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Abstract 
We present a novel method to analyze extreme events of flows over manifolds 
called Peaks Over Manifold (POM). Here we show that under general and 
realistic hypotheses, the distribution of affectation measures converges to a 
Generalized Pareto Distribution (GPD). The method is applicable to floods, 
ice cover extent, extreme rainfall or marine heatwaves. We present an appli-
cation to a synthetic data set on tide height and to real ice cover data in An-
tartica. 
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1. Introduction 

Extreme events such as Tsunamis or floods are crucial for the impact they have 
in societies and ecosystems human developments as financial markets, industrial 
methods of production, telecommunication systems, and, at last but not least, on 
natural phenomena and its relationship with antropogenic factors [1]-[9]. The 
appropriate characterization of the impact of these events requires novel theo-
retical developments. Techniques such as the peak over threshold (POT) for un-
ivariate time series, which describe the distribution of the excess of a time series 
with respect to a given (large) threshold are well known from decades ago [10] 
[11] [12]. The change from univariate to n-dimensional data implies substantial 
additional complexity and in particular an unsolved problem is to characterize 
the distribution of excesses of the progressive development of mass, physical, bi-
ological or chemical properties on affected areas (tides, floods, ice cover, etc.) 
over surfaces or manifolds. We will call flow such kind of phenomena. Here, we 
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derive a theoretical model on the distribution of extremes of flows over a surface 
or manifold. We also test the proposed model using synthetic data on tide 
heights and a real data set containing time series of ice cover over Antartica. 

The paper is organized as follows. First we will expose the framework provid-
ing a precise model for flow data. We shall always consider the case of flows over 
surfaces, but with no particular effort, everything can be extended to Rieman-
nian manifolds. Then, we will introduce two preliminary indexes of impact of a 
set of data flow, in Theorems 1 and 2, helping to arrive to the main result of this 
paper, Theorem 3. In our main result, we consider an impact measure, whose 
density may be chosen according to subjective valuation of risks. We then com-
pute this impact of the flow expansion over the region with an (intrinsic) dis-
tance greater than u to the base line of the flow. In terms of tides, we measure 
affectation of areas at a distance greater than u meters from the tides base line. We 
then show that, for u tending to infinity. The distribution of this impact condi-
tioned to the fact that the impact is positive, converges to a Generalized Pareto 
Distribution. We finally show the application of this result to simulated data on 
tide height and beach cover and to a real data set of ice cover in Antartica. 

2. POM Derivation 

Let S be a smooth (differentiable) surface with intrinsic distance d and intrinsic 
area measure σ . Let us assume that S is simply connected and that C is a 
finite-length differentiable curve. We will say that C splits S in the following 
sense: 

1) C defines two disjoint sets, namely intC  and extC .  
2) extC  is defined at each point x of C by ( )n x , the unitary vector on the 

tangent plane of S at x that is perpendicular to the tangent vector ( )v x  of the 
curve C at x, ( )n x  taking the anti-clockwise direction (Figure 1). Notice that 

int extS C C C=    and recall that C is not included neither in intC  nor extC .  
Given two differentiable curves C  and C ∗  that splits S, we will say that 

they define a coherent splitting if any of the following conditions is matched 
(Figure 2): 
 

 
Figure 1. Schematic representation of a surface S and a curve C that splits the space into 
two regions. The external region (Cext) and an internal region Cint. At each point (x) of 
curve C the tangent vector (v(x)) and a perpendicular vector (n(x)) defines the regions. 
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Figure 2. Schematic example of a coherent splitting of the space. 

 
1)  , ext ext int intC C C C⊂ ∗ ∗ ⊂   
2)  , int int ext extC C C C⊂ ∗ ∗ ⊂    
Given any 0r > , we define 

( ) ( ){ }: ,extC r x C d x C r= ∈ ≤  

We then have that  

( ) rC r C C∂ =   

where ( ){ }: ,r extC x C d x C r= ∈ =  that we assume to be a differentiable curve. 
We will assume that , rC C  define a coherent splitting (Figure 3). 

