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Abstract 
In this paper, we present a compact version of the Heart iteration. One that 
requires less matrix-vector products per iteration and attains faster conver-
gence. The Heart iteration is a new type of Restarted Krylov methods for cal-
culating peripheral eigenvalues of symmetric matrices. The new framework 
avoids the Lanczos tridiagonalization process and the use of implicit restarts. 
This simplifies the restarting mechanism and allows the introduction of sev-
eral modifications. Convergence is assured by a monotonicity property that 
pushes the computed Ritz values toward their limits. Numerical experiments 
illustrate the usefulness of the proposed approach.  
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1. Introduction 

The Heart iteration is a new type of Restarted Krylov methods. Given a symme-
tric matrix n nG ×∈ , the method is aimed at calculating a cluster of k exterior 
eigenvalues of G. As other Krylov methods it is best suited for handling large 
sparse matrices in which a matrix-vector product needs only 0(n) flops. Another 
underlying assumption is that the number of computed eigenvalues, k, is much 
smaller than n. The use of restarted Krylov methods for solving such problems 
was considered by several authors, e.g., [1]-[22]. Most of these methods are 
based on a Lanczos tridiagonalization algorithm in which the starting vector is 
determined by an implicit restart process. The Heart iteration is not using these 
tools. It is based on Gram-Schmidt orthogonalization and a simple intuitive 
choice of the starting vector. This results in a simple iteration that allows several 
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modifications. Convergence is assured by a monotonicity property that pushes 
the computed eigenvalues toward their limits. 

The main idea behind the new method is clarified by inspecting its basic itera-
tion. Below we concentrate on the largest eigenvalues, but the algorithm can 
compute any cluster of k exterior eigenvalues. Let the eigenvalues of G be sorted 
to satisfy  

1 2 .nλ λ λ≥ ≥ ≥�                         (1.1) 

Then the term “exterior eigenvalues” refers to the k largest eigenvalues, the k 
smallest eigenvalues, or any set of k eigenvalues that is combined from a number 
of the largest eigenvalues plus a number of the smallest ones. Other names for 
such eigenvalues are “peripheral eigenvalues” and “extreme eigenvalues”. 

Note that although the above definitions refer to clusters of eigenvalues, the 
algorithm is carried out by computing the corresponding k eigenvectors of G. 
The subspace that is spanned by these eigenvectors is called the target space. 

The basic Heart iteration 
The qth iteration, 0,1,2,q = � , is composed of the following five steps. The 

first step starts with a matrix n k
qV ×∈  that contains “old” information on the 

target space, a matrix n
qY ×∈ �  that contains “new” information, and a matrix 

( ), n k
q q qX V Y × + = ∈ 

�  that includes all the known information. The matrix 

qX  has p k= + �  orthonormal columns. That is  
T .p p
q qX X I ×= ∈  

(Typical values for �  lie between k to 2k.) 
Step 1: Eigenvalues extraction. Given the Rayleigh quotient matrix  

T ,q q qS X GX=  

compute the k largest eigenvalues of qS . The corresponding k eigenvectors of 

qS  are assembled in a matrix  
T, ,p k k k

q q qU U U I× ×∈ = ∈   

which is used to compute the related matrix of Ritz vectors,  

1 .q q qV X U+ =  

Note that both qX  and qU  have orthonormal columns and 1qV +  inherits this 
property. 

Step 2: Collect new information. Compute a Krylov matrix n
qB ×∈ �  that 

contains new information on the target space. 
Step 3: Orthogonalize the columns of qB  against the columns of 1qV + . 

There are several ways to achieve this task. In exact arithmetic, the resulting ma-
trix, qZ , satisfies the Gram-Schmidt formula  

( )T
1 1 .q q q q qZ B V V B+ += −  

Step 4: Build an orthonormal basis of Range ( qZ ). Compute a matrix, 
T

1 1 1, ,n
q q qY Y Y I× ×
+ + +∈ = ∈� � �   
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whose columns form an orthonormal basis of Range ( qZ ). This can be done by a 
QR factorization of qZ . (If rank ( qZ ) is smaller than � , then �  is temporarily 
reduced to be rank ( qZ ).) 

