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Abstract 
The L1 regression is a robust alternative to the least squares regression when-
ever there are outliers in the values of the response variable, or the errors fol-
low a long-tailed distribution. To calculate the standard errors of the L1 esti-
mators, construct confidence intervals and test hypotheses about the parame-
ters of the model, or to calculate a robust coefficient of determination, it is 
necessary to have an estimate of a scale parameter τ. This parameter is such 
that τ2/n is the variance of the median of a sample of size n from the errors 
distribution. [1] proposed the use of τ̂ , a consistent, and so, an asymptoti-
cally unbiased estimator of τ. However, this estimator is not stable in small 
samples, in the sense that it can increase with the introduction of new inde-
pendent variables in the model. When the errors follow the Laplace distribu-
tion, the maximum likelihood estimator of τ, say τ̂ ∗ , is the mean absolute 
error, that is, the mean of the absolute residuals. This estimator always de-
creases when new independent variables are added to the model. Our objec-
tive is to develop asymptotic properties of τ̂ ∗  under several errors distribu-
tions analytically. We also performed a simulation study to compare the dis-
tributions of both estimators in small samples with the objective to establish 
conditions in which τ̂ ∗  is a good alternative to τ̂  for such situations. 
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1. Introduction 

Consider the multiple linear regression model 
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y X β ε= + , 

where 
y is an n × 1 vector of values of the response variable corresponding to X, an n 

× k matrix of predictor variables that may include a column of ones for the in-
tercept term; 

β is a k × 1 vector of unknown parameters and;  
ε is an n × 1 vector of unobservable random errors. 
The components of ε are independent and identically distributed random va-

riables with cumulative distribution function F. Suppose that F has a unique me-
dian equal to zero and a continuous derivative f in the neighborhood of zero 
such that f(0) > 0. The scale parameter of f is defined as  

( )( ) 1
2 0fτ

−
= .                       (1.1) 

So τ2/n is the variance of the median in a sample of size n from the error dis-
tribution. 

The L1 estimator β̂  of β, minimizes 1 i
n

ii y x β
=

−∑  for all values of β, where 
yi is the i-th element of the vector y and xi is the i-th row of the matrix X.  

The L1 criterion is a robust alternative to the least squares regression whenever 
the data contains outliers or the errors follow a long tailed distribution such as 
Laplace or Cauchy. 

It is well known that when the errors follow Laplace distribution, the L1 esti-
mators of β are maximum likelihood estimators and so, they are asymptotically 
unbiased and efficient. [2] proved that the L1 estimator is asymptotically un-
biased, consistent and follows a multinormal distribution with covariance matrix 
τ2(X'X)−1. An important implication of this result is that the L1 estimator of β has 
a smaller confidence ellipsoid than the least squares estimator for any error dis-
tribution for which the sample median is a more efficient estimator than the 
sample mean. 

Based on the asymptotic distribution results, formulae for constructing confi-
dence intervals and testing hypotheses on the parameters of the model have been 
developed [3] [4]. To apply these formulae and also to compute the standard er-
rors of the estimators of β, it is necessary to have an estimate of the parameter τ. 
Several estimators of τ were proposed [1]. They recommend the consistent esti-
mator 

( ) ( )*
*

1
ˆ 4mn m

n e eτ
− +

 − 
 

= , 

where 

( )* *1 2n nm = + − ,  

n* is the number of non-zero residuals and ( ) ( )1 *, , ne e�  are the non-zero re-
siduals arranged in ascending order. 

It is important to observe that τ̂  is a measure of the variability of the resi-
duals and, although is influenced by all of them, it is determined by only two of 
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them. 
A consistent estimator of τ is also needed to calculate the robust coefficient of 

determination R proposed by [5]. This coefficient is an informal measure of 
goodness of fit of a model and it is given by 

( )( )( )2 1 2ˆR RSEA RSEA n p τ= + − − , 

where  

01 1
ˆ ˆn

i
n

i ii iy y yRSEA β
= =

= − − −∑ ∑ , 

( )0 1median ,ˆ , ny yβ = � , 

ˆiy  is the predicted value of the response variable in the i-th observation, that 
is ˆˆi iy x β= ; 

β̂  is the L1 estimator of the regression coefficients of the model. 
A desirable property for a coefficient of determination is that it increases 

when passing from a reduced to a full model, that is, when new predictor va-
riables are included in the model [6]. For R2 this property is true only if τ̂  de-
creases as new variables are included in the model and this might not happen, as 
shown in Example 1. 

