
Open Journal of Statistics, 2022, 12, 291-302 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2022.122020  Apr. 27, 2022 291 Open Journal of Statistics 
 

 
 
 

On Sample Size Determination When 
Comparing Two Independent Spearman  
or Kendall Coefficients 

Justine O. May1, Stephen W. Looney2 

1Health System Information Technology, Augusta University, Augusta, USA 
2Department of Population Health Sciences, Augusta University, Augusta, USA 

 
 
 

Abstract 
One of the most commonly used statistical methods is bivariate correlation 
analysis. However, it is usually the case that little or no attention is given to 
power and sample size considerations when planning a study in which corre-
lation will be the primary analysis. In fact, when we reviewed studies pub-
lished in clinical research journals in 2014, we found that none of the 111 ar-
ticles that presented results of correlation analyses included a sample size jus-
tification. It is sometimes of interest to compare two correlation coefficients 
between independent groups. For example, one may wish to compare diabet-
ics and non-diabetics in terms of the correlation of systolic blood pressure 
with age. Tools for performing power and sample size calculations for the 
comparison of two independent Pearson correlation coefficients are widely 
available; however, we were unable to identify any easily accessible tools for 
power and sample size calculations when comparing two independent Spear-
man rank correlation coefficients or two independent Kendall coefficients of 
concordance. In this article, we provide formulas and charts that can be used 
to calculate the sample size that is needed when testing the hypothesis that 
two independent Spearman or Kendall coefficients are equal. 
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1. Introduction 

One of the most commonly used statistical methods is bivariate correlation analysis. 
Sometimes it is of interest to compare the correlation of two variables X and Y that 
have been calculated using two independent samples. For example, in an unpub-
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lished Master’s thesis [1], Stuart evaluated several potential biomarkers for se-
verity of symptoms of dry mouth (xerostomia). As part of her assessment of 
these biomarkers, she examined the association of one of the potential biomark-
ers, p21, with another potential biomarker, PCNA. Stuart wished to compare two 
independent groups in terms of the association between p21 and PCNA: 1) healthy 
subjects and 2) dental patients with xerostomia. An important part of the planning 
of this study is to ask the question “How large a sample is needed in the two groups 
to achieve adequate power?” 

Tools are widely available for performing sample size and power calculations 
when the analysis involves the comparison of two Pearson correlation coefficients 
(PCCs). These include, for example, tables [2], software packages (PASS, nQuery, 
G*Power), and internet-based tools (e.g.,  
https://www.unistat.com/guide/sample-size-and-power-two-correlations/). 
However, as best we can determine, there are no easily accessible tools for sample 
size calculation when the planned analysis will be a comparison of either two 
Spearman rank correlation coefficients (SCCs) or two Kendall coefficients of con-
cordance (KCCs). The PCC is the most commonly used measure of bivariate asso-
ciation; however, the SCC and KCC are also widely used. For example, Brough et 
al. [3] used the SCC to measure the associations between peanut protein levels 
found in various household environments, including dust, surfaces, bedding, fur-
nishings and air. Heist et al. [4] used the KCC as the measure of association in 
their study of the use of bevacizumab as a chemotherapeutic agent for the treat-
ment of advanced non-small cell lung cancer. The KCC is also frequently used in 
the analysis of environmental data. For example, Helsel ([5], pp. 227-228) used the 
KCC in his examination of concentrations of dissolved iron in water samples. 

In May and Looney [6], we provided formulas and charts that can be used to de-
termine the sample size needed for a hypothesis test of a single Spearman or Ken-
dall coefficient. In this article, we extend those results to the situation in which it is 
desired to compare two independent Spearman or Kendall coefficients.  

In Section 2, we briefly describe our previously published methods for sample 
size determination for a single Spearman or Kendall coefficient [6]. This will facili-
tate the description of our methods for determining the sample size when compar-
ing two independent coefficients since the results in the two situations are similar in 
many ways. In Section 3, we present the formulas and charts for comparing two 
independent Spearman or Kendall coefficients; in Section 4, we provide some notes 
on the use of the sample size charts; and, in Section 5, we discuss our results. 