We will now consider a function a that quantifies, in terms of density, the 
impact of the flow at each point. More precisely, we will assume: 

i) ( ) 0a x ≥  x S∀ ∈  
ii) ( ) 0a x >  extx C∀ ∈  
iii) ( ) 0a x =  intx C∀ ∈  
iv) a is continuos in extC C  
v) ( ) ( ) d

extC
a x xσ = +∞∫  

vi) 
( ) ( ) ( ) d

C r
a x xσ∫  is finite 0r∀ >   

Let us explain this in intuitive terms. C is the baseline for the flow. intC  
represents the “normal status”, where there is no danger or impact. extC  is the 
region exposed to risk by the flow. Given any measurable set A on S:  

( ) ( ) ( )d
A

A a x xµ σ= ∫  

quantifies the impact produced by the flow over the region A. 
Thus, condition (v) above means that if the flow covers extC  there is a total 

disaster where condition (vi) implies that if the flow covers ( ) , 0C r r >  there is 
a serious event but not a total disaster. 

Finally, it is straightforward to check that if  

( ) ( ) ( ) ( ) ( )dr C r
I r C a x xµ σ= = ∫  

then, ( )I r  is strictly increasing with r and that  

( ) ( ) ( )lim d
extCr

I r a x xσ
→∞

= = +∞∫  
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Figure 3. Coherent splitting of C, C(r). 

 
Remark 1: The density is subjective as it should be, since different criteria may 

be applied to different contexts or by different agents. For instance, if a is constant 
and equals 1, the measure of affectation is nothing but the affected area. But if we 
are considering tides on a coast with human inhabitants, and d(x) denotes the 
population density at point x, if a d= , the affectation measure is no longer 
homogeneous on the coast and it will give greater values as more human beings 
are affected by tides. Similarly, if we have a measure of the relevance for ecosystem 
conservation at each point x, c(x), due to relevant natural areas that may be 
seriously affected by marine water, taking a linear combination of d and c we will 
try to protect human populations and natural areas as well, with relative weights 
depending on the coefficients of the linear combination. 

Consider now 1, , nC C  iid differentiables curves on S, such that: 
i) i extC C∈  i∀  
ii) , iC C  define a coherent splitting i∀   
We will think 1, , nC C  as n empirical realizations of the border of the flow.  
For any 0u > , let us define ( ) ( )

inti i extO u C C u=   (Figure 4). 
Based on the previous concepts and as a first auxiliary tool, we are now able to 

define a first impact index iX  as: 

( )( ) ( ) ( ) ( )d
i int

i i int C
X C a x xµ σ= = ∫                   (1) 

Let us define 

( )( )max , :i iD d x C x C= ∈                      (2) 

which is assumed to be a finite random variable.  
In this first and auxiliary step, we will be interested in the asymptotic behaviour 

of the tail probability: 

( )( )         0i iP X t I u D u t> + > ∀ ≥                   (3) 

The question we are interested here is: If the flow exceeds uC , what is the 
probability that the impact exceed by t the impact of total covering of ( )C u ?  

Observe that: 

( )( ) ( )( ) ( )      ,i i i i iP X t I u D u P X t I u D u P D u> + > = > + > >     (4) 

But if iD u≤  it is easy to check that ( )( ) 0iO uσ = , therefore ( )iX I u≤   
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Figure 4. Affected region exceeding the curve Cu defined by Ci. 

 
and ( )iX t I u> +  does not hold. Thus we conclude that: 

( ){ } { }i iX t I u D u> + ⊂ >                     (5) 

and that 

( )( ) ( )( ),i i iP X t I u D u P X t I u> + > = > +             (6) 

taking into account that 

( )( ) ( ) ( )( ) ( )( )   0i i i iP X t I u P X t I u X I u P X I u t> + = > + > × > ∀ ≥  (7) 

and since as u goes to infinity, ( )I u  increases to infinity (recall that ( )I u  
is deterministic), we conclude that if we assume: 