Example 1—In this example, we use the real state data from [7]. The predic-
tor variables are taxes, in hundred dollars (X1), lot area, in thousand squares feet 
(X2), living space, in thousand squares feet (X3), age of the home, in years (X4). 
The response variable (Y) is the selling price of the home, in thousands of dol-
lars. 

In Table 1, we present all possible linear models obtained with the four pre-
dicted variables, the number of parameters (k), the estimates τ̂  and the values 
of R2 for each model. In this table, we see that the value of τ̂  for the model with 
variable X1 only (4.0079) is smaller than the observed value of this statistic in the 
model with X1 and X3 (5.4301), and then the value of R2 in the model containing 
only X1 as predictor is larger than in the model with X1 and X3. However, the 
contribution of X3 given that X1 is already in the model is significant (p-value 
less than 0.01). 

So, it may happen that the value of τ̂  increases even with the introduction of 
a variable with significant contribution in the model. This fact will decrease the 
value of R2 and the new model might not be selected if the coefficient of deter-
mination is the criterion to select a model. 

This instable behavior of τ̂  may be explained by the fact that it is deter-
mined by only two residuals and so we can expect that it happens more fre-
quently in small samples. 

When errors follow the Laplace distribution, the maximum likelihood esti-
mator of τ is the mean absolute error [8], given by 

*ˆ SEA nτ =   

where 

1
ˆi

n
ii ySEA y

=
−= ∑ . 
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Table 1. Number of parameters (k), τ̂  and R2 observed values for all possible regression 
models for the state data. 

Variables in the model k τ̂  R2 

nothing 1 10.9629 0.0000 

x1 2 4.0079 0.7105 

x2 2 8.0285 0.3830 

x3 2 9.8973 0.4681 

x4 2 11.8750 0.1164 

x1·x2 3 3.9590 0.7215 

x1·x3 3 5.4301 0.6860 

x1·x4 3 3.9636 0.7212 

x2·x3 3 8.0913 0.5470 

x2·x4 3 6.5918 0.4576 

x3·x4 3 6.6577 0.6098 

x1·x2·x3 4 6.1331 0.6701 

x1·x2·x4 4 7.3275 0.5937 

x1·x3·x4 4 5.4875 0.7011 

x2·x3·x4 4 4.0022 0.7410 

x1·x2·x3·x4 5 4.0246 0.7704 

 
Although the usual regularity conditions do not hold for Laplace distribution, 

*τ̂  is a consistent estimator of τ [9]. This estimator is a measure of variability of 
the residuals, and it has the property of decreasing when new predictor variables 
are included in the model. Using this estimator, it is possible to construct a ro-
bust coefficient of determination that satisfies the desirable conditions in [6]. It 
is possible also to calculate the coefficient of determination adjusted by the 
number of predictor variables proposed in [10]. 

Our objective is to study the possibility of using *τ̂  as an alternative to τ̂  
when the errors follow a distribution other than Laplace. We have special inter-
est in small sample sizes because of the instable behavior of τ̂  in such cases. 

[11] pointed out the importance of the L1 method of estimation, presenting 
many practical situations in which its application is recommended. So, the 
search of procedures that make its use more efficient gives important contribu-
tion to the statistical theory. 

The paper is organized as follows. Initially, the asymptotic distributions of *τ̂  
were derived analytically assuming errors with Normal, Mixture of Normals, 
Laplace and Logistic distributions. These results allowed to compute the asymp-
totic bias and mean squared error of this estimator. Then, we performed a simu-
lation study and generated empirical distributions of *τ̂  and τ̂  in small sam-
ples, after the fitting of models with one predictor variable and errors with the 
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same distributions considered previously and Cauchy distribution also. The dis-
tributions considered in this study were characterized according to the weight of 
their tails [12]. The results obtained in this study allowed indicating situations in 
which *τ̂  can be used as an alternative to estimate τ. 