2. Methods for Sample Size Determination for a Single  
Measure of Association 

Let ξ denote the population value of the measure of association to be used (either 
the PCC, SCC or KCC). Suppose that we wish to test a hypothesis involving ξ. In 
the two-sided case, for example, the hypotheses to be tested can be stated as: 

0 0 0vs.: : ,aH Hξ ξ ξ ξ= ≠                     (1) 

https://doi.org/10.4236/ojs.2022.122020
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where ξ0 is the pre-specified null value of the desired measure of association and 

01 1ξ− < < . For the PCC, the most common approach for testing the hypotheses 
in (1) is to use a test statistic based on the Fisher z-transform of the sample value 
of the PCC, denoted by r. For any 1 1r− < < , the Fisher z-transform of r is giv-
en by [7]: 

( ) ( ) ( )( )1tanh ln 1 1 2,z r r r r−= = + −               (2) 

which is asymptotically distributed as ( )1 2tanh , zN ρ σ− , where ρ denotes the 
population value of the PCC and 2

zσ  denotes the asymptotic variance of z(r). 
The transformation in (2) can be applied to the sample SCC or KCC; this also 
yields an approximately normally distributed transformed coefficient. For the 
PCC, ( )2 1 3z nσ = −  [7] and, for the KCC, ( )2 0.437 4z nσ = −  [8]. For the 
SCC, the preferred value of 2σ z  depends on ρs, the population value of the 
Spearman coefficient: for 0.95sρ < , ( ) ( )2 21 2 3z s nσ ρ= + −  [9]; for  

0.95sρ ≥ , ( )2 1.06 3z nσ = −  [8]. The value ( )2 1.06 3z nσ = −  is more com-
monly used for the SCC than the improved value proposed by Bonett and 
Wright [9] when 0.95sρ < ; however, the results in this article are based on the 
Bonett and Wright values. 

A test statistic for testing 0 0:H ξ ξ=  based on the Fisher z-transform is giv-
en by: 

( ) ( )
( )

0
0 2

ˆ
,

z z
z

c n b
ξ

ξ ξ−
=

−
                       (3)

 
where ξ̂  denotes the sample estimate of ξ, ξ0 denotes the hypothesized value of 
ξ, n denotes the sample size, ( )z i  denotes the Fisher z-transform, and b and c2 
are obtained from Table 1. 

An approximate p-value is obtained using the appropriate tail probability for 
zξ0 given in (3) using the standard normal distribution. 

Suppose we wish to test 0 0:H ξ ξ=  using the test statistic in (3). Let ξ1 de-
note the alternative value of the measure of association that we wish to detect 
with our planned hypothesis test. The required sample size for detecting the 
value ξ1 with power φ using a two-tailed test of 0 0:H ξ ξ=  with significance 
level α is given by: 

( ) ( )

2
2 12

1 0

,
z z

n b c
z z

α ϕ

ξ ξ
−+ 

= +  
−  

                    (4) 

 
Table 1. Constants needed to apply the Fisher z-transform to measures of association. 

Measure of Association b c2 Source 
Pearson 3 1 [7] 

Spearmana 3 ( )2
01 2sρ+  [9] 

Spearmana 3 1.06 [8] 
Kendall 4 0.437 [8] 

a
0sρ  denotes the null value of the SCC. ( )2 2

01 2sc ρ= +  is used in the sample size cal-

culation if 0 0.95sρ < ; otherwise 1.06 is used. 
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where zγ = upper γ-percentage point of the standard normal distribution, ( )z i  
denotes the Fisher z-transform, and b and c2 are obtained from Table 1. 

For a one-tailed test of 0 0:H ξ ξ= , replace zα/2 in (4) by zα. If the formula in (4) 
does not yield an integer value, round up to the next largest integer. 

In our previous article [6], we provided charts based on (4) for finding the 
sample size needed to achieve 80% power for tests of the SCC and KCC using 
significance level 0.05. 