(H1): iX  belongs to the domain of attraction of an extremal distribution, 
then the Pickands-Balkema-De Haan Theorem [10] [11] applies to iX  and 

( ) ( )( ) ( )lim > >i iu
P X t I u X I u Q t

→∞
+ =                (8) 

with Q the tail of a Generalized Pareto Distribution (GPD).  
Coming back to (4), (5), (6), (7) and (8) we finally find out that if we assume: 
(H2): There exists a positive constant M such that: 

( )( ) ( )lim i iu
P X I u P D u M

→∞
> > =                   (9) 

then, 

( )( ) ( )lim i iu
P X t I u D u MQ t

→∞
> + > =                 (10) 

were Q is the tail of a GPD. We then have the following first result:  
Theorem 1: 
Under H1 and H2, as u goes to infinity, ( )( )i iP X t I u D u≤ + >  approaches 

to ( )1 MQ t−  where Q is the tail of a (GPD). ◊  

3. Example 1 

Let ( ){ }2, ; 0 1S x y y= ∈ ≤ ≤  and let C be a curve of length L splitting S. Take 
σ  the Lebesgue measure in the plane and  

( )
1     
0   

ext

int

x C C
a x

x C
∀ ∈

=  ∀ ∈



 

Then ( ) ( )( )I u C u Luσ= = . If ( ) [ ], 0,1i t tα ∈  is a parametrization of iC , 

( )
( )( ) ( )1 1

0 0 0
1d d d d di

i int

t
i iC

X x y y t t t
α

α= = =∫ ∫ ∫ ∫            (11) 

and 
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( )0,1maxi t iD tα∈=  

then H1 reads: ( )1

0
di iX t tα= ∫  belongs to an extremal domain of attraction. On 

the other hand, H2 becames: 
( )
( )

lim i
u

i

P X Lu
M

P D u→∞

>
=

>
 where M is a positive 

constant. 
Since i iX D≤ , then ( ) ( )i iP X Lu P D Lu> ≤ ≥ . If we assume that iα  has  

derivative bounded by K, ( )i it D Ktα − ≤  and 
1

0
d

2i i i
KX D K t t D≥ − = −∫   

and hence 

( )
2i i
KP X Lu P D Lu > ≥ > + 

 
                  (12) 

Therefore, H2 is satisfied if for any positive constants 1 2,  , there exists a 
positive constant M such that the following holds true: 

( )
( )

( )
( )

1 1 2lim 0i i

u
i i

P D u P D u
M

P D u P D u→∞

> > +
= = >

> >

  

            (13) 

For instance, if for t tending to infinity ( ) 1 , 1iP D t
tβ

β> ≈ > . 

( )
( )

1

1 1

1lim limi

u u
i

P D u u
P D u u

β

β β β→∞ →∞

>
= =

>



 

                (14) 

and 

( )
( )

1 2

11 2

1 1lim limi

u u
i

P D u
P D u u

u

β β→∞ →∞

> +
= =

> + 
 
 

 



 

           (15) 

and H2 is fullfiled. ◊  
We consider now our main index of impact ( )( )iO uµ . But we will yet 

provide an intermediate result concerning the asymptotic behaviour of 

( )( )( )   0i iP O u t D u tµ > > ∀ >                  (16) 

for u tending to infinity. 
Observe that { } ( )( ){ } ( )( ){ }0 0i i iD u O u O uσ µ> = > = > , and thus, (16) may 

be rewritten as 

( )( ) ( )( )( )0    0i iP O u t O u tµ µ> > ∀ >              (17) 

Before going to (16), we will discuss the asymptotic behaviour, for u tending 
to infinity, of: 

( )( )( )   0i iP O u t d u tµ > > ∀ >                 (18) 

where  

( ){ }min , :i i id d x C x C D= ∈ ≤                 (19) 

We will assume:  
H3: 0id >  a.s.  
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If id u>  it is then clear that 

( ) ( ) ( ) ( ) ( ) ( )i i iext extint
C u C d C C u C D C u⊂ ⊂ ⊂          (20) 