2. Asymptotic Distribution of τ̂ ∗  

In this section, we derive analytically the asymptotic distribution of *τ̂ , consi-
dering four different distributions for the errors. We assume errors with normal 
(0, σ2) distribution, mixture of Normals when random variables are selected 
from a normal (0, 1) with probability p and of a normal (0, σ2) with probability 1 
− p, Logistic distribution with mean zero and variance γ2π2/3 and Laplace dis-
tribution with mean zero and variance 2σ2. 

First, we note that *τ̂  may be written as  

( )*
1 1

1 1ˆ ˆˆ n n
i i i i i ii iy x y x x x

n n
τ β β β β

= =
= − = − − −∑ ∑  

where 
β̂  is the L1 estimator of β . 
Since ˆ

ix β  is a consistent estimator of ix β  [2], the asymptotic distribution 

of *τ̂  is the same of 
1

1 n
i ii y x

n
β

=
−∑ , and this quantity is equal to 

1

1 n
iin
ε

=∑ ,  

where εi is the i-th element of the vector of errors of the model. Next, we study 
the asymptotic distribution of this random variable for different errors distribu-
tions. 

3. Errors with Normal (0, σ2) Distribution 

Using the fact that ( )0,1~i N
ε
σ

 we observe (see Appendix A) that 

2iE
ε
σ

 
= 

  π
 and 2iVar

ε
σ

  −
= 
π

  π
. 

Further, the random variables iε
σ

, 1, ,i n= � , are independent and identi-

cally distributed and, by the Central-limit theorem 

( )
1

1

0,
2

1

2n i
i

D Nn

n

ε
σ= π
π

→

π

−

−

∑
. 

So, it follows that 

( )

*

1

ˆ ˆ1 2 2

2
0

2
,1

i in
i

D
n

y x

n

n n

W N

β τ
σ σ= π π
π π

−
− −

= 
−

π

→=

π
−

∑
. 
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Finally, since ( )2~ Normal 0,iε σ  then 
2
2

τ σ=
π

, which implies that 

( )
( )

*ˆ 2
22 2

0,1D
n

nnW Nτ
τ

 
 − →
 − π−

π

π
= , 

or that 

( )
( )

*

02
2 2

,1D
nW Nn τ

τ
π

π
 

− → 
−  

=
π

�
. 

4. Errors with Mixture of Normal Distributions 

In this case, we assume that the errors distribution is a mixture of two normal 
distributions: a Normal (0, 1) selected with probability p and a Normal (0, σ2) 
selected with probability (1 − p). Hence, the probability density function of εi is 

( )
2 2

2

1exp exp , .
2 22 2
i i

i i
p pf

ε ε
ε ε

σσπ π

   −
= − + − −∞ < < ∞   

   
 

It is not very difficult to see that 
( ) 0iE ε = , ( ) ( ) 21iVar p pε σ= + −  and that the parameter τ is 

( )
2

2 1p p
στ

σ
π

=
+ −

 

Furthermore, i i iy xε β= − , 1, ,i n= �  are independent and identically 
distributed random variables with mean and variance (see Appendix A) given by 

( ) ( )2 12
2 2i

ppE
σ

ε
−

+
π

=
π

 and 

( )
( ) ( )( ) ( )2 2 2

2
1 2 1 4 1 2

iVa
p p p p p p

r
π σ σ

σε =
− − − − − + −π

=
π

. 

So, as the same way that in the Normal errors distribution case 

( )

( )1

2 2 11
2 0,1

n

i i
Di

p p
y

n

n

N
x

σ
β

σ
=

+ −
− −

π →
∑

, 

and 

( )

( )1

2 2 11 ˆ
2 0,1

n

i i
Di

p p

N
y x

n

n

σ
β

σ
=

+ −
− −

→π
∑

, 

that is, 

( )( )
( )

*

0,

1ˆ
2 1

2

D
nU N

p p n
n

στ
τ τ

σ
τ

+ −
−

→π= . 
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5. Errors with Logistic Distribution 

Let us suppose that the errors follow a Logistic distribution with probability 
density function  

( ) ( )
( ) 2

exp
, ,

1 exp
i

i i

i

f
ε γ

ε ε
γ ε γ

−
= −∞ < < ∞

 + − 
 

such that ( ) 0iE ε = , ( ) 2 2 3iVar ε γ= π , and, therefore, τ = 2γ. 
Also, because iε , 1, ,i n= � , are independent and identically distributed 

random variables, it is proved in the Appendix A that the mean and the variance 
of these variables are 1.386γ and 1.37γ2. 