3. Methods for Sample Size Determination for Two  
Independent Coefficients 

Suppose that we wish to test the equality of two coefficients ξ1 and ξ2, where ξ 
denotes either the SCC or the KCC, and that ξ1 will be estimated using a sample 
that is independent of the sample used to estimate ξ2. In the two-sided case, for 
example, the hypotheses to be tested are given by: 

0 1 2 1 2vs.: : .aH Hξ ξ ξ ξ= ≠                        (5) 

Let ξ0 denote the common value of ξ1 and ξ2 in H0.  
We can use the approximate distributional results given in Section 2 for the 

Fisher z-transform of the estimators of the SCC and KCC to derive a test statistic 
for testing the hypotheses in (5). Let ( )1̂z ξ  and ( )2̂z ξ  denote the Fisher 
z-transformed estimators of ξ1 and ξ2, respectively. Assume that ξ1 is estimated us-
ing a sample that is independent of the sample used to estimate ξ2; hence, 1̂ξ  
and 2̂ξ  are independent. Suppose that the same sample size n will be used to  
estimate ξ1 and ξ2. (The assumption of equal sample sizes will be relaxed in Sec-

tion 4.5.) Under the null hypothesis H0 in (5), the random variable ( ) ( )1 2
ˆ ˆz zξ ξ−  

is asymptotically normally distributed with mean 0 and variance 2 2c
n b

 
 − 

, where  

the appropriate values of b and c2 are given in Table 1. A test statistic for testing 
the hypotheses in (5) is given by: 

( ) ( )
( )

1 2
0 2

ˆ ˆ
,

2

z z
z

c n b
ξ

ξ ξ−
=

−
                       (6)

 

where 1̂ξ  and 2̂ξ  denote the sample estimates of ξ1 and ξ2, respectively, n 
denotes the sample size in each group, ( )z i  denotes the Fisher z-transform, 
and b and c2 are given in Table 1. 

An approximate p-value is then obtained by calculating the appropriate tail 
probability for zξ0 in (6) using the standard normal distribution. 

For the SCC, the hypotheses in (5) would be written as 

0 1 2 1 2vs.: : .s s a s sH Hρ ρ ρ ρ= ≠                   (7) 

Let ρs0 denote the common value of the two Spearman coefficients under the 
null hypothesis in (7); namely, 0 1 2s s sρ ρ ρ= = . The value of c2 in the test statistic 
in (6) when testing two SCCs is therefore ( )2 2

01 2sc ρ= +  if 0 0.95sρ < ; oth-
erwise c2 = 1.06 is used. 

Assume that the two independent measures of association ξ1 and ξ2 (either two 
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PCCs, two SCCs, or two KCCs) will be estimated using samples of equal size. Let 
ξ0 denote the common value of ξ1 and ξ2 in the null hypothesis in (5) and let ξ21 
denote the alternative value of ξ2 that one wishes to detect, assuming that ξ1 = ξ0. 
For a two-tailed test of the null hypothesis in (5), the required sample size for de-
tecting the alternative value ξ21 with power φ using a test based on (6) with signi-
ficance level α is given by:  

( )
( ) ( )

22
2 1

2
0 21

2
,

c z z
n b

z z

α ϕ

ξ ξ

−+
= +

 − 
                   (8) 

where zγ = upper γ-percentage point of the standard normal distribution, and 
( )z i  denotes the Fisher z-transform.  
The values of b and c2 in (8) are given in Table 1. For a one-tailed test of 

0 1 2:H ξ ξ= , replace zα/2 in (8) by zα. If the formula in (8) does not yield an 
integer value, round up to the next largest integer. 

A chart for finding the required per-group sample size that will yield 80% 
power for comparing two independent Spearman coefficients based on samples 
of equal size using significance level 0.05 is provided in Figure 1 for a two-tailed 
test and in Figure 2 for a one-tailed test. The corresponding charts for two in-
dependent Kendall coefficients are given in Figure 3 and Figure 4, respectively.  