Taking into account (19) and (20) and the basic properties of measures we get, 

( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

i

i iext

c
i i

C d C u

C d C u O u

C D C u C D C u

µ µ

µ µ

µ µ µ

−

= ≤

≤ = −





          (21) 

Therefore, 

( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )( )
i i

i i i i

P C d C u t d u

P O u t d u P C D C u t d u

µ µ

µ µ µ

− > >

≤ > > ≤ − > >
   (22) 

Hence 

( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )( )
i i

i i i i

P C d t C u d u

P O u t d u P C D t C u d u

µ µ

µ µ µ

> + >

≤ > > ≤ > + >
   (23) 

Lets us focus first on the left hand term of (23). Taking into account that: 

{ } ( ) ( ){ } ( )( ) ( )( ){ },i i id u C u C d C u C dµ µ> = ⊂ = <        (24) 

that term may be written as 

( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( ) 

i i

i i

P C d t C u d u

P C d t C u C d C u

µ µ

µ µ µ µ

> + >

= > + >
       (25) 

Therefore, if we assume: 
(H4) ( )( )iC dµ  belongs to an extremal domain of attraction, then by the 

Theorem of Picklands-Balkema-DeHaan, since ( )( )limu C uµ→+∞ = +∞ , we have 
that 

( )( ) ( )( ) ( )( ) ( )( )( ) ( )lim ,i iu
P C d t C u C d C u Q tµ µ µ µ

→∞
> + > =     (26) 

where ( )Q t  is the tail of a GPD. Thus the left-hand term of (23) satisfies that: 

( )( ) ( )( )( ) ( )lim i iu
P C d t C u d u Q tµ µ

→∞
> + > =           (27) 

with ( )Q t  the tail of a GPD. 
Let us now consider the right-hand term of (23): 

( )( ) ( )( )
( )( ) ( )( )

( )
( )( ) ( )( )

( )
( )
( )

( )( ) ( )( )
( )

( ) ( )

,

,

, 

i i

i i

i

i i i

i i

i i i

i

P C D t C u d u

P C D t C u d u

P d u

P C D t C u D u P D u
P D u P d u

P C D t C u D u d

P d u
I II

µ

µ

µ

µ

> + >

> + >
=

>

> + > >
=

> >

> + > ≥
−

>
= −

          (28) 
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Assume that:  
(H5) ( ) ( )lim 1u i iP D u P d u→+∞ > > =  
This implies that: 

( )( ) ( )( )andi iC D C dµ µ                    (29) 

belong to the same extremal domain of attraction.  
Therefore, by (28), H5, (29) and Picklands-Balkeman-De Haan Theorem we 

get: 

( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )
( ) ( ) ( )

lim lim

 lim 1

i iu u

i

u
i

I P C D t C u C D C u

P D u
Q t Q t

P d u

µ µ µ µ
→∞ →∞

→∞

= > + >

>
× = × =

>

  (30) 

where Q is the same GPD as in (27). 
On the other hand, 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

, 
0

1

i i i i i

i i i

i i i

i i i

P D u d P D u P D u d u
II

P d u P d u P d u

P D u P d u P D u
P d u P d u P d u

> > > > >
≤ ≤ = −

> > >

> > >
= − = −

> > >

     (31) 

and it turns out from H5 that 

( )lim 0
u

II
→∞

=                           (32) 

therefore, by (28), (29) and (32), we have 

( )( ) ( )( )( ) ( )lim > >i iu
P C D t C u d u Q tµ µ

→∞
+ =           (33) 

Then, adding (33) to (23) and result (27), we obtain the following result. 
Theorem 2 
Under H3, H4 and H5, 

( )( )( ) ( )lim i iu
P O u t d u Q tµ

→∞
> > =                 (34) 

with Q the tail of a GPD. ◊   
Now let us come back to (16). We have that: 

( )( ) ( )( )( )

( )( )( ) ( )( )( )
( )

( )( )( )
( )

( )
( )

( )( )( )
( )

( )
( )

( ) ( )