So, by the Central-limit theorem 

( )1

1 1.386

1.37
0,1

n

i i
Di

y x
n

n

N
β γ

γ
=

− −
→

∑
. 

Using the same arguments of the previous demonstrations, it follows that 

( )

*

*
1.386

1.3 0,86
1.37 1

ˆ

1
.

ˆ
37

D N

n n

γ
γ τ τ

γ
τ

τ
τ

γ
→

−−
=  

Since in this case τ = 2γ, we have 

( )
*2 0.693

1.37
0,1

ˆ Dn Nτ
τ

 
− →

 
. 

6. Errors with Laplace Distribution 

When the errors follow a Laplace distribution with mean zero and variance 2σ2 
then  

τ σ= , ( )iE ε σ=  and ( ) 2
iVar ε σ= . 

Therefore, because of the Central-limit theorem 

( )1

1

0,1

n

i i
Di

y x
n

n

N
β σ

σ
=

− −
→

∑
, 

and hence 

( )
* *ˆ ˆ

1 0,1Dn N

n

τ τ τ
τ τ

 −
= − → 

 
. 

Remark: Based on the asymptotic distribution of *τ̂ , confidence intervals for 
τ can be developed. In the Normal errors case, an asymptotic confidence interval 
for τ is 
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( )* *
1 2ˆ ˆ,k kτ τ  

where, 
( )1

2 2 2
nk

n z+

π

π
=

−
, 

( )2
2 2 2

nk
n z−

π

π
=

−
 and z is the percentile 

of order (1 + γ)/2 of the standard Normal distribution and γ is the confidence 
coefficient of the interval. 

This confidence interval enables us to test hypothesis like H: τ = τ0 at a signi-
ficance level α = (1 − γ). 

7. Asymptotic Bias of τ̂ ∗  

Because the sample mean of the values of the absolute residuals is a continuous 
and limited function, by the Helly-Bray Lemma [13], the expectation of *τ̂  
converges to the mean of its asymptotic distribution. Therefore, it is possible to 
calculate the asymptotic bias of this estimator. 

The analysis of the results presented in the previous section shows that the bi-
as of this estimator is different of zero for every errors distribution considered, 
except the Laplace distribution. 

When the errors follow the Normal (0, σ2) distribution, the asymptotic bias is  

( )2τ − π
π

, 

that is negative, and so, in average, *τ̂  sub-estimates τ.  
For the mixture of Normal distribution errors, the asymptotic bias is 

( )( ) ( )
( )( )

221 1 1

2 1

p p

p p

σ σ

σ

− − + −

+π −

π
, 

that is negative if ( )( ) ( )
221 1 1p p σ σ− − < −π , and is positive otherwise. 

In the Logistic distribution, the asymptotic bias is given by  

0.614 0.307γ τ− = − , 

and so, it is always negative. 

8. Simulation Study 

In this section, we perform a simulation study with the objective of generate em-
pirical distributions of the estimators *τ̂  and τ̂  considering small sample siz-
es, under the following distributions of the errors εi:  
- Normal (0, 1) (τ = 1.253); 
- Logistic with mean zero and variance π2/3 (τ = 2.00); 
- Laplace with mean zero and variance 2 (τ = 1.00); 
- Mixture of Normals (NM 85-15) when random variables are selected from a 

Normal (0, 1) with probability 0.85 and a N (0, 49) with probability 0.15 (τ = 
1.439); 

- Mixture of Normals (NM80-20) when random variables are selected from a 
Normal (0, 1) with probability 0.80 and a N (0, 49) with probability 0.20 (τ = 
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1.513) and 
- Cauchy with median zero and scale parameter 1 (τ = 1.571). 

Our objective is to find situations determined by errors distributions and 
sample sizes, under which *τ̂  has empirically a better behavior than τ̂  in 
terms of bias and mean squared error. 

The simulation study was designed as follows. 
 We considered regression models with one independent variable generated 

from a Normal (0, 1) distribution, independently of the errors. Without loss 
of generality, the true parameters β0 and β1 were fixed equal to 1; 

 The sample sizes (n) were set as 10, 20, 30, 50, 100 and 200; 
 For each combination of sample size and errors distribution, 1000 sets of data 

were generated; 
 Using the L1 method, a regression model was fitted for each set of data and 

the values of *τ̂  and τ̂  were calculated. So, this procedure generated 1000 
values of *τ̂  and τ̂ .  