 

 
Figure 1. Curves for finding the required sample size that will yield 80% power for a two-tailed test to 
compare two independent Spearman coefficients using significance level 0.05, assuming equal sample sizes 
in the two groups. To use the chart, first locate the larger value for the SCC associated with the alternative 
hypothesis along the horizontal axis. Next, draw a vertical line that intersects with the curve corresponding 
to the smaller value associated with the alternative hypothesis. Finally, draw a horizontal line from the 
curve to the vertical axis. The point of intersection is the required sample size in each group. 
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Figure 2. Curves for finding the required sample size that will yield 80% power for a one-tailed test of two inde-
pendent Spearman coefficients using significance level 0.05, assuming equal sample sizes in the two groups. To use 
the chart, first locate the larger value for the SCC associated with the alternative hypothesis along the horizontal 
axis. Next, draw a vertical line that intersects with the curve corresponding to the smaller value associated with the 
alternative hypothesis. Finally, draw a horizontal line from the curve to the vertical axis. The point of intersection 
is the required sample size in each group. 

 

 
Figure 3. Curves for finding the required sample size that will yield 80% power for a two-tailed test to compare 
two independent Kendall coefficients using significance level 0.05, assuming equal sample sizes in the two groups. 
To use the chart, first locate the smaller value for the KCC associated with the alternative hypothesis along the ho-
rizontal axis. Next, draw a vertical line that intersects with the curve corresponding to the larger value associated 
with the alternative hypothesis. Finally, draw a horizontal line from the curve to the vertical axis. The point of in-
tersection is the required sample size in each group. 
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Figure 4. Curves for finding the required sample size that will yield 80% power for a one-tailed test of two independent 
Kendall coefficients using significance level 0.05, assuming equal sample sizes in the two groups. To use the chart, first lo-
cate the smaller value for the KCC associated with the alternative hypothesis along the horizontal axis. Next, draw a ver-
tical line that intersects with the curve corresponding to the larger value associated with the alternative hypothesis. Finally, 
draw a horizontal line from the curve to the vertical axis. The point of intersection is the required sample size in each 
group.  

 
To use the chart in Figure 1, first locate the larger of the two SCCs associated 

with the alternative hypothesis along the horizontal axis. Next, draw a vertical 
line that intersects with the curve corresponding to the smaller value of the SCC 
associated with the alternative hypothesis. Finally, draw a horizontal line from 
the curve to the vertical axis. The point of intersection is the required sample 
size in each group.  

For example, suppose one wishes to test  

0 1 2 1 2vs: :.s s a s sH Hρ ρ ρ ρ= ≠  

and that the common null value under H0 is 0 1 2 0.6s s sρ ρ ρ= = =  and the al-
ternative value of the SCC that one wishes to detect is 0.4. In other words, the 
alternative difference that one wishes to detect is 1 2 0.6 0.4 0.2s sρ ρ− = − = . To 
use Figure 1 to determine the sample size needed in each group to detect this 
difference with 80% power using a significance level of 0.05, locate  

( )1 2max , 0.6s sρ ρ =  on the horizontal axis and locate the curve corresponding 
to ( )1 2min , 0.4s sρ ρ = . After drawing the horizontal and vertical lines as de-
scribed above, we find n = 258 (Figure 5). For ρs1 = 0.4 and ρs2 = 0.2, locate 

( )1 2max , 0.4s sρ ρ =  on the horizontal axis and locate the curve corresponding 
to ( )1 2min , 0.2s sρ ρ = ; the resulting sample size is n = 351. For a one-tailed 
test, the sample sizes obtained using Figure 2 are 204 and 277, respectively. 
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Figure 5. Illustration of how to use the sample size curves in Figure 1. For the example described in Section 3, first locate 

( )1 2max , 0.6s sρ ρ =  on the horizontal axis and draw a vertical line that intersects with the curve corresponding to 

( )1 2min , 0.4s sρ ρ = . Then, draw a horizontal line from the curve to the vertical axis. The point of intersection with the ver-

tical axis is the required sample size in each group. After drawing the horizontal and vertical lines described above, we find n 
= 258 after using graphical interpolation.  

 
If we use the KCC instead of the SCC as the measure of association, the re-

quired sample size for a two-tailed test, assuming τ1 = 0.6 and τ2 = 0.4 is n = 99, 
according to Figure 3. For τ1 = 0.4 and τ2 = 0.2, the sample size is n = 145. For a 
one-tailed test, the required sample sizes obtained from Figure 4 are 79 and 115, 
respectively. Note that, in the KCC charts, we use the maximum and minimum 
values associated with the alternative hypothesis differently than in the SCC 
charts. For the KCC charts, we first locate ( )1 2min ,τ τ  (rather than the max) 
along the horizontal axis, and then draw a vertical line that intersects with the 
curve corresponding to ( )1 2max ,τ τ  (rather than the min). 