0

,

, , 

,

i i

i i
i i

i

i i i i

i i

i i i i

i i

P O u t O u

P O u t D u
P O u t D u

P D u

P O u t D u d u P d u
P d u P D u

P O u t D u d P d u
P d u P D u

III IV

µ µ

µ
µ

µ

µ

> >

> >
= > > =

>

> > > >
=

> >

> > ≥ >
+

> >

= +

       (35) 

But, 
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( )
( )( )( )

( )
( )
( )

( )( )( ) ( )
( )

, , i i i i

i i

i
i i

i

P O u t D u d u P d u
III

P d u P D u

P d u
P O u t d u

P D u

µ

µ

> > > >
=

> >

>
= > >

>

           (36) 

Then using Theorem 2, and H5 we get 

( ) ( ) ( )lim 1
u

III Q t Q t
→∞

= × =                     (37) 

On the other hand, 

( ) ( )
( )

( )
( )

0 i i i

i i

P D u d P d u
IV

P d u P D u
> ≥ >

≤ ≤
> >

               (38) 

By (30) and (H5), the right-hand term on (38), as u tends to infinity, tends to 
0 1 0× =  and therefore: 

( )lim 0
u

IV
→∞

=                           (39) 

and we then have the main result of this paper: 
Theorem 3 
Under H3, H4 and H5 

( )( ) ( )( )( ) ( )lim 0     0i iu
P O u t O u Q t tµ µ

→∞
> > = ∀ >          (40) 

with ( )Q t  the tail of a GPD. ◊   
Remark 2: This result is a clear extension of the POT method, since it gives 

the conditional distribution of the measure of affectation given that the area 
( )iO u  is reached by the flow. We will derive a statistical application of this 

Theorem that we defined as Peak Over Manifold (POM). 

3.1. Example 1, Synthetic Data 

In the first example, we simulate a data set on tide height along 100 km of 
beach monitored for three months under different tidal conditions. Then we 
evaluate the probability of the sea exceeding a fixed threshold distance (u) over 
the sand. The threshold was set as the height exceeding 20% the maximum 
average tide ( 3.5 mu = ). We estimated the tidal height using the function waves 
(https://beckmw.wordpress.com/2017/04/12/predicting-tides-in-r/) that models a 
sinusoidal function with a defined period (T in hours) and amplitude (A in meters). 
We chose to combine functions with three different tidal configurations, 

[ ]24,48,12T =  and [ ]1,0.5,2A =  respectively. This raises a cyclic pattern (Figure 
5) of average tide ( tide ). For each time, we simulated distance from shoreline over 
the beach for each of the 100 kilometer along the beach ( 1, ,100s =   in km). The 
distance from the shore (d in m) was simulated by combining a sinusoidal function 
with variable spatial amplitude ( sA  in meters) and fixed spatial period ( 20sT =  in 
km) with iid withe noise ( ( )Normal 0,0.5e ≈ ) as follows: 

( ) 2tide  sins
s

d s A s e
T

 
= + + 



π


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Figure 5. Temporal trend in average tidal height in a week. Red dots indicate examples of points were detailed spatial patterns in 
tidal height is shown. I) An example where tide did not exceed the threshold (u) and II) an example were tide exceeds the 
predefined threshold. The dashed area is the observed excess ( ( )iO u ). 

 
We registered dates when, at any point, the distance from the shore exceeded 

threshold ( d u> ). For those dates, the area exceeding the threshold ( ( )iO u ) was 
calculated (dashed vertical lines in Figure 5, II). Excess ( d u> ) were registered 
in 16% (N = 685) of the sampled events. We assumed affectation was 
independent of the point of the beach reached by high tide, and thus the affected 
area was used as indicator of effect. We fitted by maximum likelihood estimation 
a GPD using the fitGPD function from the {POT} package in R to affected areas 
larger than 1000 m2. The distribution of areas exceeding the threshold ( ( )iO u ) 
showed a GPD as expected on theoretical grounds (Figure 6). 

