , 0,1,2,r s r s= ≠ = �  
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Szegő [11] derived the formal Fourier expansion of a continuous function 
( )h x  in terms of a set of orthogonal polynomials such that: 

( ) ( )
0

r r
r

h x a G x
∞

=

= ∑  

where ra  are selected so that:  

( )
2

0 0

log x
r r x
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a G x P
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∞ ∞

= =
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∑ ∑  

is minimum. He showed that 
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Direct calculations give: 

( )0 1 11,G G x x µ′≡ = −  and, ( ) ( ) ( )2 3
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µ

µ µ µ
µ

′ ′= − − − − , are the or-

thogonal polynomials associated with the probability function xP , where 

( )( )2
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Since 
2
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log logP lnE E
β β
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Then 
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( )
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24
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6 23

4 2
2

1 1
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1
i nββ

θ θ θ θ
β βθ µ

βθ µ µ
µ

 
 

− − + − −  
 − − − 
   

�  

The asymptotic relative efficiency of the moment estimators is therefore given 
by: 

1Eff
D

=
∆

 

For the lesion data Eff = 16.6%. We interpret this number as follows: for the 
moment estimators to be as efficient as the maximum likelihood estimators, we 
need a sample size that is 16.6% larger compared to the sample size used for the 
maximum likelihood estimation.  

3.4 Asymptotic biases of the MLE 
Unlike the moment estimators, the ( ),θ β� �  do not have closed form expres-

sions, and the applications of the delta method cannot be used to obtain their 
asymptotic biases. Sherton and Wallington [12] used an approach that depends 
on the asymptotic expansion of the log-likelihood functions. We denote the bi-
ases of θ� , and β�  by ( )1b θ�  and ( )2b β� , and these are the solutions of the 
system of equations 

( )
( )

1
111 12

21 22 22

2

2

A
bP P Dn

P P Ab
Dn

θ

β

 −       =         −    

�

�
 

In the above system of equation we have the following notations: 
2

11 22 12D P P P= −  

1 22 1,11 12 1,12 11 1,222A P P P P P P= − − +  

2 22 2,11 12 2,12 11 2,222A P P P P P P= − − +  

And 
2

2
1,11 2

P PP E P
θ θ

− ∂ ∂
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2
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2
2
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P PP E P
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− ∂ ∂
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2
2
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P PP E P
β θ β

− ∂ ∂
= ⋅ ∂ ∂ ∂ 
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Finally, using the above information we can show that 2,22 0P = . 
Solving the system of equations, we obtain the asymptotic biases so that 
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For the lesion data, the biases of the maximum likelihood estimators are given 
by: 

( )bias 0.003θ =� , and ( )bias 0.002β =�  

6. Quasi Negative Binomial Regression 

Our aim in this section is develop regression model based on the GNBD. The 
approach is facilitated by the fact that the QNBD is a member of the regular ex-
ponential family shown in [13]. We employ the transformation: 

( ) T , 1, 2, ,i iz i kτ θ γ= = �                     (16) 

Here we assume to ( )iτ θ  be monotone, differentiable, and positive function 
of θ [13]. In (16) z is a vector of ( )1 nυ ν× <  exploratory variables and γ is a 
vector of regression parameters. To estimate 1 2, , , qγ γ γ� , and β, we assure that  

( )1 ~ QNBD , , 1,2, ,ix i nθ β = �  

are independent random variables and  

( ) Tlogit i iz zθ γ =                         (17) 

In this section, we derive the maximum likelihood estimators of the regression 
parameters, the parameter β and their asymptotic properties. The log-likelihood 
function is given by: 
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Simplifying we get: 
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The variance covariance matrix of the estimated parameters, and β based 
on the regression model is given by the inverse of Fisher’s information ma-
trix: 

1
M O

C
γγ γβ

ββ

σ σ
σ

−
   

Σ =    


=
 

 

where M is and q × q symmetric matrix whose elements are ijm  so that 

( )ˆ ˆcov ,ij i jm γ γ= , and O is a 1 × q matrix whose elements are ( )ˆˆcov ,j iO γ β=  

and C is a 1 × 1 element with ( )ˆvarC β= . 