The computations were performed using a special routine constructed in 
S-Plus 4.5. 

The results obtained in this study are summarized in Tables B1-B6 in Ap-
pendix B. They suggest that 
 *τ̂  is a good alternative to τ̂  when the errors follow Laplace, NM 85-15 or 

NM 80-20 distributions. In these cases, *τ̂  has bias and mean squared error 
smaller or of the same order than τ̂ ; 

 When the errors follow Normal or Logistic distribution, *τ̂  tends to 
sub-estimate τ. The means of τ̂  distributions generated in the study are 
closer to the parameter value and its mean squared errors are in general un-
iformly smaller than that of *τ̂ , for all considered sample sizes. 

 For the Cauchy distribution errors, *τ̂  tends to super-estimate τ. This result 
may be a consequence of the fact that all the residuals are considered in the 
computation of this estimator. Although τ̂  has smaller bias and mean 
squared error than *τ̂ , τ̂  does not seem to be a good estimator of τ for 
sample sizes smaller or equal to 30. 

9. Some Characteristics of the Distributions in the Study 

The distributions considered in the previous sections are symmetrical about zero 
and can be ordered by the weight of their tails [12]. For 0 1α≤ ≤ , an appropri-
ate coefficient that can be used with this objective is 

( ) ( ) ( ) ( ) ( )* 1 * 1 * * 1 * 1
2 1 2 1  b F F F Fα α α ν α α− − − −   = − + − − +    , 

where 

( ) ( )* 2 1F x F x= − , 

F (x) is the distribution function of the errors and 
*ν  is the median of the density function associated to *F . 

This coefficient has the following properties 
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Table 2. Values of b2(α) for the distributions in the study. 

Distribution b2(0.10) b2(0.05) 

Normal 0.2775 0.3551 

Logistic 0.3455 0.4396 

Laplace 0.4650 0.5641 

NM 85-15 0.5618 0.7848 

NM 80-20 0.6972 0.8076 

Cauchy 0.7265 0.8541 

 
 ( )21 1b α− ≤ ≤ ; 
 Its computation does not require that the errors distribution have any finite 

moment;  
 Its value is independent of the parameters of location and scale. 

Large values of b2(α) indicate that the distribution has heavy tails. 
In Table 2 we present the values of b2(α) for the distributions considered in 

this study, taking α = 0.10 and α = 0.05. For these values of α, it is clear that the 
ordering of the distribution according to its tails weights is: Normal, Logistic, 
Laplace, NM 85-15, NM 80-20 and Cauchy. 

10. Concluding Remarks 

In this paper, we studied the behavior of the estimator *τ̂  with the objective of 
using it as an alternative to τ̂ . We also determined analytically its asymptotic 
distribution under different distributions of the errors of the model. It was ob-
served that, in general, *τ̂  is asymptotically biased, with asymptotic bias equal 
to zero when the errors follow the Laplace distribution. In this case, the absence 
of asymptotic bias was already expected, since *τ̂  is the maximum likelihood 
estimator of τ when the errors follow the Laplace distribution. 

Performing a simulation study, the two estimators were compared empirically 
by their bias and mean squared error, under distributions with different tails 
weights and considering sample sizes varying from 10 to 200. The results suggest 
that *τ̂  is a good alternative to τ̂  when the errors in the model follow Laplace 
or Mixture of Normal distributions with the values of the parameters fixed in the 
study; when the errors have Normal or Logistic distributions (lighter tails) or 
Cauchy distribution (heavy tails), τ̂  presented the best performance for every 
considered sample sizes. However, in the Cauchy distribution case, although τ̂  
seemed to be better than *τ̂ , its use is not recommended in samples of size 
smaller or equal to 30 because of the bias of this estimator. 