Step 5: Define 1qX +  by the rule  

1 1 1, ,q q qX V Y+ + + =    

which ensures that  
T

1 1 .p p
q qX X I ×
+ + = ∈  

Then compute the new Rayleigh quotient matrix  
T

1 1 1.q q qS X GX+ + +=  

This matrix will be used at the beginning of the next iteration. 
At this point we are not concerned with efficiency issues, and the above de-

scription is mainly aimed at clarifying the purpose of each step. (A more effec-
tive scheme is proposed in Section 4.) The name “Heart iteration” comes from 
the similarity to the heart’s systole-diastole cardiac cycle: Step 1 achieves sub-
space contraction (eigenvalues extraction), while in Steps 2 - 5 the subspace ex-
pands (collecting new information). 

The plan of the paper is as follows. The monotonicity property that motivates 
the new method is established in the next section. Then, in Section 3, we de-
scribe a simple Krylov subspace process that constructs qB . The aim of this pa-
per is to present an efficient implementation of the Heart iteration. The new ite-
ration combines Steps 2 - 5 into one “compact” step. This results in a simple ef-
fective algorithm that uses less matrix-vector products per iteration. The details 
of the new iteration are given in Section 4. The paper ends with numerical expe-
riments that illustrate the usefulness of the proposed method. 

2. The Monotonicity Property 

In this section we establish a useful property of the proposed method. The proof 
can be found in former presentations of the Heart iteration, e.g., [5] [6] [7] [8]. 
Yet, in order to make this paper self-contained, we provide the proof. The main 
argument is based on the following well-known interlacing theorems, e.g., [11] 
[15] [23]. 

Theorem 1 (Cauchy interlace theorem) Let n nG ×∈  be a symmetric ma-
trix with eigenvalues  

1 2 .nλ λ λ≥ ≥ ≥�                         (2.1) 

Let the symmetric matrix k kH ×∈  be obtained from G by deleting n k−  
rows and the corresponding n k−  columns. Let  

1 2 kη η η≥ ≥ ≥�                         (2.2) 

denote the eigenvalues of H. Then  

for 1, , ,j j j kλ η≥ = �                     (2.3) 

and  
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1 1 for 1, , .k i n i i kη λ+ − + −≥ = �                   (2.4) 

In particular, for 1k n= −  we have the interlacing relations  

1 1 2 2 3 1 1 .n n nλ η λ η λ λ η λ− −≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥�             (2.5) 

Corollary 2 (Poincaré separation theorem) Let the matrix n kV ×∈  have k 
orthonormal columns. That is T k kV V I ×= ∈ . Let the matrix TH V GV=  
have the eigenvalues (2.2). Then the eigenvalues of H and G satisfy (2.3) and 
(2.4).  

The last observation enables us to prove the following monotonicity property. 
Theorem 3. Consider the qth iteration of the new method, 1,2,3,q = � . 

Assume that the eigenvalues of G satisfy (2.1) and let the eigenvalues of the ma-
trix  

TT , ,q q q q q q qS X GX V Y G V Y   = =      

be denoted as  
( ) ( ) ( ) ( )

1 2 .q q q q
k pλ λ λ λ≥ ≥ ≥ ≥ ≥� �  

Then the inequalities  
( ) ( )1q q

j j jλ λ λ −≥ ≥                        (2.6) 

hold for 1, ,j k= �  and 1,2,3,q = � . 
Proof: The Ritz values which are computed at Step 1 are 

( ) ( ) ( )
1 2 ,q q q

kλ λ λ≥ ≥�  

and these values are the largest eigenvalues of the matrix 
T .q q qS X GX=  

Similarly, 
( ) ( ) ( )1 1 1

1 2 ,q q q
kλ λ λ− − −≥ ≥ ≥�  

are eigenvalues of the matrix 
T .q qV GV  

Therefore, since the columns of qV  are the first k columns of qX ,  
( ) ( )1 for 1, , ,q q
j j j kλ λ −≥ = �  

while a further use of Corollary 2 gives  
( ) for 1, , .q

j j j kλ λ≥ = �  

Hence by combining these relations we obtain (2.6).                       
The treatment of other exterior clusters is done in a similar way. Assume for 

example that the algorithm is aimed at computing the k smallest eigenvalues of 
G,  

{ }1 1, , , .n k n nλ λ λ+ − −�  

Then similar arguments show that  
( ) ( )1

1 1 1
q q

p i p i n iλ λ λ−
+ − + − + −≥ ≥                     (2.7) 
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for 1, ,i k= � , and 1,2,3,q = � . 
The proof of Theorem 3 emphasizes the importance of the orthonormality re-

lations, and provides the motivation behind the basic iteration. Moreover, since 
orthonormality ensures monotonicity, it is not essential to construct qB  by ap-
plying the Lanczos algorithm. This consequence is used in the next sections. 