4. Notes on Using the Charts 
4.1. Specification of Planning Values 

It may not be possible for the analyst to specify the relevant planning values ρs0, 
ρs1, and ρs2 for the SCC (or τ0, τ1, and τ2 for the KCC). Since the null hypothesis 
for the SCC in (7) can also be written as 0 1 2: 0s sH ρ ρ− = , it is not necessary to 
specify the common null value 0 1 2s s sρ ρ ρ= =  in H0. However, the required 
sample sizes in the two independent groups depend on the alternative values of ρs1 
and ρs2 to be detected, as illustrated in Table 2 for 1 2 0.2s sρ ρ− =  (assuming 
that 1 2 0s sρ ρ> > ). 
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Table 2. Required sample sizes to detect ρs1 − ρs2 = 0.2, Power = 80%, Significance Level = 
0.05. 

Common Value of ρs1 
and ρs2 under H0 

Value of ρs1 − ρs2  

to Be Detected 
ρs1 ρs2 

Required Sample  
Size in Each Group 

0.1 0.2 0.3 0.1 378 

0.2 0.2 0.4 0.2 351 

0.3 0.2 0.5 0.3 311 

0.4 0.2 0.6 0.4 258 

0.5 0.2 0.7 0.5 197 

0.6 0.2 0.8 0.6 129 

0.7 0.2 0.9 0.7 64 

0.75 0.2 0.95 0.75 34 

 
As can be seen from Table 2, for a given alternative difference ρs1 − ρs2 to be 

detected, the required sample size in each group depends very heavily on the 
values of ρs1 and ρs2. If there is no information available to help specify reasona-
ble planning values, we recommend performing the type of sensitivity analysis 
illustrated in Table 2 to assist in selecting values of ρs0, ρs1, and ρs2 for the SCC 
(or τ0, τ1, and τ2 for the KCC). 

4.2. Minimum Detectable Difference 

In addition to finding the sample size needed for planning statistical inference 
for the SCC and the KCC, the charts can also be used to find the minimum de-
tectable difference for a given sample size. For example, suppose that one wishes 
to compare two independent Kendall coefficients using a two-tailed test, and 
that the largest possible sample size available to the investigators is n = 100 in 
each group. Assuming that the smaller of the two alternative values is τ1 = 0.4, 
one could determine the minimum detectable difference by first drawing a ho-
rizontal line from n = 100 on the vertical axis, and then drawing a vertical line 
from 0.4 on the horizontal axis. One can then simply read off the alternative 
values larger than 0.4 from this vertical line until it intersects with the horizontal 
line drawn from the vertical axis. Using Figure 3, we see that with n = 100 in 
each group, we could detect any alternative value τ2 greater than or equal to 0.6 
with 80% power using a two-tailed significance level of 0.05.  

4.3. Negative Values 

The sample size charts in this article can be used only when ξ1 and ξ2 have the 
same sign. For negative values of ξ1 and ξ2, one simply enters the appropriate 
chart with |ξ1| and |ξ2|. If ξ1 and ξ2 are of opposite signs, the formula in (8) is still 
valid; however, the charts provided in this article do not apply. 

4.4. Interpolation Errors  

As with any graphical method, these charts are subject to error. For example, 
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one must interpolate graphically if the horizontal line drawn from the appropriate 
curve in the charts intersects the vertical axis at a value between the tick marks. 
This is more of a problem for larger sample sizes since the distances between the 
tick marks are much larger. However, the error for the interpolated value of n 
will be no larger than the difference between the values of n corresponding to 
the two relevant tick marks, and an adjustment can be made by slightly inflating 
the value read from the chart. Our experience has been that increasing the n 
value obtained from the chart by 5 is usually adequate. We have found that an 
6-inch ruler marked off in millimeters is particularly useful for carrying out any 
necessary graphical interpolation in the charts. 