The results of the study indicate that *τ̂  should be used when the distribu-
tion of the errors is close to the Laplace distribution, whatever the sample size. 
By the properties of this estimator mentioned in Section 1, we suggest that the fit 
of the data to the Laplace distribution be analyzed by the construction of a Q-Q 
plot of the residuals of the model. If there are not serious deviations, *τ̂  should 
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be used. Otherwise, Box-Cox transformations can be applied following [14]. Af-
ter this, in the analysis of the transformed data, *τ̂  can be used to construct 
confidence intervals and hypotheses tests about the parameters of the model and 
in the computation of robust coefficients of determination with and without a 
correction by the number of independent variables in the model. 
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Appendix A. Results Used in Section 2 

In Section 2, when we obtained the asymptotic distributions of *τ̂ , the distribu-
tions of the errors were symmetrical about zero. It is easy to see that if X is a 
random variable with values in the interval ]−∞, ∞[, symmetric about zero and 
with density f(x), then the density of Y X=  is  

( ) ( )2 , 0
0, 0

f y y
y

g y


<
=

≥



 

Using this fact, we got E(|εi|) for εi with Normal, Mixture of Normals, Logistic 
or Laplace distribution. 

If the errors follow a Normal distribution, that is, ( )2~ 0,i Nε σ , then 

i iW ε σ=  has the density  
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22 1exp , 0
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i i

i

iw
w w
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and thus 
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σ σ
 

= = 
 

= = , and so  

( ) ( )2iVar W = −π π . 

When the errors follow a mixture of Normal distribution, the probability 
density function of Ui = |εi| is given by 
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and 

( ) ( ) ( ) ( )2 2 21i i iE U E Var p pε ε σ= = = + −  

that is the variance of a random variable with mixture of Normal distributions 
with parameters p, (1 − p), means equal to zero and variances 1 and σ2 respec-
tively. 

Consequently, 
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( )
( ) ( ) ( )2 2 21 2 1 4 1 2

.i

p p
Var U

p p p pσ σ − − − − − + − π π

π
=  

When εi has Logistic distribution with mean zero and variance γ2π2/3. 
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∫ . 

Also ( ) ( )2 2 2 2 3i iE Z E ε γ= π= , and so  

( ) ( ) 2 2 2 20.3289 1.386 1.37i iVar Z Var ε γ γ γ= = − = . 

For εi with Laplace distribution with zero mean and variance 2σ2, |εi| has ex-
ponential distribution with mean equal to σ and variance equal to σ2. Thus, 
( )iE ε σ τ= =  and ( ) 2 2

iVar ε σ τ= = .  

Appendix B. Tables 

Table B1. Values of descriptive statistics observed in the distributions of the estimators *τ̂  and τ̂  generated in the simulation 
study for models with Normal (0, 1) errors (τ = 1.253) and different sample sizes. 

Sample size 
(n) 

mean median mean squared error minimum maximum 

τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  

10 1.233 0.675 1.193 0.661 0.198 0.366 0.276 0.001 2.893 1.073 

20 1.316 0.735 1.289 0.730 0.149 0.286 0.175 0.351 2.681 1.210 

30 1.252 0.758 1.216 0.753 0.109 0.257 0.368 0.477 2.404 1.117 

50 1.138 0.776 1.123 0.773 0.097 0.051 0.447 0.501 2.250 1.030 

100 1.164 0.785 1.158 0.783 0.069 0.223 0.415 0.611 2.014 0.978 

150 1.244 0.790 1.229 0.790 0.058 0.217 0.626 0.646 2.071 0.951 

200 1.246 0.788 1.221 0.786 0.052 0.218 0.680 0.635 2.425 0.933 

 
Table B2. Values of descriptive statistics observed in the distributions of the estimators *τ̂  and τ̂  generated in the simulation 
study for models with Logistic errors (τ = 2.00) and different sample sizes. 

Sample size 
(n) 

mean median mean squared error minimum maximum 

τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  

10 2.120 1.189 2.019 1.165 0.722 0.784 0.253 0.386 5.459 2.675 

20 2.206 1.281 2.146 1.263 0.500 0.580 0.624 0.597 4.950 2.146 

30 2.039 1.311 1.990 1.297 0.290 0.519 0.256 0.746 4.144 2.195 

50 1.814 1.352 1.797 1.340 0.270 0.446 0.619 0.900 3.462 1.910 

100 1.866 1.363 1.831 1.357 0.183 0.420 0.779 0.986 3.383 1.742 

150 2.004 1.372 1.987 1.379 0.141 0.403 1.030 1.078 3.190 1.654 

200 2.035 1.380 2.017 1.376 0.128 0.391 1.070 1.155 3.264 1.668 
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Table B3. Values of descriptive statistics observed in the distributions of the estimators *τ̂  and τ̂  generated in the simulation 
study for models with Laplace errors (τ = 1.00) and different sample sizes. 