3. The Basic Krylov Matrix 

The basic Krylov information matrix has the form 

[ ]1 2, , , ,n
qB ×= ∈b b b �

��                     (3.1) 

where the sequence 1 2, ,b b � , is initialized by the starting vector 0b . The ability 
of a Krylov subspace to approximate a dominant subspace is characterized by 
the Kaniel-Paige-Saad bounds (See, for example, [10]: pp. 552-554; [15]: pp. 
242-247; [16]: pp. 147-151; [18]: pp. 272-274), and the references therein. One 
consequence of these bounds regards the angle between 1b  and the dominant 
subspace: The smaller the angle, the better approximation we get. This suggests 
that 0b  should be defined as the sum of the current Ritz vectors. That is,  

0 1qV +=b e                         (3.2) 

where ( )T1,1, ,1 k= ∈e �   is a vector of ones. (If some of the Ritz vectors have 
already converged then it is possible to remove these vectors from the sum.) 
Note that there is no point in setting 1 1qV +=b e , since in the next step qB  is or-
thogonalized against 1qV + . 

The other columns of qB  are obtained by a Krylov process that resembles 
Lanczos’ algorithm but uses direct orthogonalization. Let n∈r   be a given 
vector and let n∈q   be a unit length vector. That is 

2 1=q  where 
2⋅  de-

notes the Euclidean vector norm. Then the statement “orthogonalize r  against 
q ” is carried out by replacing r  with ( )T−r r q q . Similarly, the statement 
“normalize r ” is carried out by replacing r  with 

2r r . With these conven-
tions at hand the construction of the vectors 0 1, , ,b b b�� , is carried out as fol-
lows. 

The preparations part 
1) Compute the starting vector: 

0 1 1 2q qV V+ +=b e e                       (3.3) 

2) Compute 1b :      Set 1 0G=b b . 
Orthogonalize 1b  against 0b . 
Normalize 1b . 

3) Compute 2b :      Set 2 1G=b b .  
Orthogonalize 2b  against 0b . 
Orthogonalize 2b  against 1b . 
Normalize 2b . 

The iterative part 
For 3, ,j = � � , compute jb  as follows: 
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Set 1j jG −=b b .  
Orthogonalize jb  against 2j−b .  
Orthogonalize jb  against 1j−b .  
Normalize jb . 

The direct orthogonalization that we use differs from Lanczos’ algorithm and, 
therefore, fails to achieve a reduction of G into a tridiagonal form (The differ-
ence lies in the term that connects jb  with 2j−b ). It is also important to note 
that although 0b  is defined in an “explicit” way, there is a major difference be-
tween our method and former explicitly restarted Krylov methods. That is, in 
Steps 3 and 4 the Krylov matrix qB  is orthogonalized against 1qV +  and the re-
sulting matrix, qZ , is used to construct an orthonormal extension of 1qV + . This 
important ingredient is missing in the former explicit methods. 

4. A Compact Version of the Heart Iteration 

One feature that characterizes the basic Heart iteration is a direct computation 
of the Rayleigh quotient matrix  

T .q q qS X GX=                           (4.1) 

In this section we describe a compact version of the Heart iteration that avoids 
this computation. Instead qS  is computed “on the fly”, as a by-product of the 
expanding process. The main idea is that the Krylov process in Step 2 and the 
orthogonalization in Steps 3 - 4 can be combined into one process. Moreover, 
observe that the columns of qS  have the form  

( )T , 1, , ,q jX G j p=x �                       (4.2) 

where jx  denotes the jth column of qX . Hence the vector jGx  can be used 
both to construct qS  and to expand the Krylov subspace. 