4.5. Unequal Sample Sizes 

In Section 3, the assumption was made that the sample sizes were equal in the 
two independent samples used to estimate ξ1 and ξ2. If it is desirable that the 
sample sizes be different in the two groups, this can be accomplished as follows. 
Let n1 and n2 denote the sizes of the samples on which the estimates of ξ1 and ξ2 
will be based, respectively. Let a = n2/n1 denote the desired allocation ratio of the 
sample sizes in the two groups. Let n denote the per-group sample size obtained 
from the charts in Figures 1-4. Then allocating ( )1 2 1n n a= +  to the sample 
used to estimate ξ1 and allocating 2n – n1 to the sample used to estimate ξ2 will 
yield the desired sample sizes n1 and n2. A non-integer value n1 obtained from 
the above formula should be rounded up to the next largest integer. To illustrate, 
consider the example in Section 3, in which the alternative values to be detected 
were ρs1 = 0.6 and ρs2 = 0.4. The per-group sample size obtained from Figure 1 was 
n = 258. Assume that the desired allocation ratio is a = 1/2. Then,  

( ) ( ) ( )1 2 1 2 258 1 0.5 344n n a= + = + =  and ( )2 2 258 344 172n = − = . Equal 
sample sizes in the two independent groups will maximize power for the test of 

0 1 2: s sH ρ ρ=  or 0 1 2:H τ τ= , so allocating unequal sample sizes to the two 
groups will result in a loss of power and should not be done unless absolutely 
necessary. 

4.6. Choice of Values of ρs1 and ρs2 in the Charts  

The values of ρs1 and ρs2 presented in our charts were chosen to make the charts 
as easy to use as possible and to avoid cluttering the graphs. In particular, for the 
Spearman charts (Figure 1, Figure 2, Figure 5), we presented results for the 
following choices of ( )1 2max ,s sρ ρ , which was plotted on the horizontal axis: 
0.05 (0.05) 0.90. We presented results for sample size curves corresponding to 
the following choices of ( )1 2min ,s sρ ρ : 0.0 (0.1) 0.8. If we had included a 
curve for ( )1 2min , 0.9s sρ ρ = , for example, this would have consisted of a 
single point, which we felt would have detracted from the overall visual appeal 
and interpretability of the charts. In general, for any values of ρs1 and ρs2 that are 
not available on the sample size curves for either the Spearman or Kendall 
coefficients, the simple formula for n given in Equation (8) can be used to 
determine the required sample size. 
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5. Discussion 

In this article, we have presented charts that can be used for sample size 
determination when planning a study in which hypothesis testing will be used to 
compare two independent Spearman or Kendall coefficients. In addition to the 
charts, we have provided simple sample size formulas that can be used for more 
accurate calculations. We have found Microsoft Excel© to be particularly useful 
for performing these calculations, and a spreadsheet that accomplishes this is 
available from the second author. 

Despite the widespread use of correlation analysis, it is usually the case that, 
when planning a study in which correlation will be the primary analysis, little or 
no attention is given to sample size determination. This general impression was 
confirmed by our review of studies that used correlation as the primary analysis; 
none of the 111 studies published in clinical research journals in 2014 provided a 
power analysis or sample size calculation.  

While it is true that two of the key references in this article ([7] [9]) are rather old, 
they provide valid results that are directly relevant to the present article. As stated in 
the Introduction, we were unable to locate any modern tools (software, tables, 
graphs, etc.) that can be used to determine the sample size needed for comparing 
two independent Spearman or Kendall coefficients. Hence, we made use of the 
classical results from these two articles to develop our new tools for addressing this 
problem. The present article represents an application of the results in [7] [8], and 
[9] to extend our results of our recently published article [6], which considered only 
a single Spearman or Kendall coefficient. 

We hope that, by making available the easy-to-use tools presented in this 
article, analysts will be encouraged to perform sample size calculations for 
correlation coefficient inference. Given the adverse consequences that can occur 
when studies are either under- or over-powered, it is extremely important that 
such calculations be made prior to beginning a research study. Our future research 
efforts will focus on extending our results in [6] to sample size estimation for the 
intra-class correlation. 
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