The simplest approach to obtain the maximum likelihood estimators of γ and 
β is by solving the equations; 

0l
β
∂

=
∂

 and 0, 1,2, ,
r

l r r
γ
∂

= =
∂

�  iteratively using a numeric technique 

such as Newton-Raphson. Following Cox and Hinkley [14], we have as n →∞  
and under certain regularity conditions, the maximum likelihood estimators of 

( )ˆ ˆˆ,φ γ β=  are asymptotically normal and consistent. 

That is  

( ) ( )1
ˆ 0,qVn Nφ φ +− → Σ  in law 

4-Limiting form of the QNBD: The Quasi-Poisson Distribution 
As , 0β θ→∞ → , so that βθ α= , the distribution (1) takes the following 

form: 
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!

x
x x
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1 1
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Therefore, ( ) ( )2var 1x µ µ= + . Expressing the distribution in terms of the 
mean parameter μ, the limiting distribution can be written as: 
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1
11

e
! 1

x x
x

x

x
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x

µ
µµ

µ

−
− +
++  

=  + 
                  (18) 

In a paper that follows, we shall discuss the issues of maximum likelihood es-
timation for the parameter μ of the probability function (18) and the regression 
model associated with it. 
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7. Data Analysis: RNA_SEQ Data: Modeling the Distribution  
of Read Counts 

Over the past decade, various statistical analysis tools have been developed to 
analyze expression profiling data generated by microarrays (Reviewed in [15] 
[16] [17]). Before these tools can be applied to RNA-Seq data, it is worth noting 
that microarray data and RNA-Seq data are inherently different [16]. Microarray 
data is “analog” since expression levels are represented as continuous hybridiza-
tion signal intensities. In contrast, RNA-Seq data is “digital”, representing ex-
pression levels as discrete counts. This inherent difference leads to the difference 
in the parametric statistical methods that are used since they often depend on 
the assumptions of the random mechanism that generates the data. The Poisson, 
Binomial and Negative binomial distributions are more suitable for modeling 
discrete data in an RNA-Seq experiment. Therefore, a statistical method devel-
oped for microarray data analysis cannot be directly applied to RNA-Seq data 
analysis without first examining the underlying distributions. Recently several 
statistical methods have been developed to deal specifically with RNA-Seq count 
data [17]. In an RNA-Seq dataset, the expression levels of a specific gene were 
modeled using the Poisson distribution. This Poisson model is verified in the 
case where there are only technical replicates using a single source of RNA [15]. 
In the Poisson model, over-dispersion occurs if the sample variance is greater 
than the sample mean. There could be several sources that cause over-dispersion 
in RNA-Seq data, including the variability in biological replicates due to hetero-
geneity within a population of cells, possible correlation between gene expres-
sions due to regulation, and other uncontrolled variations [18]. The existence of 
over-dispersion in real data was observed in several previous studies [18]. Popu-
lar models to safeguard against over-dispersion include the negative binomial 
distribution, or two-stage Poisson distribution [19], as discussed below. 

When over-dispersion is observed across the samples, the gene counts cannot 
be estimated accurately by a simple Poisson model [20]. One way to handle this 
problem is to allow the Poisson mean to be a random variable and then model 
the gene counts by the marginal distribution of the mean count. Specifically, as-
sume that the Poisson mean follows a Gamma distribution then the marginal 
distribution of the gene count has a Negative Binomial distribution with mean 

iµ  and variance = ( )1i iµ εµ+ , where ε is the dispersion parameter [20]. 
Yoon and Nam [21] [22] showed that the gene dispersion value as estimated 

under the negative binomial modelling of read counts is the key determinant of 
the read count bias.  

Whenever multiple samples are available and instead of modeling the raw ex-
pression, we model the gene counts as a function of the experimental sample and 
gene dispersion as covariates. For highly expressed genes we used the QNB re-
gression model for published data that we downloaded from  
http://woldlab.caltech.edu/rnaseq/. 