The contraction part remains unchanged. As before, it ends by computing a 
Ritz vectors matrix  

T, ,n k k kV V V I× ×∈ = ∈                     (4.3) 

that satisfies  
T ,V GV D=                           (4.4) 

where D is a k k×  diagonal matrix whose diagonal entries are the computed 
Ritz values (The iteration subscripts are removed to ease the description). 

The expansion process starts with the matrices  
X V=  

and  

S D= . 

Then the Krylov sequence begins with the vector  

( ) ,G V=z e  

and performs �  steps. The jth step, 1, ,j k k= + +� � , begins with the matrix  
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( )1
1 1, , n j

jX × −
− = ∈ x x�                      (4.5) 

and ends with the matrix  

1 1, , , .n j
j jX ×
− = ∈ x x x�                    (4.6) 

The vector jG=z x  serves two purposes: To start the computation of 1j+x , and 
to extend the Rayleigh quotient matrix. The vector 1j+x  is obtained by ortho-
gonalizing z  against the columns of X. When using Gram-Schmidt orthogona-
lization this is achieved by replacing z  with the vector ( )TX X−z z . Below we 
denote this operation as  

( )TX X= −z z z .                      (4.7) 

In practice one use of (4.7) is not sufficient to maintain orthogonality, so we 
need to repeat this operation. 

The building of the Rayleigh quotient matrix  
T

1 1 1q q qS X GX+ + +=                       (4.8) 

is based on the following observations. At the beginning of the jth step, 
1, ,j k k= + +� � , the matrix X has the form (4.5) and the matrix  

TS X GX=                            (4.9) 

is a ( ) ( )1 1j j− × −  principal submatrix of 1qS + . At the end of the jth step X has 
the form (4.6) and the matrix (4.9) is a j j×  principal submatrix of 1qS + . The 
“new” entries of S are , 1, ,ij jis s i j= = � , and these entries are obtained from 
the vector  

( ) ( )T T T
1, , j jr r X G X= = =r x z� .               (4.10) 

A further saving is gained by noting that r  can be used in the orthogonaliza-
tion of z  against the columns of X. The expansion process ends with a matrix 
X that has k + �  orthonormal columns, and the related Rayleigh quotient ma-
trix  

T .S X GX=                          (4.11) 

These matrices are the input for the next iteration (As before, we omit indices to 
ease the notation). 

The compact Heart iteration 
Part I: Contraction 

Compute the k largest eigenvalues of S and the corresponding eigenvectors. The 
eigenvalues construct a diagonal matrix, k kD ×∈ . The eigenvectors are assem-
bled into the matrix  

( ) T, ,k kU U U I+ ×∈ =�                    (4.12) 

which is used to compute the related matrix of Ritz vectors  

.n kV XU ×= ∈                       (4.13) 

Since both X and U have orthonormal columns the matrix V inherits this prop-
erty. 
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Part II: Expansion 
First set  

,X V=                           (4.14) 

,S D=                           (4.15) 

( ) ,G V=z e                         (4.16) 

and 
TX=r z .                         (4.17) 

Then for 1, ,j k k= + +� � , do as follows. 
Gram-Schmidt orthogonalization: Set X= −z z r .  
Gram-Schmidt reorthogonalization: Set ( )TX X= −z z z .  
Normalize z .  
Expand X to be [ ],X z .  
Set G=z z .  
Expand S by computing the vector  

( )T T
1, , jr r X= =�r z  

and setting the new entries of S to be  
for 1, , .ij ji is s r i j= = = �  

The main feature that characterizes this scheme is its simplicity. Furthermore, 
now each iteration needs only 1+�  matrix-vector products. 

5. The Initial Orthonormal Matrix 

To start the Heart iteration we need to supply an “initial” orthonormal matrix, 

0
n pX ×∈ , and the corresponding Rayleigh quotient matrix T

0 0 0S X GX= . In 
our experiments this was done in the following way. Define p k= + �  and let 
the n p×  matrix  

0 1 2, , , pB  =  b b b�                      (5.1) 

be generated as in Section 3, using the starting vector  

0 2=b e e                         (5.2) 

where ( )T1,1, ,1 n= ∈e �  . Then 0X  is obtained by computing an orthonor-
mal basis of Range ( 0B ). 