Scale parameter (average [95% CI]; [ ]0.007 0.006,0.009σ = ) and a shape 
parameter (average [95% CI]; [ ]131 17 0.14,0.11ξ −= × − ) suggested an Exponential 
distribution (Figure 6). Notice the confidence interval of the shape parameter 
overlaping zero is usefull to detect exponential distribution. 
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Figure 6. Simulated area exceeding a threshold ( ( )iO u ) and fitted 

Generalized Pareto Distribution (GPD) fitted. The values of the fitted 
parameters are also shown. 

3.2. Example 2: Ice Cover in Antartica 

We explored ice cover data in Antartica using reanalysis data from the 
Environmental Modeling Center of the National Centers for Environmental 
Prediction (NCEP) from the National Oceanic and Atmospheric Administration 
(NOAA) using the second version [13]. Data on monthly sea ice concentration 
(Figure 7) was downloaded from  
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBA
L/.Reyn_SmithOIv2/.monthly/T/722.5/VALUE/X/150.0/360.0/RANGEEDGES/
Y/-90/-60/RANGEEDGES/.sea_ice/index.html. Sea ice concentration data were 
obtained from −89.5 to −60.5 degrees South of latitude and −149.5 to 0.5 degress 
West in Longitude for cell of 1 × 1 degree. Monthly data consisted in 461 
months starting in October 1981 to Febraury 2020. Sea ice concetration was 
expressed as percentage (0 - 100%) of cell area. 

We calculated the averge monthly ice cover for the whole period (i.e. 
climatology, Figure 8) and defined a threshold ( 10%u < ). The cells with less 
than 10% of ice cover were selected to evaluate the dynamic of ice cover in the 
extreme regions. Then, for each month we explored whether the fraction of ice 
cover exceeded the climatological threshold (u) previously estimated. For the 
months in which the percentage of ice cover exceeded 10%, we recorded the area 
of ice cover exceeding threshold. The area of 1 × 1 change with latitude. Thus we 
used the function area from {raster} package to convert from percentage of ice 
cover to area of the ice cover (in km2) for each cell. Despite this function is not  
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Figure 7. Ice cover (in %) in the studied region of the Antartica. 

 
precise for high latitudes, it represent a first order approximation. Moreover, 
most of the points were located mostly in the lower latitudinal regions and thus 
this does not introduce a relevant bias. 

For each month were some ice cover exceeds climatological ice cover, we 
estimated the area of the ice cover exceeding the threshold and stored in a 
separate vector. We fitted by maximum likelihood estimation a GPD to the area 
exceeding threshold using the fitgpd function from the {POT} package in R to 
areas larger than 1000 km2. We found a good fit to a GPD (Figure 9) with a 
positive shape parameter (average [95% CI] [ ]0.158 0.07,0.26ξ = ).  

4. Discussion & Conclusions 

This work introduces a novel technique to evaluate extreme processes over a 
surface or manifold. The reasoning expands previous univariate approaches to 
the topic (POT) by demonstrating under realistic hypothesis that the resultant 
distribution of the area exceeded by a given phenomena follows a Generalized 
Pareto Distribution (GPD). The applicability of this novel approach is 
demonstrated under simulated data on tidal height and ice cover in a relevant 
region in the Antartica. Results confirm the application of a GPD to explore 
problems of extreme over surfaces. This opens a new avenue in the analisys of 
extreme flows which can be applied in ice cover in the poles [14], to areas 
covered by flood, the incidence of heatwaves among other examples. Under 
resonable conditions, the distribution converges to a GDP, but exploring if other 
distribution can emerge is interesting and also to compare the method using  
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Figure 8. Montlhy climatological values of ice cover extent in Antartica. 

 

 
Figure 9. Area covered by ice in the extreme range of ice cover. Superimposed is the Generalized Pareto 
Distribution fitted to data. The value of the shape (σ ) and scale parameters ( ξ ) are shown. 
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more data-sets, as has been done in recent articles [15]. In real applications, the 
evaluation over surfaces (2D) will be common, but the theorem allows to expand 
the results to a more general N-dimensional manifold. This avenue has to be 
further explored. 
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