The published data were downloaded from http://www.ncbi.nlm.nih.gov/sra/ 
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as the fastq files: SRA010153 for the MAQC data, SRP000727 for the human data 
(the two low-coverage MAQC samples were excluded), SRX000559-SRX000564 
for the yeast data.  

We analyzed the read count of the Mice-Brain tissue data under four experi-
mental conditions: 

Z1 = Chrom_ chr11, Z2 = Chrom chr9_ra, Z3 = Chrom chrUn_ra, and Z4 = 
Chrom chr13_ra, and d = the gene dispersion levels. Zj are modeled as categori-
cal variables with categorical with Z4 being the reference category, and d is 
measured on the continuous scale. Figure 6 shows the histogram of the read 
counts for the 4 groups (Tables 2(a)-(d)).  

We now analyze the data using three count regression models; the Poisson, 
the Negative binomial, and the QNB (Tables 3-5).  

 

 

Figure 6. Histogram of the read counts data. 
 

Table 2. (a) Summary statistics of the read count data for Chrom-Chr1 sample; (b) 
Summary statistics of the read count data for Chrom-Chr13 sample; (c) Summary statis-
tics of the read count data for Chrom-Chr9_ran sample; (d) Summary statistics of the 
read count data for Chrom-ChrUn_ran sample. 

(a) Chrom-chr1 

Variable N Mean Std Dev Minimum Maximum 
d 

count 
36823 
36823 

6.668 
7.99 

7.997 
8.905 

1.0 
1.0 

75.0 
68.0 

(b) Chrom-chr13_ra 

Variable N Mean Std Dev Minimum Maximum 
d 

count 
13 
13 

21.307 
1.077 

8.586 
0.277 

2.0 
1.0 

25.0 
2.0 

(c) Chrom-chr9_ran 

Variable N Mean Std Dev Minimum Maximum 
d 

count 
698 
698 

10.126 
3.030 

9.293 
2.369 

1.0 
1.0 

50.0 
13.0 

https://doi.org/10.4236/ojs.2022.122016


M. M. Shoukri, M. M. Aleid 
 

 

DOI: 10.4236/ojs.2022.122016 232 Open Journal of Statistics 
 

(d) Chrom-chrUn_ran 

Variable N Mean Std Dev Minimum Maximum 

d 
count 

89 
89 

22.843 
1.157 

6.626 
0.541 

1.0 
1.0 

25.0 
4.0 

 
Table 3. Fitting the data to Poisson regression model. 

covariate Estimate SE P-Value 

(Intercept) 1.936 0.267 0.0000 

Z1 0.671 0.267 0.012* 

Z2 −0.021 0.268 0.939 

Z3 0.427 0.285 0.134 

d −0.127 0.0006 <0.000001 

AIC: 314241 
 

Table 4. Results of fitting data to the Negative Binomial regression model. 

covariate Estimate SE P-Value 

(Intercept) 2.36746 0.33 0.06e-13*** 

Z1 0.16405 0.33 0.619 

Z2 −0.39876 0.33 0.229 

Z3 0.21046 0.35 0.551 

d −0.10833 0.001 <0.00001 

(Dispersion parameter for Negative Binomial (2.0488, with SE = 0.0185). AIC: 214866 
 

Table 5. Results of fitting data to the QNBD. 

 Estimate SE P-Value 

(Intercept) −5.1351 0.2826 0.0000 

Z1 0.1839 0.2696 0.2475 

Z2 0.1029 0.2704 0.3519 

Z3 0.1255 0.2872 0.3310 

d −0.0224 0.0005 0.0000 

β estimate 134.8252 54.8250 0.0070 

AIC = 213104 
 

1) Modeling read count as a Poisson regression model glm(formula = y ~ Z1 + 
Z2 + Z3 + d, family = poisson, data = ratdata); 

2) Modeling read count using Negative Binomial to account for overdisper-
sion; 

3) Quasi negative binomial regression model. 