6. Numerical Experiments 

In this section we describe some experiments with the proposed methods. The 
basic Heart iteration was used with 40k= +�  (Recall that k denotes the num-
ber of desired eigenvalues). The compact Heart iteration was tested with two 
values of � . The first one is 40k= +� , as in the basic iteration. The second 
value of �  is  

[ ]100

40
k=�                        (6.1a) 

This notation means that �  is obtained from k in the following way:  
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If 40k ≤  then 40=� ;                     (6.1b) 
if 40 100k≤ ≤  then k=� ;                 (6.1c) 
if 100 k≤  then 100=� .                   (6.1d) 

Note that [ ]100

40
40k k+ ≥ , hence the second choice increases the number of 

iterations, but reduces the computational effort per iteration. The first experi-
ments concentrate on the number of iterations (number of restarts) that are 
needed by each method. For this purpose we have used diagonal test matrices 
have the form 

{ }1 2diag , , , n n
nD λ λ λ ×= ∈�                    (6.2) 

where  

1 2 0.nλ λ λ≥ ≥ ≥ ≥�                      (6.3) 

(Since we are interested in iterations there is no loss of generality in experi-
menting with diagonal matrices, e.g., ([9]: page 367) The diagonal matrices that 
we have used are displayed in Table 1. The eigenvalues of the “Normal distribu-
tion” matrix were generated with MATLAB’s command “randn(n, 1)”.  
 
Table 1. Types of test matrices, 200000n = . 

Matrix type 
Matrix eigenvalues 

, 1, ,j j nλ = �  

Harmonic 1j jλ =  

Harmonic roots ( )1 21j jλ =  

Geometric decay ( )0.95 j
jλ =  

Moderate geometric decay ( )0.99 j
jλ =  

Slow geometric decay ( )0.999 j
jλ =  

Very slow geometric decay ( )0.9999 j
jλ =  

Equispaced 
( )1001 1000j jλ = −  for = 1, ,1000j � , 

1j jλ =  for 1001, ,j n= �  

Densely equispaced 
( )10001 10000j jλ = −  for 1, ,10000j = � , 

1j jλ =  for 10001, ,j n= �  

Normal distribution Normally distributed eigenvalues 

 
All the experiments were carried out with n = 200,000, and are aimed at 

computing the k largest eigenvalues. The iterative process was terminated as 
soon as it satisfies the stopping condition. 

( ) ( ) 14
1

1
10 ,

k
q

j j
j

kλ λ λ −

=

 
− ≤ 

 
∑                  (6.4) 
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where, as before,  
( ) ( )

1
q q

kλ λ≥ ≥�  

denote the computed Ritz values at the qth iteration. 
 
Table 2. Computing k dominant eigenvalues with the basic Heart iteration, 40k= +� . 

Matrix type 
Number of iterations 

6k =  10k =  20k =  40k =  100k =  200k =  

Harmonic 0 0 0 0 0 0 

Harmonic roots 0 0 0 2 3 4 

Geometric 0 0 0 0 0 0 

Moderate Geometric 1 1 2 2 0 0 

Slow Geometric 7 7 7 9 10 7 

Very slow Geometric 38 35 34 26 33 30 

Equispaced 6 7 7 9 8 5 

Densely Equispaced 38 35 37 29 31 29 

Normal Distribution 3 6 9 17 21 32 

 
The figures in Tables 2-4 provide the number of iterations that are needed to 

satisfy (6.4). Thus, for example, from Table 2 we see that only 5 iterations of ba-
sic Heart are needed to compute the largest 200k =  eigenvalues of the Equis-
paced test matrix. A comparison of Table 2 with Table 3 shows that the com-
pact version often requires a smaller number of iterations. One reason for this 
gain lies in the order of the orthogonalizations. In the basic scheme rank ( 1qY + ) 
can be smaller than l, while in the compact scheme rank ( 1qY + ) is guaranteed to 
be l. This implies that the compact scheme is able to collect a larger amount of 
new information. 
 
Table 3. Computing k dominant eigenvalues with the compact Heart iteration, 

40k= +� . 