Sample size 
(n) 

mean median mean squared error minimum Maximum 

τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  

10 1.461 0.872 1.368 0.843 0.705 0.112 0.162 0.238 4.413 2.207 

20 1.442 0.936 1.401 0.917 0.443 0.052 0.373 0.482 3.479 1.942 

30 1.314 0.975 1.263 0.960 0.261 0.034 0.462 0.481 3.105 1.621 

50 1.072 0.979 1.042 0.974 0.100 0.021 0.382 0.616 2.351 1.453 

100 1.076 0.996 1.058 0.992 0.068 0.009 0.403 0.711 2.025 1.393 

150 1.118 0.991 1.106 0.989 0.065 0.007 0.555 0.767 1.993 1.263 

200 1.099 0.993 1.093 0.992 0.053 0.005 0.557 0.788 1.942 1.223 

 
Table B4. Values of descriptive statistics observed in the distributions of the estimators *τ̂  and τ̂  generated in the simulation 
study for models with 0.85 Normal (0, 1) + 0.15 Normal (0, 49) errors (τ = 1.439) and different sample sizes. 

Sample size 
(n) 

mean median mean squared error minimum Maximum 

τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  

10 1.871 1.340 1.550 1.152 1.884 0.568 0.232 0.293 9.958 6.001 

20 1.640 1.468 1.560 1.387 0.393 0.293 0.425 0.351 8.533 3.838 

30 1.518 1.498 1.501 1.443 0.192 0.206 0.530 0.475 3.465 3.394 

50 1.325 1.484 1.282 1.455 0.144 0.121 0.314 0.636 2.696 2.935 

100 1.338 1.490 1.313 1.479 0.104 0.058 0.561 0.883 2.501 2.334 

150 1.450 1.500 1.435 1.493 0.072 0.043 0.721 0.942 2.558 2.120 

200 1.451 1.502 1.441 1.500 0.067 0.031 0.706 0.975 2.432 2.053 

 
Table B5. Values of descriptive statistics observed in the distributions of the estimators *τ̂  and τ̂  generated in the simulation 
study for models with 0.80 Normal (0, 1) + 0.20 Normal (0, 49) errors (τ = 1.513) and different sample sizes. 

Sample size 
(n) 

mean median mean squared error minimum Maximum 

τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  

10 2.182 1.624 1.716 1.414 2.933 0.638 0.259 0.249 12.500 5.204 

20 1.808 1.690 1.677 1.626 0.684 0.427 0.393 0.541 9.292 4.419 

30 1.610 1.498 1.558 1.498 0.221 0.270 0.606 0.475 4.200 3.394 

50 1.410 1.727 1.399 1.697 0.153 0.193 0.480 0.803 2.883 3.244 

100 1.405 1.739 1.367 1.719 0.111 0.126 0.671 1.069 2.738 2.830 

150 1.519 1.737 1.499 1.729 0.083 0.098 0.759 1.146 2.488 2.617 

200 1.523 1.745 1.511 1.740 0.075 0.092 0.784 1.212 2.383 2.480 
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Table B6. Values of descriptive statistics observed in the distributions of the estimators *τ̂  and τ̂  generated in the simulation 
study for models with Cauchy errors (τ = 1.571) and different sample sizes. 

Sample size 
(n) 

mean median mean squared error minimum maximum 

τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  τ̂  *τ̂  

10 3.480 7.390 2.458 2.070 20.150 2594.0 0.294 0.340 48.505 1203.7 

20 2.375 22.800 2.147 2.800 1.794 182089.0 0.483 0.400 8.343 13019.1 

30 1.931 14.740 1.863 3.010 0.587 51611.0 0.533 0.740 5.191 7064.1 

50 1.578 6.902 1.543 3.608 0.168 348.0 0.533 0.941 3.920 285.1 

100 1.530 41.700 1.509 3.700 0.117 1281096.0 0.684 1.500 2.790 35792.4 

150 1.629 7.866 1.620 3.955 0.097 581.0 0.816 1.689 2.782 488.8 

200 1.615 7.747 1.603 4.205 0.086 375.0 0.819 1.819 2.787 335.2 
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