8. Comments on the Data Fitting 

We used three count regression models to fit the RNA-SEQ data. All models 
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were fitted using the R package [23]. The first is a Poisson regression model, the 
second is the well-known negative binomial, and the third is the proposed QNB 
regression model. The Poisson model is fitted in R by applying the “GLM” while 
the negative binomial is fitted by using the “MASS” package in R. We provided 
the R-code for fitting the QNB in Appendix 2 in Appendix 2. We based the 
comparisons among these models on the AIC values (the smaller the better). 
Clearly, the Poisson model with the largest AIC = 314241, is the worst as it fails 
to properly account for the overdispersion in the data. Remarkable improvement 
is attained when the negative binomial regression model is used as its AIC = 
214866. Although the QNB regression model has the smallest AIC = 213104, the 
improvement over the negative binomial is not tangible. We still believe that our 
proposed model should be a close competitor to the negative binomial model. 

9. Discussion 

There has been a growing interest among bioinformaticians and statisticians in 
constructing flexible distributions for counts that exhibit overdispersion to im-
prove the modeling of count data. As a result, significant progress has been 
made towards generalizing some well-known discrete models, which have been 
successfully applied to problems arising in several areas of research. The pro-
posed distribution was utilized to model two data sets; it was shown to provide a 
better fit than several other related models, including some with the same num-
ber of parameters. In the future paper, we shall demonstrate the applicability of 
the limiting form of our proposed distribution to genomics data together with 
inference procedures using multiple samples. Finally, we believe that the infe-
rential results developed in this article should find numerous applications in 
bioinformatics, genomics, medicine, data engineering, and other areas of physi-
cal sciences. 
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Appendices 
Appendix 1: R-CODE for Fitting the Univariate Version of the  
QNBD Using the Maximum Likelihood Method Applied to the  
“Brain Lesion” Data 

QNBD<- function(x,theta,beta,log = FALSE){ 
loglik <- log((((beta-1)/(beta-1+beta*x))*(factorial(beta-1+beta*x))/ 
(factorial(x)*factorial(beta-1+beta*x-x))* 
((theta^x)*(1-theta)^(beta*x+beta-1-x)))) 
if(log = = FALSE) 
density <- exp(loglik) 
else density<-loglik 
return(density) 
} 
parameter <- maxlogL(x = x,dist = "QNBD",start = c(.01,2),optimizer = 'optim') 
summary(parameter) 
The fitting results by the method maximum likelihood are: 
AIC 426.76, 0.298 0.015, 2.81 0.057θ β= ± = ±=� �  

Appendix 2: R-CODE: QNB Regression Fitting by the Method of  
Maximum Likelihood Applied to the RNA_SEQ Read Count Data 

llik=function(y,par){ 
b0=par [1] 
b1=par [2] 
b2=par [3] 
b3=par [4] 
b4=par [5] 
beta=par [6] 
n=length(y) 
eta=b0+b1*x1+b2*x2+b3*x3+b4*x4 
mu=exp(eta)/(1+exp(eta)) 
ll=sum(log(beta-1)-log(beta-1+beta*y) 

+lgamma(beta+beta*y)-lgamma(1+y)-lgamma(beta+beta*y-y) 
+y*log(mu)+(beta+beta*y-1-y)*log(1-mu)) 

return(-ll) 
} 
res=optim(par=c(2,.6,-.02,.42,-.12,2.1),llik,y=y,method="BFGS",hessian=T) 
theta=res$par 
theta 
#CALCULATING THE STANDARD ERRORS OF MLE 
out3=nlm(llik,theta,y=y,hessian=TRUE) 
fish=out3$hessian 
solve(fish) 
element=diag((solve(fish))) 
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se=sqrt(element) 
qqnorm(y,resid(out3)) 
z=theta/se 
p_value=1-pnorm(abs(z)) 
result.GNBD=data.frame(theta,se,z,p_value) 
result.GNBD=round(result.GNBD,4) 
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