Matrix type 
Number of iterations 

6k =  10k =  20k =  40k =  100k =  200k =  

Harmonic 0 0 0 0 0 0 

Harmonic roots 0 0 0 1 1 1 

Geometric 0 0 0 0 0 0 

Moderate Geometric 1 1 1 1 0 0 

Slow Geometric 6 7 6 5 4 3 

Very slow Geometric 38 36 30 23 16 12 

Equispaced 6 7 6 5 4 2 

Densely Equispaced 38 36 30 22 16 12 

Normal Distribution 2 5 5 6 6 7 
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Table 4. Computing k dominant eigenvalues with the compact Heart iteration, [ ]100

40
k=� . 

Matrix type 
Number of iterations 

6k =  10k =  20k =  40k =  100k =  200k =  

Harmonic 0 0 0 1 1 2 

Harmonic roots 0 0 1 2 1 3 

Geometric 0 0 0 0 0 0 

Moderate 
Geometric 

2 2 2 3 1 1 

Slow Geometric 9 10 11 15 6 8 

Very slow 
Geometric 

47 50 57 75 27 35 

Equispaced 8 9 10 15 6 6 

Densely 
Equispaced 

47 50 56 76 25 32 

Normal 
Distribution 

3 8 8 12 9 18 

 
The second part of our experiments provides timing results that compare the 

Heart iterations and MATLAB’s “eigs” function. For this purpose we have used 
“PH” matrices that have the following form:  

T

1 1
,

p p
n n

i i
i i

G H D H ×

= =

   
= ∈   
   
∏ ∏ �                 (6.5) 

where n nD ×∈  is a diagonal matrix and , 1, ,iH i p= � , are n n×  sparse 
random Householder matrices. The matrix D has the form (6.2)-(6.3) with ei-
genvalues that achieve “slow geometric decay”. That is,  

( ) 10.999 for 1, , .j
j j nλ −= = �                   (6.6) 

The Householder matrices, , 1, ,iH i p= � , have the form  
T T2 ,i i i i iH I= − h h h h                       (6.7) 

where n
i ∈h   is a sparse random vector. To generate this vector we have used 

MATLAB’s command h = sprand(n, 1, density) with the density 1000/n. This 
yields a sparse n-vector that has about 1000 nonzero entries at random locations. 
Consequently, for small values of p the resulting PH matrix (6.5) is a large sparse 
symmetric matrix whose nonzero entries lie at random locations. The number of 
nonzero, ν , increases with p, see Table 6. Thus, for example, the 3H matrix has 
9,071,462 nonzero entries, while the 7H matrix has 47,417,512 nonzeroes. 

The results in Table 5 and Table 6 provide both the computation times (in 
seconds) and the number of iterations that are needed to compute the k largest 
eigenvalues. The eigenvalues of a PH matrix are given by (6.6). Thus, as before, 
the iterative process terminates as soon as (6.4) is satisfied. 
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Table 5. Timing results (in seconds) and number of iterations for the 3H matrix, 
200000n = , 9071462ν = . 

Number of 
eigenpairs 

basic Heart compact Heart compact Heart 
eigs 

40k= +�  40k= +�  [ ]100

40
k=�  

k time iter. time iter. time iter. time 

6 24.5 7 16.3 7 18.9 9 17.6 

10 28.5 7 18.8 7 22.0 10 18.5 

20 34.3 7 23.1 6 27.6 11 22.7 

40 78.6 10 37.5 5 47.0 14 35.2 

100 151.6 10 83.9 4 83.8 6 80.1 

200 271.5 8 215.1 4 162.9 8 187.9 

300 336.7 6 316.4 3 290.8 11 289.6 

400 388.3 5 461.4 3 421.9 13 407.3 

500 479.8 5 672.7 3 475.2 12 651.4 

600 722.5 5 657.8 2 617.4 13 734.3 

 
Table 6. Timing results (in seconds) and number of iterations for computing 50k =  
dominant eigenpairs of PH matrices. 

Matrix basic Heart compact Heart compact Heart 

eigs 

p 

Number of 
nonzero 40 90k= + =�  40 90k= + =�  [ ]100

40
50k= =�  

ν  time iter. time iter. time iter. time 

0 200,000 48.6 10 30.3 5 33.5 12 14.1 

1 1,197,002 50.5 10 31.5 5 37.7 13 26.4 

2 4,158,110 66.4 11 36.2 5 40.3 12 31.5 

3 9,071,462 83.5 10 47.8 5 55.3 13 39.4 

4 15,909,332 113.5 10 60.6 5 70.9 13 50.3 

5 24,559,160 158.0 10 76.8 5 88.4 13 64.8 

6 35,098,556 180.1 9 94.6 5 108.0 13 80.1 

7 47,417,512 250.0 10 108.0 5 133.1 13 100.1 

8 61,438,450 265.5 9 135.0 5 158.5 13 120.0 

9 77,349,872 343.6 10 151.9 5 185.4 13 143.1 

 
Let us turn now to conduct a brief operations count for the compact Heart 

iteration. The Gram-Schmidt orthogonalizations require about  

( ) ( ) ( )2 2 2 2 2n k l k n l kl nl l k + − = + = +   

multiplications per iteration, while the matrix-vector products require ( )1l ν+  
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multiplications per iteration. The size of the Rayleigh quotient matrix is k l+ , 
and the spectral decomposition of this matrix requires a moderate multiple of 
( )3k l+  multiplications. Thus, when k l+  is negligible with respect to n, the 
spectral decomposition of the Rayleigh-quotient matrix requires considerably 
less efforts than the orthogonalizations. In our experiments the spectral decom-
position was carried out with MATLAB’s “eig” function. In this case, for 

100k =  and 40 140l k= + = , the spectral decomposition of the related 240 × 
240 matrix required, on average, about 0.01 seconds. Similarly, for 500k =  and  

40 540l k= + = , the spectral decomposition of the related 1040 × 1040 matrix 
required, on average, 0.1 seconds. That is, the time spent on the spectral de-
composition is negligible with respect to the overall computation time. Re-
call that the Lanczos process provides a tridiagonal ( ) ( )k l k l+ × +  Rayleigh 
quotient matrix whose spectral decomposition is faster than that of a full matrix 
of the same size. Yet the last observation suggests that this is not a real gain. The 
Ritz vectors matrix 1q q qV X U+ =  is obtained by one matrix-matrix product. 
Thus, although this product achieves ( )n k l k+  multiplications, it needs con-
siderably less time than the time required for orthogonalizations. These consid-
erations show that most of the computation time is spent during the expansion 
process, on orthogonalizations and matrix-vector products. 

The experiments in Table 5 and Table 6 illustrate how these tasks affect the 
computation times. Table 5 concentrates on the 3H matrix and runs the algo-
rithms for increasing values of k. Thus, for example, we see that for 200k =  
“eigs” required 187.9 seconds, while compact Heart with [ ]100

40
200 100l = =  

terminated after 8 iterations and 162.9 seconds. In 3H matrices the number of 
nonzero is moderate; hence for large k most of the computation time is spent on 
orthogonalizations. Table 6 concentrates on 50k =  and runs the algorithm 
with increasing numbers of nonzero. Since k is fixed, the time spent on ortho-
gonalizations is fixed, and the increase in time is mainly due to the cost of ma-
trix-vector products. 

The timing results demonstrate the ability of the compact Heart algorithm to 
compete with MATLAB’s “eigs” program. We see that compact Heart is not 
much slower than “eigs”, and in some cases, it is faster. When judging the timing 
results it is important to note that compact Heart was programmed (in 
MATLAB) exactly as described in Section 4. Yet, as in other Krylov subspace 
methods, the basic version can be improved in several ways. Such modifications 
may include, for example, more effective orthogonalization schemes, locking, 
and improved rules for the choice of l. Hence from this point of view, the new 
method is quite promising. 

7. Concluding Remarks 

Perhaps the main feature that characterizes the new iteration is its simplicity. 
The discarding of Lanczos’ tridiagonalization and implicit restarts results in a 
simple iteration that retains a fast rate of convergence. As we have seen, in many 
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cases it requires a remarkably small number of iterations. 
The compact Heart iteration is an elegant version of the basic Heart iteration. 

It uses an effective orthogonalization scheme that avoids the direct computation 
of the Rayleigh quotient matrix. The experiments that we have done are quite 
encouraging. 

The Heart iteration is a useful tool for calculating low-rank approximations of 
large matrices. The cross-product approach that was proposed in [8] uses the 
basic Heart iteration and can be improved by applying the new compact version. 
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